Spelling suggestions: "subject:"artificielle intelligens/AI""
41 |
Artificiell Intelligens och digitalisering i revisionsbranschen : Utmaningar och möjligheter på revisionsprocess och revisionskvalitetPaulsen, Jennifer, Jansson, Maja January 2024 (has links)
Under de senaste åren har revisionsbranschen genomgått betydande förändringar med införandet av digitalisering och olika digitala verktyg. Under det senaste året har Artificiell Intelligens (AI) blivit alltmer framträdande och förväntas fortsätta att utvecklas. Revisionsbyråer integrerar digitala verktyg för att optimera revisionsprocessen, förbättra kvaliteten på revisionerna och reducera risken för konkurrens. Användning av AI-teknik kan signalera att revisionsbyrån ligger i framkant med tekniska verktyg och därmed öka revisionens trovärdighet. Tidigare forskning betonar fördelarna med att implementera digitala verktyg, som AI-teknik, i revisionsarbetet. Det förväntas att detta ska medföra effektivisering, flexibilitet, resursbesparing samt möjlighet att fokusera på andra mer komplexa arbetsuppgifter för revisorn. Syftet med den föreliggande studien är att undersöka hur användningen av AI-teknik och digitalisering påverkar revisionsprocess, revisionskvalitet och revisorns kompetenskrav. Studien utforskar dessutom revisorers uppfattning och acceptans av teknologiska innovationer hos revisionsbyråer som ingår i The Big Four. För att åstadkomma detta genomfördes intervjuer med elva revisorer av olika yrkesbefattning. Resultaten från den föreliggande studien indikerar att majoriteten av respondenterna har en positiv inställning till AI-tekniken och dess framtida utveckling. Dessutom framhåller respondenterna att tekniken är ett värdefullt hjälpmedel och stöd under revisionsprocessen genom att erbjuda vägledning och insikter. Studien framhäver vikten av att använda AI-teknik inom revision med försiktighet och betonar att revisorns mänskliga kompetens och expertis fortfarande är avgörande för både revisionskvalitet och klientförtroende. Trots att majoriteten av respondenterna ser potential i hur AI-teknik kan förbättra deras arbete, påpekar studien att tekniken fortfarande är i ett tidigt utvecklingsstadium. Studien har resulterat i att AI-teknik inte är så etablerad som tidigare forskning har indikerat. Det har också observerats att revisorer behöver ökad kunskap om AI för att effektivt kunna använda tekniken i sin revision, vilket kan åstadkommas genom utbildning. Dessa slutsatser indikerar att AI-tekniken fortsätter att genomgå betydande förbättringar och att dess fulla potential ännu inte har realiserats. / Artificial Intelligence and Digitalization in the Auditing Industry: Challenges and Opportunities for the Auditing Process and Audit Quality In recent years, the auditing industry has undergone significant changes with the introduction of digitalization and various digital tools. Over the past year, Artificial Intelligence (AI) has become increasingly prominent and is expected to continue developing. Audit firms are integrating digital tools to optimize the auditing process, improve audit quality, and reduce the risk of competition. The use of AI-technology can signal that the audit firm is at the forefront of technological tools, thereby increasing the credibility of the audit. Previous research emphasizes the benefits of implementing digital tools, such as AI-technology, in auditing work. It is expected that this will lead to increased efficiency, flexibility, resource savings, and the ability for auditors to focus on other, more complex tasks.The purpose of the present study is to examine how the use of AI-technology and digitalization affects the auditing process, audit quality, and the competence requirements for auditors. The study also explores auditors' perceptions and acceptance of technological innovations at audit firms within The Big Four. To achieve this, interviews were conducted with eleven auditors of various professional positions. The results from the present study indicate that the majority of respondents have a positive attitude towards AI-technology and its future development. Additionally, the respondents highlight that the technology is a valuable tool and support during the auditing process by providing guidance and insights.The study highlights the importance of using AI-technology in auditing with caution and emphasizes that the auditor's human competence and expertise remain crucial for both audit quality and client trust. Although the majority of respondents see potential in how AI-technology can enhance their work, the study points out that the technology is still in an early stage of development. The study has shown that AI-technology is not as established as previous research has indicated. It has also been observed that auditors need increased knowledge about AI to effectively use the technology in their audits, which can be achieved through education. These conclusions indicate that AI-technology continues to undergo significant improvements and that its full potential has yet to be realized.
|
42 |
Artificiell Intelligens för riskhantering : En studie om användningen av ny teknologi på de svenska bankernas kreditbedömningarSalloum, Alexander, Yousef, Johan January 2024 (has links)
Background: Managing credit risks is an integral part of the banking sector and is crucial for banks’ success. Effective risk management ensures stable and profitable operations, addressing challenges like information asymmetry between lenders and borrowers. To combat these challenges, banks are shifting from manual methods to automated processes in credit assessment and credit risk management.Purpose: The purpose of the study was to investigate how the use of AI has contributed to credit risk management and the handling of risk assessments within Swedish banks. Additionally, the study explored the factors driving the use of AI in this area. Methodology: An abductive research approach was employed within the framework of a qualitative research method. Four banks were included in the study: two major banks and two niche banks. Semi structured interviews provided the primary data for the study, while secondary data, such as articles and literature, were used to support and explain the findings during the analysis and discussion. Theory: The study was based on two models and the theory of information asymmetry. The first model focuses on the credit assessment process, while the second addresses critical success factors for the implementation of AI. The theory of information asymmetry consists of moral hazard and adverse selection. Conclusions: The study’s conclusion indicated that AI has contributed to increased efficiency and precision in credit risk management. Furthermore, AI supports addressing information asymmetry by automating data collection, analysis, and fraud detection. The study concludes that effective AI usage necessitates a balanced combination of management support, strategic vision, organizational culture, and structure.
|
43 |
Grön AI : En analys av maskininlärningsalgoritmers prestanda och energiförbrukningBerglin, Caroline, Ellström, Julia January 2024 (has links)
Trots de framsteg som gjorts inom artificiell intelligens (AI) och maskininlärning (ML), uppkommer utmaningar gällande deras miljöpåverkan. Fokuset på att skapa avancerade och träffsäkra modeller innebär ofta att omfattande beräkningsresurser krävs, vilket leder till en hög energiförbrukning. Syftet med detta arbete är att undersöka ämnet grön AI och sambandet mellan prestanda och energiförbrukning hos två ML-algoritmer. De algoritmer som undersöks är beslutsträd och stödvektormaskin (SVM), med hjälp av två dataset: Bank Marketing och MNIST. Prestandan mäts med utvärderingsmåtten noggrannhet, precision, recall och F1-poäng, medan energiförbrukningen mäts med verktyget Intel VTune Profiler. Arbetets resultat visar att en högre prestanda resulterade i en högre energiförbrukning, där SVM presterade bäst men också förbrukade mest energi i samtliga tester. Vidare visar resultatet att optimering av modellerna resulterade både i en förbättrad prestanda men också i en ökad energiförbrukning. Samma resultat kunde ses när ett större dataset användes. Arbetet anses inte bidra med resultat eller riktlinjer som går att generalisera till andra arbeten. Däremot bidrar arbetet med en förståelse och medvetenhet kring miljöaspekterna gällande AI, vilket kan användas som en grund för att undersöka ämnet vidare. Genom en ökad medvetenhet kan ett gemensamt ansvar tas för att utveckla AI-lösningar som inte bara är kraftfulla och effektiva, utan också hållbara. / Despite the advancements made in artificial intelligence (AI) and machine learning (ML), challenges regarding their environmental impact arise. The focus on creating advanced and accurate models often requires extensive computational resources, leading to a high energy consumption. The purpose of this work is to explore the topic of green AI and the relationship between performance and energy consumption of two ML algorithms. The algorithms being evaluated are decision trees and support vector machines (SVM), using two datasets: Bank Marketing and MNIST. Performance is measured using the evaluation metrics accuracy, precision, recall, and F1-score, while energy consumption is measured using the Intel VTune Profiler tool. The results show that higher performance resulted in higher energy consumption, with SVM performing the best but also consuming the most energy in all tests. Furthermore, the results show that optimizing the models resulted in both improved performance and increased energy consumption. The same results were observed when a larger dataset was used. This work is not considered to provide results or guidelines that can be generalized to other studies. However, it contributes to an understanding and awareness of the environmental aspects of AI, which can serve as a foundation for further exploration of the topic. Through increased awareness, shared responsibility can be taken to develop AI solutions that are not only powerful and efficient but also sustainable.
|
44 |
AI inom radiologi, nuläge och framtid / AI in radiology, now and the futureTäreby, Linus, Bertilsson, William January 2023 (has links)
Denna uppsats presenterar resultaten av en kvalitativ undersökning som syftar till att ge en djupare förståelse för användningen av AI inom radiologi, dess framtida påverkan på yrket och hur det används idag. Genom att genomföra tre intervjuer med personer som arbetar inom radiologi, har datainsamlingen fokuserat på att identifiera de positiva och negativa aspekterna av AI i radiologi, samt dess potentiella konsekvenser på yrket. Resultaten visar på en allmän acceptans för AI inom radiologi och dess förmåga att förbättra diagnostiska processer och effektivisera arbetet. Samtidigt finns det en viss oro för att AI kan ersätta människor och minska behovet av mänskliga bedömningar. Denna uppsats ger en grundläggande förståelse för hur AI används inom radiologi och dess möjliga framtida konsekvenser. / This essay presents the results of a qualitative study aimed at gaining a deeper understanding of the use of artificial intelligence (AI) in radiology, its potential impact on the profession and how it’s used today. By conducting three interviews with individuals working in radiology, data collection focused on identifying the positive and negative aspects of AI in radiology, as well as its potential consequences on the profession. The results show a general acceptance of AI in radiology and its ability to improve diagnostic processes and streamline work. At the same time, there is a certain concern that AI may replace humans and reduce the need for human judgments. This report provides a basic understanding of how AI is used in radiology and its possible future consequences.
|
45 |
Screw Hole Detection in Industrial Products using Neural Network based Object Detection and Image Segmentation : A Study Providing Ideas for Future Industrial Applications / Skruvhålsdetektering på Industriella Produkter med hjälp av Neurala Nätverksbaserade Objektdetektering och Bildsegmentering : En Studie som Erbjuder Ideér för Framtida Industriella ApplikationerMelki, Jakob January 2022 (has links)
This project is about screw hole detection using neural networks for automated assembly and disassembly. In a lot of industrial companies, such as Ericsson AB, there are products such as radio units or filters that have a lot of screw holes. Thus, the assembly and disassemble process is very time consuming and demanding for a human to assemble and disassemble the products. The problem statement in this project is to investigate the performance of neural networks within object detection and semantic segmentation to detect screw holes in industrial products. Different industrial models were created and synthetic data was generated in Blender. Two types of experiments were done, the first one compared an object detection algorithm (Faster R-CNN) with a semantic segmentation algorithm (SegNet) to see which area is most suitable for hole detection. The results showed that semantic segmentation outperforms object detection when it comes to detect multiple small holes. The second experiment was to further investigate about semantic segmentation algorithms by adding U-Net, PSPNet and LinkNet into the comparison. The networks U-Net and LinkNet were the most successful ones and achieved a Mean Intersection over Union (MIoU) of around 0.9, which shows that they have potential for further development. Thus, conclusions draw in this project are that segmentation algorithms are more suitable for hole detection than object detection algorithms. Furthermore, it shows that there is potential in neural networks within semantic segmentation to detect screw holes because of the results of U-Net and LinkNet. Future work that one can do is to create more advanced product models, investigate other segmentation networks and hyperparameter tuning. / Det här projektet handlar om skruvhålsdetektering genom att använda neurala nätverk för automatiserad montering och demontering. I många industriföretag, såsom Ericsson AB, finns det många produkter som radioenheter eller filter som har många skruvhål. Därmed, är monterings - och demonteringsprocessen väldigt tidsfördröjande och krävande för en människa att montera och demontera produkterna. Problemformuleringen i detta projekt är att undersöka prestationen av olika neurala nätverk inom objekt detektering och semantisk segmentering för skurvhålsdetektering på indutriella produkter. Olika indutriella modeller var skapade och syntetisk data var genererat i Blender. Två typer av experiment gjordes, den första jämförde en objekt detekterings algoritm (Faster R-CNN) med en semantisk segmenterigs algoritm för att vilket område som är mest lämplig för hål detektering. Resultaten visade att semantisk segmentering utpresterar objekt detektering när det kommer till att detektera flera små hål. Det andra experimentet handlade om att vidare undersöka semantiska segmenterings algoritmer genom att addera U-Net, PSPNet och LinkNet till jämförelsen. Nätverken U-Net och PSPNet var de mest framgångsrika och uppnåde en Mean Intersection over Union (MIoU) på cirka 0.9, vilket visar på att de har potential för vidare utveckling. Slutsatserna inom detta projekt är att semantisk segmentering är mer lämplig för hål detektering än objekt detektering. Dessutom, visade sig att det finns potential i neurala nätverk inom semantisk segmentering för att detejtera skruvhål på grund av resultaten av U-Net och LinkNet. Framtida arbete som man kan göra är att skapa flera avancerade produkt modeller, undersöka andra segmenterisk nätverk och hyperparameter tuning.
|
46 |
Avancerade Stora Språk Modeller i Praktiken : En Studie av ChatGPT-4 och Google Bard inom DesinformationshanteringAhmadi, Aref, Barakzai, Ahmad Naveed January 2023 (has links)
SammanfattningI denna studie utforskas kapaciteterna och begränsningarna hos avancerade stora språkmodeller (SSM), med särskilt fokus på ChatGPT-4 och Google Bard. Studien inleds med att ge en historisk bakgrund till artificiell intelligens och hur denna utveckling har lett fram till skapandet av dessa modeller. Därefter genomförs en kritisk analys av deras prestanda i språkbehandling och problemlösning. Genom att evaluera deras effektivitet i hanteringen av nyhetsinnehåll och sociala medier, samt i utförandet av kreativa uppgifter som pussel, belyses deras förmåga inom språklig bearbetning samt de utmaningar de möter i att förstå nyanser och utöva kreativt tänkande.I denna studie framkom det att SSM har en avancerad förmåga att förstå och reagera på komplexa språkstrukturer. Denna förmåga är dock inte utan begränsningar, speciellt när det kommer till uppgifter som kräver en noggrann bedömning för att skilja mellan sanning och osanning. Denna observation lyfter fram en kritisk aspekt av SSM:ernas nuvarande kapacitet, de är effektiva inom många områden, men möter fortfarande utmaningar i att hantera de finare nyanserna i mänskligt språk och tänkande. Studiens resultat betonar även vikten av mänsklig tillsyn vid användning av artificiell intelligens (AI), vilket pekar på behovet av att ha realistiska förväntningar på AI:s kapacitet och betonar vidare betydelsen av en ansvarsfull utveckling av AI, där en noggrann uppmärksamhet kring etiska aspekter är central. En kombination av mänsklig intelligens och AI föreslås som en lösning för att hantera komplexa utmaningar, vilket bidrar till en fördjupad förståelse av avancerade språkmodellers dynamik och deras roll inom AI:s bredare utveckling och tillämpning.
|
47 |
KERMIT: Knowledge Extractive and Reasoning Model usIng TransformersHameed, Abed Alkarim, Mäntyniemi, Kevin January 2024 (has links)
In the rapidly advancing field of artificial intelligence, Large Language Models (LLMs) like GPT-3, GPT-4, and Gemini have revolutionized sectors by automating complex tasks. Despite their advancements, LLMs and more noticeably smaller language models (SLMs) still face challenges, such as generating unfounded content "hallucinations." This project aims to enhance SLMs for broader accessibility without extensive computational infrastructure. By supervised fine-tuning of smaller models with new datasets, SQUAD-ei and SQUAD-GPT, the resulting model, KERMIT-7B, achieved superior performance in TYDIQA-GoldP, demonstrating improved information extraction while retaining generative quality. / Inom det snabbt växande området artificiell intelligens har stora språkmodeller (LLM) som GPT-3, GPT-4 och Gemini revolutionerat sektorer genom att automatisera komplexa uppgifter. Trots sina framsteg stårdessa modeller, framför allt mindre språkmodeller (SLMs) fortfarande inför utmaningar, till exempel attgenerera ogrundat innehåll "hallucinationer". Denna studie syftar till att förbättra SLMs för bredare till-gänglighet utan krävande infrastruktur. Genom supervised fine-tuning av mindre modeller med nya data-set, SQUAD-ei och SQUAD-GPT, uppnådde den resulterande modellen, KERMIT-7B, överlägsen pre-standa i TYDIQA-GoldP, vilket visar förbättrad informationsutvinning samtidigt som den generativa kva-liteten bibehålls.
|
48 |
Optimering av underhållssystem för luftkvalitet i Hamreskolan / Optimization of the maintenance system for air quality in HamreskolanAskar, Maryam, Svärdelid Fichera, Davide January 2022 (has links)
Teknik och fastighetsförvaltningen är en förvaltning inom Västerås stad som ansvarar för byggandet av Västerås stad. Förvaltningen är intresserad av att få en bredare kunskap om optimering av underhållssystem för luftkvalitet och hur det skulle leda till energibesparing. Uppkomsten till deras intresse för om optimering av underhållssystem för luftkvalitet och energibesparing, är av anledning att de söker nya innovativa möjligheter att optimera luftkvalitet inom deras befintliga och nya fastigheter inom Västerås stads kommun. Projektgruppen samt teknik och fastighetsförvaltningen valde att lägga fokus på Hamreskolan där de i dagsläget har ett gediget underhållssystem för luftkvaliteten men har en önskan till förbättring. Skälet är deras upplevelse av luftkvalitet som inte är optimal, upplevelsen är att man känner sig trött, att det är kallt och kvavt ibland även för varmt inne i lokalerna. Bra luftkvalite är väsentligt för det påverkar både personalen och eleverna prestationsförmåga prioriterades detta. Målet med detta examensarbete är att presentera förbättringsförslag för att optimera underhållssystemet i Hamreskolan. Underhållssystemet innefattar ventilationssystemet och styrsystemet där dess syfte är att underhålla luftkvaliteten. De metoder som användes för framtagandet av förbättrings förslagen är djup litteraturstudie, platsbesök i Hamreskolan, brainstorming med förvaltare från Teknik och fastighetsförvaltningen samt pugh matris för validering av förbättrings förslagen. I detta examensarbete presenteras och diskuteras de förbättringsförslag som kommer medföra positiva effekter för Hamreskolan vid implementation. Dessa förbättringsförslag behövs inte nödvändigtvist begränsas till endast implementation vid Hamreskolan, det går även att implementera vid flera fastigheter inom Västerås stad, Teknik och fastighetsförvaltning. Vid utvecklande av förbättringsförslagen har realitet för funktionalitet och dess effekt vid implementation i Hamreskolan varit i åtanken. / Technology and property management is an administration within the city of Västerås that is responsible for the construction of the city of Västerås. The administration is interested in gaining a broader knowledge of optimizing maintenance systems for air quality and how it would lead to energy savings. The emergence of their interest in optimizing maintenance systems for air quality and energy savings, is due to seeking new innovative opportunities to optimize air quality within their existing and new properties within the City of Västerås. The project group as well as technology and property management chose to focus on Hamreskolan, where they currently have a solid maintenance system for air quality but have a desire for improvement. The reason is their experience of air quality which is not optimal, the experience is that you feel tired, that it is cold and sometimes even too hot inside the premises. Good air quality is essential because it affects both the staff and the student's performance priorities. The aim of this thesis is to present improvement proposals to optimize the maintenance system in Hamreskolan. The maintenance system includes the ventilation system and the control system where its purpose is to maintain the air quality. The methods used for the preparation of improvement proposals are in-depth literature study, site visits to Hamreskolan, brainstorming with managers from Technology and Property Management and a pugh matrix for validation of improvement proposals. In this thesis, the improvement proposals that will have positive effects for Hamreskolan upon implementation are presented and discussed. These improvement proposals do not necessarily have to be limited to only implementation at Hamreskolan, it is also possible to implement at several properties within the City of Västerås, Technology and property management. In developing the improvement proposals, the reality for functionality and its effect when implemented in Hamreskolan has been in mind.
|
Page generated in 0.1214 seconds