• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • Tagged with
  • 19
  • 19
  • 9
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Novel Organic Heterostructures Enabled by Emulsion-Based, Resonant Infrared, Matrix-Assisted Pulsed Laser Evaporation (RIR-MAPLE)

McCormick, Ryan January 2014 (has links)
<p>An explosion in the growth of organic materials used for optoelectronic devices is linked to the promise that they have demonstrated in several ways: workable carrier mobilities, ease of processing, design flexibility to tailor their optical and electrical characteristics, structural flexibility, and fabrication scalability. However, challenges remain before they are ready for prime time. Deposition of these materials into ordered thin films requires that they be cast from solutions of organic solvents. Drawbacks of solution-casting include the difficulty of producing layered films without utilizing orthogonal solvents (or even with orthogonal solvents), the difficulty in controlling domain sizes in films of mixed materials, and the lack of parameter options used to control the final properties of thin films. Emulsion-based, resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE) is a thin film deposition technique that is demonstrated to provide solutions to these problems.</p><p>This work presents fundamental research into the RIR-MAPLE process. An investigation of the molecular weight of deposited materials demonstrates that emulsion-based RIR-MAPLE is capable of depositing polymers with their native molecular weights intact, unlike other laser deposition techniques. The ability to deposit multilayer films with clearly defined interfaces is also demonstrated by cross-sectional transmission electron microscopy imaging of a layered polymer/quantum dot nanocomposite film. In addition, trade-offs related to the presence of surfactant in the target, required to stabilize the emulsion, are articulated and investigated by x-ray diffraction, electrical, optical, and surface characterization techniques. These studies show that, generally speaking, the structural, optical and electrical properties are not significantly affected by the affected by the presence of surfactant, provided that the concentration within the target is sufficiently low. Importantly, the in-plane mobility of RIR-MAPLE devices, determined by organic field effect transistor (OFET) characterization, rivals that of spin-cast devices produced under similar conditions. </p><p>This work also presents results of emulsion-based RIR-MAPLE deposition applied to optical coatings (gradient-refractive index antireflection coating based on porous, multilayer films) and optoelectronic devices (organic photovoltaics based on the polymer, P3HT, and small molecule, PC61BM, bulk heterojunction system). The optical coating demonstrates that RIR-MAPLE is capable of producing nanoscale domain sizes in mixed polymer blends that allow a film to function as an effective medium relevant to devices in the visible spectrum. Moreover, bulk heterojunction organic photovoltaic (OPV) devices that require nanoscale domains to function effectively are achieved by co-deposition of P3HT and PC61BM, achieving a power conversion efficiency of 1.0%, which is a record for MAPLE-deposited devices. </p><p>Results of these studies illuminate unique capabilities of the RIR-MAPLE process. Multilayer films are readily fabricated to create true bilayer OPV structures. Additionally, true gradient thin films are created by varying the ratio of two materials, including two-polymer films and a film consisting of a polymer and a small molecule, over the course of a single deposition.</p> / Dissertation
12

High performance photonic probes and applications of optical tweezers to molecular motors

Jannasch, Anita 23 November 2017 (has links) (PDF)
Optical tweezers are a sensitive position and force transducer widely employed in physics and biology. In a focussed laser, forces due to radiation pressure enable to trap and manipulate small dielectric particles used as probes for various experiments. For sensitive biophysical measurements, microspheres are often used as a handle for the molecule of interest. The force range of optical traps well covers the piconewton forces generated by individual biomolecules such as kinesin molecular motors. However, cellular processes are often driven by ensembles of molecular machines generating forces exceeding a nanonewton and thus the capabilities of optical tweezers. In this thesis I focused, fifirst, on extending the force range of optical tweezers by improving the trapping e fficiency of the probes and, second, on applying the optical tweezers technology to understand the mechanics of molecular motors. I designed and fabricated photonically-structured probes: Anti-reflection-coated, high-refractive-index, core-shell particles composed of titania. With these probes, I significantly increased the maximum optical force beyond a nanonewton. These particles open up new research possibilities in both biology and physics, for example, to measure hydrodynamic resonances associated with the colored nature of the noise of Brownian motion. With respect to biophysical applications, I used the optical tweezers to study the mechanics of single kinesin-8. Kinesin-8 has been shown to be a very processive, plus-end directed microtubule depolymerase. The underlying mechanism for the high processivity and how stepping is affected by force is unclear. Therefore, I tracked the motion of yeast (Kip3) and human (Kif18A) kinesin-8s with high precision under varying loads. We found that kinesin-8 is a low-force motor protein, which stalled at loads of only 1 pN. In addition, we discovered a force-induced stick-slip motion, which may be an adaptation for the high processivity. Further improvement in optical tweezers probes and the instrument will broaden the scope of feasible optical trapping experiments in the future.
13

Analytic Optimization Modeling of Anti-Reflection Coatings for Solar Cells

Al-Turk, Sarry 10 1900 (has links)
<p>The world’s dependence on oil cannot continue indefinitely. As reserves dwindle and demand continues to increase, prices will soar to new highs and fundamentally change the way society deals with energy generation and consumption. Use of oil and other carbon-based fuels also have detrimental effects on human health, as pollution that arises from the combustion of these fuels necessitates treating respiratory problems in millions of people annually. Moreover, evidence that climate change is anthropogenic has become undeniable and has been proven to be direct related to dependence on carbon-based fuels.</p> <p>Renewable energy offers clean and dependable alternatives for electricity, heating and transport. In particular, solar energy looks to be the most promising owing to its sheer abundance and ubiquity. The main obstacle hindering the adoption of solar cell technology en masse is cost. One of the ways to reduce cost is to fabricate thinner solar cells, but this compromises efficiency due to lower optical absorption that results, especially in silicon. In order to become a serious competitor in the energy market, highly absorptive solar cells must be developed at reduced material costs, which is the essence of light-trapping.</p> <p>In this study, two of the most common ways to trap light by reducing reflection were investigated: the application of anti-reflection coatings and surface texturing in silicon. Analytic models were created to optimize optical design in both single-junction and multi-junction solar cells. The single-junction silicon models accounted for non-normal incidence, which allowed angle-averaged calculations to be made for planar and textured surfaces. Single-junction GaAs models included a GaInP window layer whose optical effects were considered in anti-reflection coating optimization. The multi-junction GaAs-on-silicon (GaAs/Si) and AlGaAs-on-silicon (AlGaAs/Si) models that were created clearly demonstrated the need to adjust individual subcell thicknesses in order to optimize optical design.</p> / Master of Applied Science (MASc)
14

Multiband Detectors and Application of Nanostructured Anti-Reflection Coatings for Improved Efficiency

Jayasinghe, J. A. Ranga C 20 December 2012 (has links)
This work describes multiband photon detection techniques based on novel semiconductor device concepts and detector designs with simultaneous detection of dierent wavelength radiation such as UV and IR. One aim of this investigation is to examine UV and IR detection concepts with a view to resolve some of the issues of existing IR detectors such as high dark current, non uniformity, and low operating temperature and to avoid having additional optical components such as filters in multiband detection. Structures were fabricated to demonstrate the UV and IR detection concepts and determine detector parameters: (i) UV/IR detection based on GaN/AlGaN heterostructures, (ii) Optical characterization of p-type InP thin films were carried out with the idea of developing InP based detectors, (iii) Intervalence band transitions in InGaAsP/InP heterojunction interfacial workfunction internal photoemission (HEIWIP) detectors. Device concepts, detector structures, and experimental results are discussed. In order to reduce reflection, TiO2 and SiO2 nanostructured thin film characterization and application of these as anti-reflection coatings on above mentioned detectors is also discussed.
15

High performance photonic probes and applications of optical tweezers to molecular motors

Jannasch, Anita 21 December 2012 (has links)
Optical tweezers are a sensitive position and force transducer widely employed in physics and biology. In a focussed laser, forces due to radiation pressure enable to trap and manipulate small dielectric particles used as probes for various experiments. For sensitive biophysical measurements, microspheres are often used as a handle for the molecule of interest. The force range of optical traps well covers the piconewton forces generated by individual biomolecules such as kinesin molecular motors. However, cellular processes are often driven by ensembles of molecular machines generating forces exceeding a nanonewton and thus the capabilities of optical tweezers. In this thesis I focused, fifirst, on extending the force range of optical tweezers by improving the trapping e fficiency of the probes and, second, on applying the optical tweezers technology to understand the mechanics of molecular motors. I designed and fabricated photonically-structured probes: Anti-reflection-coated, high-refractive-index, core-shell particles composed of titania. With these probes, I significantly increased the maximum optical force beyond a nanonewton. These particles open up new research possibilities in both biology and physics, for example, to measure hydrodynamic resonances associated with the colored nature of the noise of Brownian motion. With respect to biophysical applications, I used the optical tweezers to study the mechanics of single kinesin-8. Kinesin-8 has been shown to be a very processive, plus-end directed microtubule depolymerase. The underlying mechanism for the high processivity and how stepping is affected by force is unclear. Therefore, I tracked the motion of yeast (Kip3) and human (Kif18A) kinesin-8s with high precision under varying loads. We found that kinesin-8 is a low-force motor protein, which stalled at loads of only 1 pN. In addition, we discovered a force-induced stick-slip motion, which may be an adaptation for the high processivity. Further improvement in optical tweezers probes and the instrument will broaden the scope of feasible optical trapping experiments in the future.
16

Gradient-Index Metamaterial Infrared Detector for Enhanced Photo-Response and Image Quality

Adams, Kelsa Derek 05 1900 (has links)
An enhanced thermal imaging concept made possible through the development of a gradient-indexed metamaterial infrared detector that offers broadband transmission and reflection in THz waves. This thesis proposes a proof of feasibility for a metamaterial infrared detector containing an anti-reflective coating with various geometrically varying periodic metasurfaces, a gradient-indexed dielectric multilayer for near-perfect longpass filtering, and a gradient index of refraction (GRIN) metalens for enhanced focal plane thermal imaging. 2D Rigorous Coupled-Wave Analysis (RCWA) is used for understanding the photonic gratings performance based on material selection and varying geometric structure. Finite Difference Time Domain (FDTD) is used to characterize performance for a diffractive metalens by optimizing the radius and arrangement of cylindrical nanorods to create a desired phase profile that can achieve a desired focal distance for projections on a detector for near- to far-infrared thermal imaging. Through combining a micromachined anti-reflective coating, a near-perfect longpass filter, and metamaterial GRIN metalens, infrared/THz focal plane thermal imaging can obtain faster photo-response and image quality at targeted wavelengths, which allows for scientific advancements in electro-optical devices for the Department of Defense, aerospace, and biochemical detection applications.
17

External Cavity Quantum Cascade Lasers

Kischkat, Jan-Ferenc 15 September 2015 (has links)
Diese Arbeit untersucht den Einfluss verschiedener physikalischer Parameter auf das Verhalten von Frequenz-abstimmbaren External-Cavity Quantenkaskadenlasern (EC-QCLs) theoretisch und experimentell. Diese beinhalten unter anderen die Antireflexschicht, die Art der Optiken, die geometrischen und die mechanisch/strukturellen Eigenschaften. Dies wurde erreicht durch Aufbau dreier sehr unterschiedlicher EC-Konfigurationen, der Diskussion und dem Vergleich ihrer Leistungsmerkmale und ihrer Vor- und Nachteile für verschiedene Anwendungen unter hauptsächlicher Verwendung von QCLs desselben Wafers der Vergleichbarkeit wegen. Für den letzten Teil dieser Arbeit wurde ein neuer Typus EC-QCL mit vielversprechenden Eigenschaften entwickelt, sodass wir glauben er hat das Potential das Littrow Design langfristig abzulösen. Dieses selbststabilisierende Design verwendet einen Retroreflektor als externen Reflektor. Für die Demonstration dieses Konzepts war die Entwicklung eines Tuning-Elements in Form eines Winkel-verstimmbaren Mittinfrarot-Bandpass-Interferenzfilters mit sehr hohem Gütefaktor vonnöten. Für das Design des Filters wurden Materialien mit sehr strengen Toleranzen bezüglich ihrer physikalischen und optischen Eigenschaften auf Basis von theoretischen Überlegungen ausgewählt und eine Fabrikationsmethode mit hochoptimierten Prozessparametern entwickelt. Die ersten Filter auf Basis von Yttriumfluorid/Yttriumoxid/Germanium/Silizium haben eine Transmissionsbandbreite von 0.14% der Zentralwellenlänge und eine maximale Transmission von etwa 60%. Die EC Konfiguration resultierte in verminderter Empfindlichkeit gegenüber Mechanischen Störungen des Reflektors um zwei Größenordnungen. Das Design behebt die grundsätzliche Limitierung des Littrow Designs bezüglich Miniaturisierung, da kein großer Strahldurchmesser vonnöten ist um kleine Bandbreiten des Littrowgitters zu erreichen. / This thesis thoroughly investigates theoretically and experimentally the effects many physical parameters have on the performance of Tunable External-Cavity Quantum-Cascade Lasers (EC-QCLs). These include, among others, the anti-reflection coating, the type of optics, and the geometrical as well as mechanical and structural properties of the EC setup. This was done by assembling three very different EC setups and comparing and discussing their performance, as well as advantages and disadvantages for different purposes using mainly QCLs from the same original wafer for better comparability. For the last part of this thesis, a new type of EC-QCL configuration was developed with properties so promising that we believe it has the potential to replace the Littrow Cavity in the long term. This is an alignment-stabilized and interference filter-tuned design using a retroreflector as the external reflector. For the demonstration of this concept, development of the tuning element in the form of an angle-tunable high-Q mid-infrared bandpass filter was necessary. For the design of the filter, materials with very strict tolerances on the physical and optical properties were selected from theoretical considerations and a fabrication method with highly optimized process parameters was developed. The first filters on the basis of yttrium fluoride/yttrium oxide/germanium/silicon have a transmission bandwidth of 0.14% of the central wavelength and a peak transmission of approximately 60%. The EC configuration resulted in a sensitivity reduction to mechanical perturbations of the reflector by two orders of magnitude, with a calculated potential for three orders of magnitude using optimized optics. This design lifts the fundamental constraint on miniaturization imposed on the Littrow design that requires large beam diameters to ensure a small bandwidth of the Littrow grating.
18

Porous Metal Oxides and Their Applications

Tien, Wei-Chen 15 July 2012 (has links)
Porous metal oxides formed by supercritical carbon dioxide (SCCO2) treatments at low temperature were used for displays, solar cells, and light emitting diodes (LEDs) applications. The SCCO2 fluid, also known as green solvents, exhibits low viscosity, low surface tension and high diffusivity as gases, and high density and solubility same with liquids. In this thesis, we successfully fabricated porous antimony-doped tin oxide (ATO) and porous indium tin oxide (ITO) by the SCCO2 treatments. In addition, the treatment can also be used to improve the work function and surface energy of ITO anode of an organic LED (OLED). The performance of the OLEDs was drastically enhanced in comparison with that of the devices without any ITO surface treatments. First, the porous ATO films were formed by the SCCO2 treatment for absorption of silver molecules in silver electro deposition devices. The porosity, resistivity and average optical transmittance of the porous ATO film in visible wavelength were 43.1%, 3 £[-cm and 90.4%, respectively. For the silver electro deposition devices with the porous ATO film, the transmittance contrast ratio of larger than 12 in visible spectrum was obtained at an operating voltage of 1.5 V. Furthermore, for the 0.25 cm2 device, the switching time of 4.5 seconds was achieved by applying a square-wave voltage ranging from 1.5 to -0.2 V between the electrodes. On the other hand, the porous ITO with low refractive index was prepared by SCCO2/IPA treatment on gel-coated ITO thin films. The high refractive index of the ITO film was achieved by long-throw radio-frequency magnetron sputtering technique at room temperature. The index contrast (£Gn) was higher than 0.6 between porous ITO and sputtered ITO films. The large £Gn is useful for fabricating conductive anti-reflection (AR) and high reflection (HR) structures using the porous ITO on sputtered ITO bilayers. The weighted average reflectance and transmittance of 4.3% and 83.1% were achieved for the double-layer ITO AR electrode with a sheet resistance of 1.1 K£[/¡E. For HR structures, the reflectance and sheet resistance were 87.9% and 35 £[/¡E with 4 periods ITO bilayers. Finally, the SCCO2 treatments with strong oxidizer H2O2 were proposed to modify surface property of ITO anode of a fluorescent OLED. The highest work function and surface energy of 5.5 eV and 74.8 mJ/m2 was achieved by the SCCO2/H2O2 treatment. For the OLED with 15 min SCCO2 treatment at 4000 psi, the turn-on voltage and maximum power efficiency of 6.5 V and 1.94 lm/W were obtained. The power efficiency was 19.3% and 33.8% higher than those of the OLEDs with oxygen plasma treated and as-cleaned ITO anodes.
19

Broadly Tunable External Cavity Quantum Cascade Laser

Matsuoka, Yohei 26 June 2020 (has links)
Mitt-Infrarot-Technologie (mid-IR) ist ein äußerst leistungsfähiges Werkzeug für die Anwendung in der Molekülspektroskopie, da die Schwingungsmoden vieler Moleküle in diesem Wellenlängenbereich liegen. Der Quantenkaskadenlaser mit externem Resonator (EC-QCL) kann alle Bereiche dieses Spektrums abdecken. Das Hauptanliegen dieser Arbeit ist die Verbesserung der Leistung des EC-QCL im Hinblick auf die Breite des Wellenlängen-Durchstimmbereichs und die Laserleistung. Theoretische Untersuchungen bestätigen zunächst, dass der QCL die Schlüsselrolle bei EC-Systemen einnimmt: Die Effizienz des EC wird bestimmt durch die Effizienz des QCL und die Güte der Antireflex-Schicht (ARC) der Laserfacette. Die Breite des Durchstimmbereichs wird bestimmt durch das Gain-Spektrum des QCL. Im Rahmen dieser Arbeit wurden die QCL in unserer Gruppe hergestellt und vom QCL-Wachstum selbst bis hin zur Facettenbeschichtung optimiert. Eine der größten Herausforderungen in der Herstellung des EC-Systems ist die Reduktion des Reflexionsvermögens innerhalb der Facetten des Laserchips. Dafür haben wir ein neues ARC-Konzept entwickelt und auf dem beschichteten Substrat demonstriert, dass innerhalb des gesamten, sehr breiten Wellenlängenbereichs von 7–12 μm die Reflexion auf unter 1% reduziert wird. Das Beschichtungsmodell wurde außerdem auf „broad-gain“-QCL-Facetten angewendet, wodurch die Reflexion auf 0,75% über den gesamten Emissions-Wellenlängenbereich reduziert werden konnte. Ein weiterer Schwerpunkt dieser Arbeit ist die Entwicklung und Konstruktion von EC-Lasersystemen. Es wurden zwei kompakte Laser vom Littrow-Typ entwickelt, die von 920 cm-1 bis 1190 cm-1 durchstimmbar sind und die eine Pulsleitung von 0.45 W erreichen. Außerdem wurde eine neue optische Konfiguration des EC-Systems vorgeschlagen um eine höhere Ausgangsleistung zu erzielen. Dieser „Intra-cavity Out-coupling Laser“ erreicht eine Pulsleistung von 1 W und den gleichen Emissionbereich wie die beiden Littrow-Laser. / Mid-infrared (mid-IR) technology is a very powerful tool for molecular spectroscopy since vibration modes of many molecules lie in this wavelength range. The External-Cavity Quantum Cascade Laser (EC-QCL) can cover any part of this spectral range. The main goal of this study is to improve EC-QCL performance in terms of wavelength tunability and laser power. The theoretical study about Quantum Cascade Laser (QCL) and EC systems has confirmed that the QCL plays the core role of EC-QCL systems; the power efficiency of an EC system is determined by the combination of the power efficiency of QCL and AR-coating of the laser facet. The width of the tuning range is determined by the gain spectrum of QCL. During this work, QCLs have been fabricated in our group and the optimization of these factors were carried out with various approaches, from QCL growth to facet coatings. One of the major challenges in making EC systems is to reduce the intra-facet reflectivity of the laser chip, and we first proposed a new anti-reflection (AR) coating concept and demonstrated its performance for the first time to the community, achieving good reduction of reflection of the AR-coated substrate over 7-12 μm range, keeping below R < 1% reflection over the entire spectrum. The coating model was applied on broad-gain QCL facets, and the reflection was reduced to 0.75% over the entire emission wavelength range. Furthermore, this work focused on the development and engineering of laser systems, and two compact Littrow-type lasers and an EC system with a new optical configuration have been developed, achieving good performances; tunable from 920 cm-1 to 1190 cm-1 and 0.45 W pulse power. The new type of laser, an Intra-cavity out-coupling EC laser, was also proposed to enhance the power output and achieved over 1 W pulse power with keeping the same tuning range as the Littrow-type. / 中赤外分光の技術は非常に有用である。これはとりわけ多くの分子振動モードがこの波長帯域に存在しているためである。可変長レーザーである外部共振器量子カスケードレーザー(External cavity quantum cascade laser, EC-QCL)は、これらスペクトル領域を網羅することが可能で、したがって、EC-QCLは産業スケールを含めた、標準的な光源として非常に潜在的である。商品化のフェーズをさらに推し進めるため、このレーザー性能におけるボトムアップの技術が求められてる。 多くの中赤外光のアプリケーションには広帯域の光源が求められている。この研究はおもにそうした性能を最大化することを背景としている。具体的な目的としては、波長の変調性および光源の強度の向上である。これらの目的に取り組むため、我々はいくつかの段階にステージ化して研究を進めてきた。まず初めに、QCLおよびEC-QCLの基本的な特性の追求から始めた。QCLおよびEC-QCLの物理機構の理論的な考察を行い、これらからEC-QCL形態における要素の最適条件もしくは要請を求めた。QCL素子が、その主要な部位であり、EC系におけるほとんどの性能特性である量子効率、変調領域幅、増幅器の光学損失を決定する。 さまざまなアプローチによりこれら緒特性の最適化が行われた。 この研究のなかで、我々グループ内でシステムの心臓となるQCL素子の全製造プロセス(結晶成長から素子コーティングに至るまで)をおこなった。これら製造手順および性能特性の詳細もまた本論文に記す。 ECレーザーにおける要請特性の中で特に困難な課題として、レーザー素子の内部断面(intra-facet)の反射率の低減があげられる。これに応じるものとして、我々は新たな反射防止膜のコンセプトで、特に中赤外光領域に有益なものを提案した。この実現のために、様々な誘電体物質の光学特性を調べ、中赤外光の応用に最適なものを選択し、実際のコーティングに応用した。ここで提案されたモデル``quasi-Lockhart'' (疑ロックハート)のコーティングは、実験によりその高い性能が実証された。波長7–12 μmの領域をカバーし、かつその全領域内で反射率を1%以下に抑えることができた。またこのコーティングは広帯域ゲインのチップにも施され、その反射率を全体域をカバーしながら、0.75%まで低減させた。この成果はEC-QCLだけでなく、一般の中赤外光の光学コーティングにおいても大いに有用であろう。 さらに、我々は本研究の中でレーザーシステムの構築にも取り組んだ。この研究のなかで、二台のLittrow型レーザーと、新たな光学系をもつECレーザーを構築し、その高性能性を実証した。Littrow型では920 cm-1-1190 cm-1の帯域とパルス強0.45 Wを達成。新たなレーザーシステムであるIntra-cavity out-coupling系は従来の系にくらべ高出力することを目的とされ、その帯域を維持しながら、パルス強1~Wの出力を達成した。またこれら新たなシステムを用いて、またプロジェクトバートナーとの食道癌の細胞イメージングも試験、およびグループにおいてアンモニアの吸光度測定を実施した。

Page generated in 0.155 seconds