361 |
Vers des assemblages de complexes métalliques oligonucléaires, servant d’antenne solaire au niveau moléculaireChartrand, Daniel 12 1900 (has links)
Les fichiers additionnels sont les données cristallographiques en format CIF. Voir le site de la Cambridge Crystallographic Data Centre pour un visualiseur: http://www.ccdc.cam.ac.uk / Ce projet de recherche vise l’élaboration de systèmes métallosupramoléculaires artificiels imitant le processus naturel de la photosynthèse. Idéalement, ces systèmes seraient capables de fournir l’énergie et la séparation de charge nécessaire pour catalyser des réactions à transfert multiélectroniques, tel que l’hydrolyse de l’eau ou la réduction du gaz carbonique. La réalisation d’un tel système catalytique créerait une source d’énergie renouvelable, sous forme d’énergie chimique, crée directement à partir de l’énergie solaire.
Le système envisagé, schématisé sous la forme d’une antenne, possède trois parties distinctes. Tout d’abord, des chromophores forment un état excité en captant l’énergie de la lumière visible du soleil. Vient ensuite un centre de liaison qui lie tous les chromophores et qui collecte l’énergie de cet état excité à travers un transfert d’électron. Cet électron est de nouveau transféré vers la dernière partie, un centre réactionnel catalytique. Cet assemblage permet de créer une séparation de charge entre le chromophore et le centre réactionnel qui sont séparés par le centre de liaison, évitant ainsi la recombinaison de charge.
Le projet se focalise sur la synthèse, la caractérisation et l’application en photocatalyse d’assemblages chromophore–centre de liaison–catalyseur. Tout d’abord, une étude de chromophores à base de fluorène et de rhénium a été effectuée dans le but d’évaluer le transfert électronique entre ces deux composants. Ensuite, des centres de liaisons à base de dimère de rhodium tétraamidinate ont été créés et étudiés afin d’établir leurs caractéristiques photophysiques et électrochimiques. Puis un d’entre eux a été assemblé avec des chromophores de rhénium, créant ainsi des espèces moléculaires discrètes contenant d’un à quatre chromophores. Et pour finir, ces assemblages ont été combinés avec un catalyseur à base de cobalt, puis ont été testés dans des expériences de photoproduction d’hydrogène. Cette dernière partie a requis l’élaboration d’un photoréacteur qui est aussi décrite en détail dans cet ouvrage. / This research project involves synthetic metallosupramolecular systems developed to mimic the natural process of photosynthesis. Ideally, these systems would be able to provide the energy and the charge separation needed to catalyze multielectron-transfer reactions, such as water-splitting or carbon dioxide reduction. The realization of such a catalytic system would create a renewable energy source, in the form of chemical energy, created directly from solar energy.
The system envisioned has three distinct parts in the form of an antenna. First of all, chromophores go into an excited state, while capturing the visible light energy of the Sun. Then comes a hub which binds all the chromophores and collects this excited state energy through an electron transfer. This electron is then transferred again to the last part, a catalytic reaction center. This assembly creates a charge separation between the chromophore and the reaction center which are separated by the hub, thus avoiding the recombination of charge.
The project focuses on the synthesis, characterization and application in photocatalysis of chromophore-hub-catalyst assemblies. First of all, a study of fluorene and rhenium based chromophores was made to assess the electronic transfer between these two components. Then, tetraamidinate rhodium dimer based hubs have been created and studied in order to establish their photophysical and electrochemical characteristics. Then one of these assemblies was formed with chromophores of rhenium, thus creating discrete molecular species containing one to four chromophores. And finally, these assemblies were combined with a cobalt-based catalyst and were tested for hydrogen photoproduction. The latter required the development of a photoreactor which is also described in detail in this thesis.
|
362 |
Studies of crystalline organic molecular materials under extreme conditionsBiggs, Timothy James January 2006 (has links)
This thesis describes investigations into the properties of -phase BEDT-TTF charge transfer salts. Charge transfer salts are mainly studied as they are very useful test beds for fundamental physics due to the tuneability of their proper- ties and ground states. The effects of temperature and pressure on such systems have been studied, as these allow access to a wide range of different states and properties. Transport properties of these systems have been studied to obtain information about the Fermi surface and effective mass, and the effect of deuter- ation and also change of pressure media will be discussed. The interaction of infrared radiation with these systems has also been investigated and simultaneous pressure and temperature measurements will be presented, something not greatly studied due to the large technical challenges. The techniques and approaches for overcoming these are also discussed. Chapter 1 provides an introduction to the organic materials themselves with particular emphasis on the actual compounds studied. Chapter 2 provides the necessary theoretical background for studying organic charge transfer salts using magnetic quantum oscillations and their infrared re- ectivity. Chapter 3 covers the experimental techniques and also discusses some of the challenges encountered and their solutions to aid others working in this area. Chapter 4 describes an investigation into the transport properties of - (ET)2Cu(SCN)2 by studying Shubnikov-de Haas oscillations using both deuter- ated and normal samples and using two different pressure media, and comparing it to work done using a third. Chapter 5 presents an investigation into the pressure dependence of selected phonon modes in -(ET)2Cu(SCN)2 using infrared radiation on a deuterated sam- ple. Chapter 6 presents what is believed to be the first pressure and temperature dependent infrared study of an organic molecular material. In this case the or- ganic molecular material is d8--(ET)2Cu[N(CN)2]Br, but the techniques should be readily transferable to other materials.
|
363 |
Ultrafast carrier dynamics in organic-inorganic semiconductor nanostructuresYong, Chaw Keong January 2012 (has links)
This thesis is concerned with the influence of nanoscale boundaries and interfaces upon the electronic processes that occur within the inorganic semiconductors. Inorganic semiconductor nanowires and their blends with semiconducting polymers have been investigated using state-of-the-art ultrafast optical techniques to provide information on the sub-picosecond to nanosecond photoexcitation dynamics in these systems. Chapters 1 and 2 introduce the theory and background behind the work and present a literature review of previous work utilising nanowires in hybrid organic photovoltaic devices, revealing the performances to date. The experimental methods used during the thesis are detailed in Chapter 3. Chapter 4 describes the crucial roles of surface passivation on the ultrafast dynamics of exciton formation in gallium arsenide (GaAs) nanowires. By passivating the surface states of nanowires, exciton formation via the bimolecular conversion of electron-hole plasma can observed over few hundred picoseconds, in-contrast to the fast carrier trapping in 10 ps observed in the uncoated nanowires. Chapter 5 presents a novel method to passivate the surface-states of GaAs nanowires using semiconducting polymer. The carrier lifetime in the nanowires can be strongly enhanced when the ionization potential of the overcoated semiconducting polymer is smaller than the work function of the nanowires and the surface native oxide layers of nanowires are removed. Finally, Chapter 6 shows that the carrier cooling in the type-II wurtzite-zincblend InP nanowires is reduced by order-of magnitude during the spatial charge-transfer across the type-II heterojunction. The works decribed in this thesis reveals the crucial role of surface-states and bulk defects on the carrier dynamics of semiconductor nanowires. In-addition, a novel approach to passivate the surface defect states of nanowires using semiconducting polymers was developed.
|
364 |
Synthesis and properties of d6 metal complexes of bidentate and tridentate ‘super donor’ ligandsPal, Amlan Kumar 03 1900 (has links)
La polyvalence de la réaction de couplage-croisé C-N a été explorée pour la synthèse de deux nouvelles classes de ligands: (i) des ligands bidentates neutres de type N^N et (ii) des ligands tridentates neutres de type N^N^N. Ces classes de ligands contiennent des N-hétérocycles aromatiques saturés qui sont couplés avec hexahydropyrimidopyrimidine (hpp). Les ligands forment de cycles à six chaînons sur la coordination du centre Ru(II). Ce fait est avantageux pour améliorer les propriétés photophysiques des complexes de polypyridyl de Ru(II). Les complexes de Ru(II) avec des ligands bidentés ont des émissions qui dépendent de la basicité relative des N-hétérocycles. Bien que ces complexes sont électrochimiquement et photophysiquement attrayant, le problème de la stereopurité ne peut être évité. Une conception soigneuse du type de ligand nous permet de synthétiser un ligand bis-bidentate qui est utile pour surmonter le problème de stereopurité. En raison de la spécialité du ligand bis-bidentate, son complexe diruthénium(II,II) présente une grande diastéréosélectivité sans séparation chirale. Alors que l'unité de hpp agit comme un nucléophile dans le mécanisme de C-N réaction de couplage croisé, il peut également agir en tant que groupe partant, lorsqu'il est activé avec un complexe de monoruthenium. Les complexes achiraux de Ru(II) avec les ligands tridentés présentent des meilleures propriétés photophysiques en comparason avec les prototypes [Ru(tpy)2]2+ (tpy = 2,2′: 6′, 2′′-terpyridine). L’introduction de deux unités de hpp dans les ligands tridentates rend le complexe de Ru(II) en tant que ‘absorbeur noir’ et comme ‘NIR émetteur’ (NIR = de l’anglais, Near Infra-Red). Cet effet est une conséquence d'une meilleure géométrie de coordination octaédrique autour de l'ion Ru(II) et de la forte donation sigma des unités hpp. Les complexes du Re(I) avec des ligands tridentates présentent un comportement redox intéressant et ils émettent dans le bleu. L'oxydation quasi-réversible du métal est contrôlée par la donation sigma des fragments hpp, tandis que la réduction du ligand est régie par la nature électronique du motif N-hétérocycle central du ligand lui-même. Cette thèse presente également l'auto-assemblage des métal-chromophores comme ‘métallo-ligands’ pour former des espèces supramoléculaires discretes utilisant des complexes neutres. Les synthèses et propriétés des métaux-chromophores précités et les supramolécules sont discutées. / The versatility of C-N cross coupling reactions has been explored for the synthesis of two novel classes of ligands : (i) neutral bidentate N^N ligands and (ii) neutral tridentate N^N^N ligands. Both classes of ligands contain saturated aromatic N-heterocycles coupled with the unsaturated hexahydropyrimidopyrimidine (hpp) unit. The ligands form six-membered chelate rings upon coordination to a Ru(II) center. This fact is advantageous to improve the photophysical properties of Ru(II)-polypyridyl complexes. Ru(II) complexes of bidentate ligands can act as red-emitters. The red-emission is dependent on the relative basicity of the N-heterocycles. While these complexes are electrochemically and photophysically appealing, the problem of stereopurity can not be avoided. Careful ligand design affords bis-bidentate ligand that is useful to overcome the problem of stereopurity. Due to the speciality of this bis-bidentate ligand, its diruthenium(II,II) complex exhibits high diastereoselectivity without any chiral separation. While the hpp unit acts as a nucleophile in the mechanism of C-N cross coupling reaction, it can also act as a leaving group when activated as a monoruthenium complex. Achiral Ru(II) complexes of the tridentate ligands display improved photophysical properties over the prototype complex [Ru(tpy)2]2+ (tpy = 2,2’:6’,2’’-terpyridine). Introduction of two hpp units in the tridentate ligands renders the Ru(II) complex into a ‘black absorber’ and a ‘NIR emitter’ (NIR = Near Infra-Red). This fact is a consequence of better octahedral geometry around the Ru(II) ion and strong sigma-donation from the hpp units. The blue-emitting Re(I) complexes of the tridentate ligands also exhibit interesting redox behavior. The metal-based quasi-reversible oxidation is controlled by the sigma-donation from the hpp moieties, while the ligand-based reduction is governed by the electronic nature of the central N-heterocycle of the same ligand moiety. This thesis also incorporates self-assembly of metal-chromophores as ‘metallo-ligands’ to form discrete supramolecular species using neutral metal-complexes. The syntheses and properties of the aforesaid metal-chromophores and the supramolecules are discussed.
|
365 |
Étude photophysique de nouveaux systèmes moléculaires fonctionnels basés sur les styrylpyridinesMarmois, Emilie 24 October 2008 (has links)
Ce travail de thèse est principalement centré sur l’étude des processus photophysiques fondamentaux de nouveaux composés organiques à transfert de charge dérivés de styrylpyridine, réalisée grâce à des mesures de fluorescence résolue en temps à l’échelle picoseconde et d’absorption transitoire à l’échelle femtoseconde. Nous nous sommes tout d’abord intéressés au comportement des états excités de deux nouvelles hémicyanines. Les molécules de diméthoxystyrylpyridine méthylées ont montré l’établissement d’un équilibre entre les conformations syn et anti différent à l’état excité comparé à l’état fondamental, représenté par un temps de décroissance rapide de fluorescence. La deuxième constante de temps correspond à la dépopulation de l’état excité par les voies non radiatives telles que l’isomérisation et le twist du donneur de charge (effet « loose-bolt »). Concernant le dérivé de styrylpyridinium où le groupement phényl a été remplacé par diméthlaminothiophene, nos études ont prouvé l’implication du mouvement de rotation du groupement méthylpyridinium ainsi que l’intervention du croisement inter-système comme voies de relaxation. Dans un second temps, nous nous sommes penchés sur les propriétés de complexation de la molécule de styrylpyridine sur laquelle a été substitué un éther-couronne. Nos études nous ont permis de mettre en évidence la présence de deux centres de complexation (un au centre de la couronne, l’autre sur l’azote de la pyridine) montrant une sélectivité différente vis-à-vis des cations métalliques. Les stoechiométries ont pu être confirmées par une analyse des temps de réorientation des complexes formés. Après avoir étudié les divers composés constituant des « briques » élémentaires en vue de systèmes supramoléculaires plus élaborés, nous nous sommes intéressés à leurs éventuelles applications avec l’étude de systèmes pour la collecte et le transfert d’énergie. Nous avons tout d’abord démontré l’existence d’un transfert d’énergie ultra-rapide (180 fs à 6 ps) et ultra-efficace (>99.7%) dans des systèmes bichromophoriques contenant deux styrylpyridines avec un éther-couronne et asymétrisés par l’introduction d’un cation Mg2+ dans une seule couronne. Celui-ci se fait de la partie complexée vers la partie non complexée par interaction coulombienne. Une autre application envisagée réside dans la construction de complexes à métaux de transition pour le stockage d’énergie ou le stockage d’information. Nous avons tout d’abord étudié la formation d’un système supramoléculaire basé sur le phénanthroline et contenant quatre éther-couronnes libres. Nous avons mis en évidence l’existence d’un équilibre entre états singulets et triplets excités dans ces composés complexés avec Cuivre(I) ou Argent(I). Dans un second temps, nous avons étudié la formation de complexes liant deux bipyridines substitués contenant un éther-couronne à un ion Fe2+. Un tel complexe présente des propriétés de transition de spin BS?HS. Nos études ont ensuite révélé la formation de complexes à métaux de transition de taille nanométrique lors de l’ajout d’ions Ba2+. / This Ph.D. work mainly deals with the study of fundamental photophysical processes of new styrylpyridine-type organic compounds showing charge transfer, realised using picosecond fluorescence and femtosecond transient absorption. We were interested first in the excited-state behaviour of two new hemicyanines. Methylated dimethoxystyrylpyridines molecules showed the establishment of an equilibrium between syn and anti conformations which is different in the excited state compared to the ground state, represented by a fast relaxation time of fluorescence. The second time constant corresponds to depopulation of the the excited state by non-radiative pathways as isomerization and donor twist (« loose-bolt »). Concerning styrylpyridinium derivative where phenyl group was replaced by dimethylaminothiophene, our studies proved involvment of rotation of methylpyridinium group and intersystem crossing as relaxation pathways. Secondly, we were interested in complexation properties of ether-crown susbstituted styrylpyridine molecule. Our studies showed the presence of two complexation centers (one in the center of the crown, the other one on the nitrogen of pyridine) having a different selectivity for metallic cations. Stoichiometries were confirmed by analysis of the reorientation times of formed complexes. After the study of our different compounds as elementary « building–blocks » for more complex supramolecular systems, we were interested in their potential applications with the study of systems for collection and energy transfer. First, we highlighted the existence of an ultra fast (180 fs to 6 ps) and ultra efficient (>99.7%) intramolecular energy transfer in bichromophoric systems containing two ether-crowned styrylpyridines and dissymetrised by binding of a Mg2+ cation in only one crown. It occurs from the complexed part to the non-complexed one by coulombic interaction. Another envisaged application can be the construction of complexes containing transition metals for energy or information storage. We studied first the building of a supramolecular system based on phenanthroline and containing four free ether-crowns We also proved that there exists an equilibrium between singlet and triplet excited states in these compounds complexed with Copper(I) or Silver(I). Secondly, we studied formation of complexes binding two ether-crown substituted bipyridines to a Fe2+ ion. Such a complex has got some spin crossover properties. Then, we showed that the addition of Ba2+ ions induce formation of transition metals complexes with nanometric size.
|
366 |
Dynamique et contrôle de systèmes quantiques ouverts / Dynamics and control of open quantum systemsChenel, Aurélie 16 July 2014 (has links)
L'étude des effets quantiques, comme les cohérences quantiques, et leur exploitation en contrôle par impulsion laser constituent encore un défi numérique pour les systèmes de grande taille. Pour réduire la dimensionnalité du problème, la dynamique dissipative se focalise sur un sous-espace quantique dénommé 'système', qui inclut les degrés de liberté les plus importants. Le système est couplé à un bain thermique d'oscillateurs harmoniques. L'outil essentiel de la dynamique dissipative est la densité spectrale du bain, qui contient toutes les informations sur le bain et sur l'interaction entre le système et le bain. Plusieurs stratégies complémentaires existent. Nous adoptons une équation maîtresse quantique non-markovienne pour décrire l'évolution de la matrice densité associée au système. Cette approche, développée par C. Meier et D.J. Tannor, est perturbative en fonction du couplage entre le système et le bain, mais pas en fonction de l'interaction avec un champ laser. Le but est de confronter cette méthodologie à des systèmes réalistes calibrés par des calculs de structure électronique ab initio. Une première étude porte sur la modélisation du transfert d'électron ultrarapide à une hétérojonction oligothiophène-fullerène, présente dans des cellules photovoltaïques organiques. La description du problème en fonction d'une coordonnée brownienne permet de contourner la limitation du régime perturbatif. Le transfert de charge est plus rapide mais moins complet lorsque la distance R entre les fragments oligothiophène et fullerène augmente. La méthode de dynamique quantique décrite ci-dessus est ensuite combinée à la Théorie du Contrôle Optimal (OCT), et appliquée au contrôle d'une isomérisation, le réarrangement de Cope, dans le contexte des réactions de Diels-Alder. La prise en compte de la dissipation dès l'étape d'optimisation du champ permet à l'algorithme de contrôle de contrer la décohérence induite par l'environnement et conduit à un meilleur rendement. La comparaison de modèles à une et deux dimensions montre que le contrôle trouve un mécanisme adapté au modèle utilisé. En deux dimensions, il agit activement sur les deux coordonnées du modèle. En une dimension, le décohérence est minimisée par une accélération du passage par les états délocalisés situés au-dessus de la barrière de potentiel. / The study of quantum effects as quantum coherences and their exploitation for control by laser pulse are still a numerical challenge in big systems. To reduce the dimensionality of the problem, dissipative dynamics focuses on a quantum subspace called 'system', that includes the most important degrees of freedom. The system is coupled to a thermal bath made of harmonic oscillators. The essential tool of dissipative dynamics is the spectral density of the bath, that contains all the information about the bath and the interaction between the system and the bath. Several strategies coexist and complement one another. We adopt a non-Markovian quantum master equation for the evolution of the density matrix associated to the system. This approach, developped by C. Meier and D.J. Tannor, is perturbative in the system-bath coupling, but not in the interaction with a laser field. Our goal is to confront this methodology to realistic systems calibrated by ab initio electronic structure calculations. We first study the ultrafast electron transfer modelling an oligothiophene-fullerene heterojunction, found in organic photovoltaic cells. We present a way of overcoming the limitation of the perturbative regime, using a Brownian oscillator representation to describe the problem. Charge transfer is faster but less complete when the R distance between oligothiophene and fullerene fragments increases. Then we combine the quantum dynamical method described above with the Optimal Control Theory (OCT) method. An application is the control of an isomerization, the Cope rearrangement, in the context of Diels-Alder reactions. Including the dissipation at the design stage of the field enables the control algorithm to react on the environment-induced decoherence and to lead to a better yield. Comparing one and two-dimension models shows that control finds a mechanism adapted to the model. In two dimensions, it actively acts on the two coordinates of the model. In one dimension, decoherence is minimized by accelerating the way through the delocalized states located above the potential energy barrier.
|
367 |
Caractérisation et dynamique des états excités des molécules aromatiques protonées / Characterization and dynamics of excited states of protonated aromatic moleculesAlata, Ivan 28 September 2012 (has links)
Les molécules aromatiques protonées jouent un rôle important dans les réactions de substitution électrophile aromatique, et dans différents processus biologiques. Ces molécules sont présentes aussi dans d’autres milieux tels que les flammes de combustion, les plasmas de divers hydrocarbures, les ionosphères planétaires (Titan) et le milieu interstellaire. Les molécules protonées sont très stables car elles ont des couches électroniques complètes mais elles sont en général très sensibles à leur environnement local car elles sont chargées : une étude en phase gazeuse est nécessaire pour déterminer leurs propriétés intrinsèques. Jusqu’à présent, très peu de chose était connu sur les molécules protonées isolées en phase gazeuse, seulement quelques résultats étaient disponibles. Ce manque de données venait de la difficulté de générer des molécules protonées en phase gazeuse et surtout de les produire à basse température (la protonation est une réaction exothermique). Récemment, des progrès ont permis d’étudier les molécules protonées en phase gazeuse à très basse température, en particulier par le développement des sources ioniques couplées avec des techniques d'expansion de jet supersonique. Grâce à cette technique on a enregistré le spectre photo fragmentation de l’état fondamental vers le premier état excité (S1←S0) de différentes molécules aromatiques protonées en phase gazeuse. Les molécules que nous avons étudiées peuvent être regroupées en quatre familles : Les molécules polycycliques aromatiques protonées linéaires (benzène, naphtalène, anthracène, tétracène, pentacène). Les molécules polycycliques aromatiques protonées non linéaires (fluorène, phénanthrène, pyrène). Les molécules protonées contenant un hétéro atome (benzaldéhyde, salicylaldéhyde, 1-naphthol et 2-naphthol, indole, aniline). Les agrégats protonés (dimère de benzène, naphtalène (H2O)n, n=1,2,3. naphtalène (NH3)n, n=1,2,3, benzaldéhyde (Ar , N2)). Dans les spectres enregistrés presque toutes les transitions électroniques S1←S0 sont décalées vers le rouge (basse énergie) par rapport à celui des molécules parentes neutres. Ce décalage est dû au caractère transfert de charge du premier état excité. Certains spectres sont résolus vibrationnellement, alors que pour d'autres molécules le spectre ne présente pas de progression vibrationnelle à cause d’un dynamique très rapide de l’état excité menant par des intersections coniques à l’état fondamental. Les spectres d’absorption des molécules protonées sont plus riches en vibrations par comparaison avec les molécules neutre. Cela reflète le changement relativement important de géométrie de l’état excité dû à son caractère transfert de charge. Les résultats expérimentaux ont été complétés par des calculs ab-initio qui ont permis de localiser la transition électronique, déterminer la structure géométrique et électronique, les modes de vibration et, pour certaines de ces molécules, la dynamique de l’état excité. Les calculs sont en général en très bon accord avec les expériences. / Protonated aromatic molecules play an important role in electrophilic aromatic substitution reactions, fundamental reactions in organic chemistry and in various biological processes. The interstellar medium is another environment which is likely to contain the protonated aromatic molecules, that’s because these molecules are stable chemically since they are close shell electronic structure. These molecules were also identified in others environments such as combustion flames, plasmas of various hydrocarbons and the upper atmosphere of Titan. Protonated molecules are usually very sensitive to their local environment; a gas phase study is required to determine their intrinsic properties. Until now, very little is known about the isolated protonated molecules, only a few results are available in the literature. This lack of data is due to the difficulties of the production and the cooling of these molecules in gas phase. The technical progress we have done has enabled the study of protonated molecules in the gas phase at very low temperatures, using an ion sources, supersonic jet and the laser induced photofragmentation techniques. Using this technique, we have recorded many electronic spectra (S1←S0) of different protonated molecules. We can regroup the studied molecules into four: Linear protonated polycyclic aromatic molecules (benzene, naphthalene, anthracene, tetracene, pentacene). Nonlinear protonated polycyclic aromatic molecules (fluorene, phenanthrene, pyrene). Protonated molecules containing an hetero atom (benzaldehyde, salicylaldehyde, 1-naphthol and 2-naphthol, indole, aniline). Protonated cluster (dimer of benzene, naphthalene (H2O)n, n = 1,2,3. Naphthalene (NH3)n, n = 1,2,3, benzaldehyde (Ar, N2)). Most of those spectra are red-shifted compare to the spectrums of neutral parent molecules. This red-shift is due to charge transfer character of the first excited state. Some spectra are vibrationally resolved, while for other molecules the spectrum do not shows any vibrational progression. This behaviour is explained by the dynamic of the excited state, this dynamic being usually is very fast, sometimes leading to the ground state through a conical intersection. The spectra of protonated molecules are very active vibrationally in comparison with neutral molecules, many vibrational modes forbidden for neutral molecule becomes active for the protonated one (Franck-Condon factor is not zero). This is reflecting the charge transfer character of the excited state. The experimental results were complemented by ab-initio calculations, which have allowed determining the electronic transition, the geometric and electronic structure of the molecule, the vibrational modes, and for some of these molecules the dynamics of excited state. Calculations are generally in very good agreement with experiments.
|
368 |
Photovoltaïque organique : étude de la morphologie de films minces, conception, synthèse et étude de petites molécules pour leur utilisation en hétérojonction en volume dans des dispositifs photovoltaïques / Organic photovoltaics : study of thin films morphology, design, synthesis, synthesis of new small molecules and their study in bulk heterojunction devicesHernandez Maldonado, Daniel 16 July 2015 (has links)
Les propriétés des matériaux organiques pour l'optoélectronique à base de polymères ou de petites molécules sont fortement influencées par l'organisation moléculaire. En particulier, l'efficacité de la photoconversion dans les dispositifs à base de films minces organiques peut être corrélée directement à la morphologie de leurs mélanges actifs. Par conséquent, une meilleure compréhension de l'évolution de la morphologie des films minces pendant les divers traitements effectués lors de leur élaboration est essentielle et nécessaire. D'autre part, l'ingénierie moléculaire est un outil crucial pour l'obtention de molécules basées sur des alternances de fragments accepteurs d'électrons ou donneurs d'électrons et présentant des valeurs de gap électronique optimales et conduisant à des dispositifs aux paramètres de photoconversion optimisés.Dans le présent travail, nous présentons une étude approfondie en solution et sur des films minces de poly-3-hexylthiophène (P3HT) pur et en mélange avec des complexes de nickel (Ni-bdt). Le but était de comprendre comment le P3HT interagit avec les complexes de nickel pour contrôler des phénomènes d'organisation éventuels. L'objectif principal de cette étude est de comprendre l'organisation moléculaires au sein des films organiques et son impact sur le transfert de charge entre les matériaux afin d'optimiser les rendements de photoconversion. En outre, nous avons conçu et synthétisé trois nouvelles molécules à faible gap électronique, nommées SilOCAO, Bz(T1CAO)2 et Bz(T1CAEH)2 selon des méthodologies de synthèse optimisées. Ces molécules ont été conçues avec l'appui de calculs semi-empiriques effectués avec le programme Gaussian 09 au niveau B3LYP/6-31G* dans le but de les associer éventuellement aux complexes de nickel. Leurs synthèses et caractérisations complètes sont décrites en détail. Les techniques analytiques utilisées sont la spectroscopie d'absorption UV-visible, la photoluminescence, la résonance magnétique nucléaire (RMN), la spectroscopie de masse, l'électrochimie, l'analyse thermogravimétrique (TGA) et la calorimétrie différentielle à balayage (DSC). Ces molécules présentant des propriétés intéressantes pour leur utilisation en photovoltaïque organique, nous avons réalisé des cellules solaires organiques prototypes. Les résultats obtenus sont prometteurs, en particulier dans le cas de la molécule SilOCAO, utilisée ici comme donneur d'électrons en association avec le PC71BM. Ce travail est le fruit d'une collaboration précieuse entre plusieurs chercheurs, des théoriciens et expérimentateurs, des laboratoires LAAS et LAPLACE à Toulouse (France), de l'Université Autonome Nationale de Mexico (UNAM) et du Centre de Recherche en Optique (CIO) de Leon (Mexique). / Optoeletronic properties of semiconducting polymeric/small molecules materials are highly influenced by molecules organization. In particular, photoconversion efficiency of organic devices may be correlated directly with their blend morphology. Therefore, a better understanding of the blend film morphology evolution during postproduction treatment and device performance is essential and needed. On the other hand, molecular engineering is a good way to module the band gap of molecules by alternating different electron acceptor or electron donor moieties which may lead to an improved internal charge transfer and a low band gap to achieve important Voc and Jsc, and consequently a good OPV performance. In the present work, we present a comprehensive study in solution and on thin films of pristine P3HT and of some nickel bisdithiolene complexes (Ni-bdt), and their blends, in order to understand how poly(3-hexylthiophene) P3HT interacts with the nickel core with the aim of understanding eventual organization phenomena. The main goal of this study is to understand materials organization and the charge transfer effect between donor and acceptor molecules, rather than focalize on a high photoconversion yields. In addition, we have developed 3 new low band gap small molecules, SilOCAO, Bz(T1CAO)2 and Bz(T1CAEH)2 with innovating synthetic methodologies and interesting applications to be used in thin film bulk heterojunctions (BHJs) for organic photovoltaics. These molecules were strategically designed via semi-empirical calculations (B3LYP/6-31G*) to match their energetic levels (LUMO and HOMO) with those of nickel bisdithiolene family towards a performing charge transfer. The syntheses of SilOCAO, Bz(T1CAO)2 and Bz(T1CAEH)2 have been described. These molecules have been fully-characterized by different techniques such as UV-Visible Spectroscopy, Electroluminescence, Nuclear Magnetic resonance (NMR), Mass Spectroscopy (MS), Electrochemistry, Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Moreover, we have performed organic solar cells prototypes with some promising results, specifically for SilOCAO as the electron-donor in counterpart of the PC71BM as the electron-acceptor. This work is a fruitful collaboration between several laboratories, researchers, technical servers and students from LAAS and LAPLACE in France, and IIM (UNAM) and CIO in Mexico.
|
369 |
L'influence de l'irradiation sur les propriétés structurelles et de transport du graphène / The influence of irradiation on structural and transport properties of grapheneDeng, Chenxing 26 May 2015 (has links)
Le graphène est une simple couche de nid d'abeille motifs atomes de carbone. Il a suscité beaucoup d'intérêt dans la dernière décennie en raison de ses excellentes propriétés électroniques, optiques et mécaniques, etc., et montre larges perspectives d'applications dans le futur. Parfois, les propriétés du graphène doivent être modulées pour s’adapter à des applications spécifiques. Par exemple, le contrôle du niveau de dopage fournit un bon moyen de moduler les propriétés électriques et magnétiques de graphène, qui est important pour la conception de dispositifs de mémoire et de logique à base de graphène. En outre, la possibilité de régler la conductance électrique peut être utilisée pour fabriquer le transistor de graphène, et le dépôt chimique en phase vapeur (CVD) Procédé montre la possibilité d'effectuer la préparation de graphène intégrées dans les processus de fabrication de semi-conducteur. L'injection de spin et l'irradiation sont méthodes efficaces et pratiques pour adapter les propriétés de transport du graphène. Mais en raison du processus de fabrication complexe, il est difficile de préparer le dispositif de transport de spin graphène succès. La lithographie et décoller les processus qui impliquent utilisant résine photosensible va dégénérer les propriétés de transport du graphène. En outre, la sensibilité du graphène aux molécules H2O et O2 lorsqu'il est exposé à l’air ambiant entraînera faible signal de rotation et le bruit de fond. L'irradiation fournit une méthode propre à moduler les propriétés électriques de graphène qui n’impliquent pas de traitement chimique. En ions ou irradiation d'électrons, la structure de bande électronique de graphène peut être réglé et la structure en treillis est modulé aussi bien. En outre, les impuretés chargées et dopage résultant de l'irradiation peuvent modifier les propriétés électroniques du graphène comme la diffusion électron-phonon, libre parcours moyen et la densité de support. Comme indiqué, le graphène oxydation peut être induite par exposition à un plasma d'oxygène, et le N- dopage de graphène par recuit thermique dans de l'ammoniac a été démontré. En outre, la souche dans le graphène peut également être adaptée par irradiation, qui contribue également à la modification des propriétés de transport de graphène. En conclusion, l'irradiation fournit une méthode physique efficace pour moduler les propriétés structurelles et de transport de graphène, qui peuvent être appliqués dans la mémoire à base de graphène et des dispositifs logiques, transistor, et des circuits intégrés. Dans cette thèse, l'irradiation d'ions hélium a été réalisée sur le graphène cultivé sur substrat SiO2 par la méthode CVD, et les propriétés structurelles et de transport ont été étudiés. Le dopage de transfert de charge dans le graphène induite par les résultats d'irradiation dans une modification de ces propriétés, qui suggère une méthode pratique pour les adapter. En outre, l'irradiation par faisceau d'électrons a été effectuée sur graphène cultivé sur substrat de SiC. Les amorphisations progressives, contraintes et d'électrons dopage locales contribuent à la modification des propriétés structurelles et de transport dans le graphène qui peuvent être observés. / Graphene is a single layer of honeycomb patterned carbon atoms. It has attracted much of interest in the past decade due to its excellent electronic, optical, and mechanical properties, etc., and shows broad application prospects in the future. Sometimes the properties of graphene need to be modulated to adapt for specific applications. For example, control of doping level provides a good way to modulate the electrical and magnetic properties of graphene, which is important to the design of graphene-based memory and logic devices. Also, the ability to tune the electrical conductance can be used to fabricate graphene transistor, and the chemical vapor deposition (CVD) method shows the possibility to make the preparation of graphene integrated into semiconductor manufacture processes. Moreover, the sensitivity of graphene to the H2O and O2 molecules when exposed to the air ambient will result in weak spin signal and noise background. Irradiation provides a clean method to modulate the electrical properties of graphene which does not involve chemical treatment. By ion or electron irradiation, the electronic band structure of graphene can be tuned and the lattice structure will be modulated as well. Moreover, the charged impurities and doping arising from irradiation can change the electronic properties of graphene such as electron-phonon scattering, mean free path and carrier density. As reported, graphene oxidization can be induced by exposure to oxygen plasma, and N-Doping of Graphene through thermal annealing in ammonia has been demonstrated. Furthermore, the strain in graphene can also be tailored by irradiation, which also contributes to the modification of transport properties of graphene. In conclusion, irradiation provides an efficient physical method to modulate the structural and transport properties of graphene, which can be applied in the graphene-based memory and logic devices, transistor, and integrated circuits (ICs). In this thesis, Helium ion irradiation was performed on graphene grown on SiO2 substrate by CVD method, and the structural and transport properties were investigated. The charge transfer doping in graphene induced by irradiation results in a modification of these properties, which suggests a convenient method to tailor them. Moreover, electron beam irradiation was performed on graphene grown on SiC substrate. The local progressive amorphization, strain and electron doping contribute to the modification of structural and transport properties in graphene which can be observed.
|
370 |
Investigation of electrochemical properties and performance of stimulation/sensing electrodes for pacemaker applicationsNorlin, Anna January 2005 (has links)
People suffering from certain types of arrhythmia may benefit from the implantation of a cardiac pacemaker. Pacemakers artificially stimulate the heart by applying short electrical pulses to the cardiac tissue to restore and maintain a steady heart rhythm. By adjusting the pulse delivery rate the heart is stimulated to beat at desired pace. The stimulation pulses are transferred from the pacemaker to the heart via an electrode, which is implanted into the cardiac tissue. Additionally, the electrode must also sense the cardiac response and transfer those signals back to the electronics in the pacemaker for processing. The communication between the electrode and the tissue takes place on the electrode/electrolyte (tissue) interface. This interface serves as the contact point where the electronic current in the electrode is converted to ionic currents capable to operate in the body. The stimulation/sensing signals are transferred across the interface via three electrochemical mechanisms: i) non-faradaic charging/discharging of the electrochemical double layer, ii) reversible and iii) irreversible faradaic reactions. It is necessary to study the contribution of each mechanism to the total charge transferred to evaluate the pacing/sensing performance of the pacemaker electrode. In this thesis, the electrochemical properties and performance of stimulation/sensing electrodes for pacemaker applications have been investigated by electrochemical impedance spectroscopy, cyclic voltammetry and transient electrochemical techniques. All measurements were performed in synthetic body fluid with buffer capacity. Complementary surface analysis was performed with scanning electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The results reveal different interfacial behaviour and stability for electrode materials such as Pt, TiN, porous carbon, conducting oxides (RuO2 and IrO2 and mixed oxides) and porous Nb2O5 oxide. The influence of the charge/discharge rate on the electrode characteristics also has been evaluated. Although the rough and porous electrodes provide a high interfacial capacitance, the maximum capacitance cannot be fully employed at high charge/discharge rates because only a small part of the effective surface area is accessible. The benefit of pseudo-capacitive material properties on charge delivery was observed. However, these materials suffer similar limitations at high charge/discharge rate and, hence, are only utilising the surface bound pseudo-capacitive sites. Porous Nb2O5 electrodes were investigated to study the performance of capacitor electrodes. These electrodes predominantly deliver the charge via reversible non-faradaic mechanisms and hence do not produce irreversible by-products. They can deliver very high potential pulses while maintaining high impedance and, thus, charge lost by faradaic currents are kept low. By producing Nb oxide by plasma electrolysis oxidation a porous surface structure is obtained which has the potential to provide a biocompatible interface for cell adherence and growth. This thesis covers a multidisciplinary area. In an attempt to connect diverse fields, such as electrophysiology, materials science and electrochemistry, the first chapters have been attributed to explaining fundamental aspects of the respective fields. This thesis also reviews the current opinion of pacing and sensing theory, with special focus on some areas where detailed explanation is needed for the fundamental nature of electrostimulation/sensing. / QC 20101014
|
Page generated in 0.1717 seconds