11 |
Elektronische Eigenschaften von Diamant und diamantartigen KohlenstoffenWaidmann, Stephan 12 July 2001 (has links)
Im Hinblick auf das immense Potential von Diamant als Material für die Mikroelektronik wurden im Rahmen dieser Arbeit undotierte und dotierte Diamantfilme mittels chemischer Gasphasenabscheidung auf Silizium präpariert und anschließend auf ihre elektronischen Eigenschaften hin untersucht. Für Letzteres wurde hauptsächlich die Elektronen-Energieverlustspektroskopie in Transmission verwendet. In situ Gasphasendotierung oder Ionenimplantation wurde zur Dotierung der Filme mit Bor, Lithium oder Phosphor eingesetzt. Bei der Ionenimplantation wurde aufgrund der Erzeugung von Strahlenschäden generell eine Erhöhung des sp2-Anteils beobachtet: Letzterer konnte jedoch im Falle der Bordotierung durch eine, den Implantationsprozeß folgende, Hochtemperaturtemperung wieder deutlich vermindert werden. Für die in situ Dotierung mit Bor wurde eine Verringerung des sp2-Gehaltes mit steigender Dotierkonzentration gefunden. Für den Film mit der höchsten Borkonzentration konnte auch die B1s Absorptionskante untersucht werden. Sie gibt Hinweise auf den überwiegenden Einbau der Boratome in einer tetragonalen Orientierung. Das hiermit verbundene Vorhandensein von Akzeptoren führt zu elektronischen Anregungen im Energiebereich der Bandlücke, welche mittels Infrarotspektroskopie und EELS nachgewiesen werden konnten. Aus den EELS Messungen lassen sich Akzeptorkonzentrationen berechnen, welche wiederum den hohen Anteil an tetraedrisch eingebauten Boratomen bestätigen. Desweiteren untersucht wurden, als interessante Materialklasse mit weitreichendem technologischem Potential, undotierte und stickstoffdotierte, diamantartige amorphe Kohlenstoffilme und hierbei insbesondere die Abhängigkeit der elektronischen und optischen Eigenschaften von der Ionenenergie und dem Stickstoffpartialdruck während der Filmpräparation. Die Plasmonenergien, Massendichten, sp3-Anteile und die optischen Bandlücken der Filme wurden quantitativ bestimmt, wobei das jeweilige Maximum bei einer Ionenenergie von 100 eV gefunden wurde. Alle eben genannten Größen verringern sich kontinuierlich mit zunehmendem Stickstoffanteil. Eine Kramers-Kronig Analyse der Verlustspektren gibt Zugriff auf den Real- und Imaginärteil der dielektrischen Funktion und damit auf das Spektrum der Einteilchenanregungen. Die Hybridisierung der Kohlenstoff- und der Stickstoffatome wurde detailliert aus den jeweiligen 1s Absorptionskanten bestimmt. Weiterhin wurde Diamant als Modellsystem eines Festkörpers mit rein kovalenten Bindungen untersucht, insbesondere die Verlustfunktion von Diamant entlang mehrerer Hochsymmetriekristallrichtungen über einen großen Energie- und Impulsbereich. Aus den EELS Messungen erschließt sich unmittelbar die stark anisotrope Plasmonendispersion von Diamant. Aus dem Vergleich der experimentellen Spektren mit ab initio LDA Rechnungen, die sowohl Kristallokalfeldeffekte als auch Austausch- und Korrelationseffekte beinhalten, lassen sich direkt Rückschlüsse auf den Einfluß der verschiedenen Effekte ziehen. Schon im optischen Limit, aber umso mehr mit steigendem Impulsübertrag q, wird eine Überlagerung der kollektiven Plasmonanregung mit Einteilchenanregungen im Energiebereich des Plasmons beobachtet, woraus eine Kopplung zwischen beiden Arten von Anregungen resultiert. Abgesehen vom deutlichen Einfluß der Bandstruktur auf die Plasmonendispersion läßt die überaus inhomogene Elektronenverteilung von Diamant auf nicht zuvernachlässigende Kristallokalfeldeffekte schließen. Der Vergleich zwischen experimentellen und berechneten Spektren zeigt deutlich, wie die Kristallokalfeldeffekte in der Tat mit steigendem Impulsübertrag an Gewicht zunehmen und die Struktur der Verlustfunktion mitbestimmen. / In the context of the immense potential of diamond as a material for use in the microelectronics industry, in this thesis pristine and doped diamond films have been deposited on silicon using chemical vapour deposition. Subsequently their electronic properties have been investigated using mainly electron energy-loss spectroscopy. Doping of the films with boron, lithium or phosphorous was carried out either via in-situ gas phase doping during film growth or using ion implantation. Upon ion implantation an increase of the carbon content with sp2 hybridisation has generally been found due to ion beam induced damage. In the case of boron doping it was possible to significantly reduce this sp2-contribution using a high temperature anneal. For the in-situ doping with boron, upon increasing doping concentration a decrease of the sp2-contribution was found. For the sample with the highest boron content the boron 1s absorption edge could also be investigated, providing evidence for the preferential incorporation of the boron atoms into tetrahedrally co-ordinated sites. This boron incorporation leads to the existence of electronic excitations in the energy range of the band gap, which could be observed using both infrared and electron energy-loss spectroscopy. From the electron energy-loss measurements it was possible to calculate acceptor concentrations which were consistent with the large amount of tetrahedrally co-ordinated boron atoms. A second theme in this thesis involved the study of pristine and nitrogen doped diamond-like amorphous carbon films, which are an interesting material class with far-reaching technological potential. Here the focus of the research concerned the dependency of the electronic and optical properties of the films upon the ion energy and the nitrogen partial pressure applied during the film preparation. The plasmon energies, mass densities, sp3 contribution and the optical band gaps of the samples were determined quantitatively, whereby the maximum in all these quantities was found to occur for ion energies of 100 eV. Furthermore, all of these characteristics were found to decrease continually with increasing nitrogen content. A Kramers-Kronig analysis of the loss spectra enabled the derivation of the real and imaginary parts of the dielectric function and with this of the complete spectrum of single particle excitations. The hybridization between the carbon and nitrogen atoms was also studied in detail from the analysis of the respective 1s absorption edges. Furthermore this thesis deals with the investigation of diamond as a model system for solids with pure covalent bonds. In particular, the loss function of diamond was measured along different high symmetry directions over a wide range of energy and momentum. Firstly, the EELS measurements showed directly the strongly anisotropic nature of the plasmon dispersion in diamond. Secondly, by the comparison of the experimental spectra with ab initio LDA-based calculations that include crystal local field effects as well as exchange and correlation contributions, conclusions can be drawn as to the influence of these quantities. In the optical limit, but even more so with increasing momentum transfer q, a superposition of the collective plasmon excitation and the single particle excitations in the energy range of the plasmon is observed. This energetic proximity results in a coupling between both types of excitations. Apart from the distinct influence of the bandstructure on the plasmon dispersion, the considerably inhomogeneous electron distribution of diamond would lead one to expect significant crystal local field effects in this system. The comparison between the experimental and the calculated spectra shows explicitly that the crystal local field effects increase with increasing momentum transfer and play an important role in defining the structure of the loss function.
|
12 |
Atomic Layer Deposition onto FibersRoy, Amit Kumar 14 March 2012 (has links)
The main goal of this dissertation was to show that the principle of atomic layer deposition (ALD) can be applied to “endless” fibers. A reactor of atomic layer deposition has been designed, especially for coating depositions onto meter long bundles of fibers. Aluminum oxide (alumina), titanium oxide (titania), double layers of alumina and titania, as well as aluminium phosphate have been deposited onto bundles of carbon fibers using the home-built reactor. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images indicate that the coatings were uniform and conformal onto fiber surface. There was a good adhesion of the coatings to the fibers.
Alumina has been deposited using two separate aluminum sources (aluminum trichloride and trimethylaluminum), and water as a source of oxygen. In case of alumina deposition using aluminum trichloride and water, initial deposition temperature was 500 °C. In these conditions, a part of the fiber bundle has been damaged. Thus, the deposition temperature was decreased to 300 °C and the fibers were unaffected. In addition, during this process hydrochloric acid is formed as a byproduct which is a corrosive substance and affects the reactor and there was a chloride impurity in the coatings. Thus, aluminum trichloride precursor was replaced by trimethylalumium.
Alumina deposition onto carbon fibers using trimethylaluminum and water was carried out at a temperature of 77 °C. SEM images revealed that the fibers were unaffected and the coatings were uniform and conformal. Oxidation resistance of the carbon fibers was improved slightly after alumina deposition. Oxidation onset temperature of the uncoated fibers was about 630 °C. The resistance was linearly increased with the coating thickness (up to 660 °C) and getting saturated over a thickness of 120 nm. Titania coatings have been deposited using titanium tetrachloride and water. The physical appearances of the titania coatings were similar to the alumina coatings. The oxidation onset temperature of the titania coated carbon fibers was similar to the uncoated fibers but the rate of oxidation was decreased than the uncoated fibers. Two double layer coatings were deposited, alumina followed by titania (alumina/titania), and titania followed by alumina (titania/alumina). If the fibers were coated with the double layer of alumina/titania, they had almost same oxidation onset as alumina coated fibers but the rate of oxidation was decreased significantly compared to alumina coated fibers. This feature is independent of the thickness of the titania layers, at least in the regime investigated (50 nm alumina followed by 13 nm and 40 nm titania). On the other hand, the oxidation onset temperature of fibers coated with titania/alumina (20 nm titania /30 nm alumina) was approximately 750 °C. The fibers were burned completely when temperature was further increased to 900 °C and held another 60 minutes at 900 °C. This is significantly better than any other coating used in this dissertation.
ALD of titania and alumina in principle was known beforehand, this dissertation here applies this knowledge for the first time to endless fibers. Furthermore, this dissertation shows for the first time that one can deposit aluminum phosphate via ALD (planar surface as well as fibers). Aluminum phosphate might be special interest in the fiber coating because it is a rather soft material and thus might be used to obtain a weak coupling between fiber and matrix in composites. Aluminum phosphate was deposited using trimethylaluminum and triethylphosphate as precursors. Energy dispersive X-ray spectroscopy and solid state nuclear magnetic resonance spectra confirmed that the coating comprises aluminum phosphate (orthophosphate as well as other stoichiometries). Scanning electron microscopic images revealed that coatings are uniform and conformal. In cases of alumina and titania, it was observed that the coatings were delaminated from the ends of cut fibers and thus formed of clear steps. On the other hand, for aluminum phosphate coating it was observed that the border between coating and underlying fiber often being smeared out and thus formed an irregular line. It seems in case aluminum phosphate cohesion is weaker than adhesion, thus it might be act a weak interface between fiber and matrix. Alumina, titania, and double layer microtubes have been obtained after selective removal of the underlying carbon fibers. The carbon fibers were selectively removed via thermal oxidation in air at temperatures exceeding 550 °C. SEM and TEM images indicate that the inner side of the tube wall has the same morphology like the fibers. In addition, it was observed that the individual microtubes were separated from their neighbors and they had almost uniform wall thicknesses. The longest tubes had a length of 30 cm.:Bibliographische Beschreibung und Referat 2
Abstract 4
List of abbreviations 10
1. General introduction and outline of this dissertation 12
1.1 References 20
2. Atomic layer deposition: Process and reactor 25
2.1 Introduction 25
2.2 Principle of atomic layer deposition 26
2.3 Materials and methods 29
2.3.1 Precursors 29
2.3.2 Precursors transportation 31
2.3.3 Carrier and purge gas 32
2.3.4 ALD reactors 32
2.4 Flow-Type ALD reactor for fiber coating 33
2.5 Conclusion 35
2.6 References 35
3. Single layer oxide coatings 38
3.1 State of the art 38
3.2 Alumina coating using non-flammable precursors 39
3.2.1 Introduction 39
3.2.Result and discussion 39
3.3 Alumina coating using organometallic precursor 46
3.2.1 Introduction 46
3.2.2 Results and discussion 46
3.4 Titania coating using titanium tetrachloride and water 59
3.4.1 Introduction 59
3.4.2 Results and discussion 59
3.5 Experimental Part 67
3.5.1 General experiments 67
3.5.2 Alumina coating using aluminum chloride and water 69
3.5.3 Alumina coating using trimethylalumium and water 69
3.5.4 Titania coating 72
3.6 Conclusions 72
3.7 References 74
4. Coating thickness and morphology 78
4.1 Introduction 78
4.2 Results and discussion 80
4.2.1 Purge time 15 s 81
4.2.2 Purge time 30 s 85
4.2.3 Purge time 45 s to 100 s 85
4.3 Experimental part 88
4.4 Conclusions 89
4.5 References 89
5. Alumina and titania double layer coatings 91
5.1 Introduction 91
5.2 Results and discussion 92
5.3 Experimental part 102
5.4 Conclusions 103
5.5 References 103
6. Atomic layer deposition of aluminum phosphate 105
6.1 Introduction 105
6.2 Results and discussion 106
6.3 Experimental part 113
6.4 Conclusions 114
6.5 References 115
7. Alumina microtubes 117
7.1 Introduction 117
7.2 Results and discussion 118
7.2.1 Fibers before coating deposition 118
7.2.2 Coatings on the carbon fibers 118
7.2.3 Microtubes 121
7.3 Experimental part 127
7.4 Conclusions 128
7.5 References 128
8. Conclusions 131
Acknowledgements 136
Curriculum Vitae 138
Selbständigkeitserklärung 142 / Das Hauptziel dieser Dissertation bestand darin nachzuweisen, dass die Atomlagenabscheidung (engl. atomic layer deposition (ALD)) auf „endlose“ Fasern angewendet werden kann. Es wurde ein Reaktor zur Atomlagenabscheidung gestaltet, der speziell für die Beschichtung meterlanger Faserbündel geeignet ist. Aluminiumoxid, Titanoxid, Doppelschichten aus Aluminiumoxid und Titanoxid sowie Aluminiumphosphat wurden mit Hilfe des selbstgebauten Reaktors auf Kohlefaserbündel abgeschieden. Rasterelektronenmikroskopische (REM) und transmissionselektronenmikroskopische (TEM) Aufnahmen zeigten, dass die Beschichtung auf den Fasern einheitlich und oberflächentreu war. Des Weiteren wurde eine gute Adhäsion zwischen Beschichtung und Fasern beobachtet. Das Prinzip der Beschichtung mit Titanoxid und Aluminiumoxid mit Hilfe der ALD war bereits vorher bekannt und im Rahmen dieser Dissertation jedoch erstmals auf "endlose" Fasern angewendet. Des Weiteren wird in dieser Dissertation erstmals gezeigt, dass es möglich ist, Aluminiumphosphat mittels ALD abzuscheiden (sowohl auf planaren Oberflächen als auch auf Fasern). Aluminiumphosphat könnte von besonderem Interesse in der Faserbeschichtung sein, da es ein relativ weiches Material ist und könnte daher als eine Art „schwacher“ Verbindung zwischen Faser und Matrix in Kompositen dienen. Die Oxidationsbeständigkeit von beschichten Kohlefasern wurde im Vergleich zu unbeschichteten Fasern bis zu einem gewissen Grad erhöht. Monoschichten von Aluminiumoxid und Titanoxid waren dafür wenig effektiv. Aluminiumphosphatbeschichtete Fasern waren deutlich besser geeignet als die beiden anderen. Eine Doppelschicht aus Titanoxid gefolgt von Aluminiumoxid verbesserte die Oxidationsbeständigkeit nochmals deutlich gegenüber allen anderen Beschichtungen, die in dieser Dissertation verwendet wurden. Mikroröhren aus Aluminiumoxid, Titanoxid und Doppelschichten wurden durch die selektive Entfernung der zugrunde liegenden Kohlefasern erhalten. Einzelne Mikroröhren waren von benachbarten Röhren getrennt und sie weisen eine nahezu einheitliche Wanddicke auf.:Bibliographische Beschreibung und Referat 2
Abstract 4
List of abbreviations 10
1. General introduction and outline of this dissertation 12
1.1 References 20
2. Atomic layer deposition: Process and reactor 25
2.1 Introduction 25
2.2 Principle of atomic layer deposition 26
2.3 Materials and methods 29
2.3.1 Precursors 29
2.3.2 Precursors transportation 31
2.3.3 Carrier and purge gas 32
2.3.4 ALD reactors 32
2.4 Flow-Type ALD reactor for fiber coating 33
2.5 Conclusion 35
2.6 References 35
3. Single layer oxide coatings 38
3.1 State of the art 38
3.2 Alumina coating using non-flammable precursors 39
3.2.1 Introduction 39
3.2.Result and discussion 39
3.3 Alumina coating using organometallic precursor 46
3.2.1 Introduction 46
3.2.2 Results and discussion 46
3.4 Titania coating using titanium tetrachloride and water 59
3.4.1 Introduction 59
3.4.2 Results and discussion 59
3.5 Experimental Part 67
3.5.1 General experiments 67
3.5.2 Alumina coating using aluminum chloride and water 69
3.5.3 Alumina coating using trimethylalumium and water 69
3.5.4 Titania coating 72
3.6 Conclusions 72
3.7 References 74
4. Coating thickness and morphology 78
4.1 Introduction 78
4.2 Results and discussion 80
4.2.1 Purge time 15 s 81
4.2.2 Purge time 30 s 85
4.2.3 Purge time 45 s to 100 s 85
4.3 Experimental part 88
4.4 Conclusions 89
4.5 References 89
5. Alumina and titania double layer coatings 91
5.1 Introduction 91
5.2 Results and discussion 92
5.3 Experimental part 102
5.4 Conclusions 103
5.5 References 103
6. Atomic layer deposition of aluminum phosphate 105
6.1 Introduction 105
6.2 Results and discussion 106
6.3 Experimental part 113
6.4 Conclusions 114
6.5 References 115
7. Alumina microtubes 117
7.1 Introduction 117
7.2 Results and discussion 118
7.2.1 Fibers before coating deposition 118
7.2.2 Coatings on the carbon fibers 118
7.2.3 Microtubes 121
7.3 Experimental part 127
7.4 Conclusions 128
7.5 References 128
8. Conclusions 131
Acknowledgements 136
Curriculum Vitae 138
Selbständigkeitserklärung 142
|
13 |
Investigation of multicomponent catalyst systems for type-selective growth of SWCNTs by CVDMotaragheb Jafarpour, Saeed 25 February 2020 (has links)
Excellent electronic properties of semiconducting single-walled carbon nanotubes (sc-SWCNTs) motivated the investigation for using them in different application areas such as microelectronics, sensorics, MEMS and MOEMS. However, challenges arise from the lack of selectivity with respect to electronic type and chirality as well as ensuring high quality, high purity and well-aligned SWCNTs during fabrication process. Catalytic chemical vapour deposition (CCVD) has shown great potential in direct synthesis of high quality SWCNTs with chiral or type selectivity.
This thesis addresses three important aspects for growth of sc-SWCNT covering method development for fast screening for complex catalyst systems, process development for type-selective growth of SWCNTs and transfer of processes to a specific CVD reactor capable to scale the processes up to 8-inches wafer embedded in the microtechnologic process line. Multi-wavelengths Raman spectroscopy is applied to analyze type and chiral compositions of SWCNTs. In addition, different microscopic techniques of SEM, TEM and AFM are utilized to analyze surface morphology of catalyst layers and size of the nanoparticles as well as structure-related properties of SWCNTs. Initially, systematic studies on monometallic Co and bimetallic Co-Mo systems with different bilayer thickness configurations and their influences on the properties of grown SWCNTs are conducted on chip level. It is shown by adjusting the catalyst deposition conditions of bilayer catalyst as well as optimization of gas environments in CCVD process, structure-related properties of SWCNTs are dramatically enhanced. Furthermore, by utilizing shutter-assisted sputter deposition of gradient layer catalyst, a fast and efficient method for screening different bilayer configurations of Co-Mo, Co-Ru and Ni-Ru has been developed. By utilizing gradient layer deposition with finely resolved catalyst thicknesses, random network SWCNT is grown on bimetallic Co-Mo system under certain process condition with 45% (at 633 nm) and 75% (at 785 nm) semiconducting enrichment of long and high quality SWCNT. In contrast, bimetallic Co-Ru system under certain process condition is developed to grow in-plane SWCNT with 85% (at 633 nm) and 75% (at 785 nm) semiconducting enrichment of short and low quality SWCNT. In addition, different configurations of the bimetallic Co-Ru system are prepared from salt precursors by spin-coating technique. For a mixture of cobalt (II) chloride and ruthenium (III) nitrosylacetate, random network SWCNT with 70% (at 633 nm) and 95% (at 785 nm) semiconducting enrichment of long SWCNTs with high quality is obtained on wafer level. Random network SWCNT with high degree of semiconducting enrichment is used as channel material for thin-film transistors fabrication that results in CNTFET with on/off ratio in the order of 10*3:Bibliographic description 3
Vorwort 9
List of abbreviations and symbols 11
1 Introduction 15
2 Fundamentals of carbon nanotubes 21
2.1 Chemical bonds in carbon structures 21
2.2 Different allotropes of carbon 22
2.3 History of carbon nanotubes research 23
2.4 Structure of carbon nanotubes 24
2.5 Electronic properties of carbon nanotubes 26
2.6 Synthesis of carbon nanotubes 27
2.7 Growth mechanism of carbon nanotubes by CCVD 29
2.8 Catalyst for CCVD synthesis of SWCNTs 31
2.8.1 Catalyst nanoparticle formation from thin film 32
2.8.2 Mechanism of solid state dewetting 33
2.9 CCVD synthesis of SWCNT 35
2.10 Selective synthesis of SWCNT 37
3 Experimental 39
3.1 Preparation of different catalyst/support systems 39
3.1.1 Homogenous layer of catalyst prepared by PVD 39
3.1.2 Gradient layer deposition of catalyst by IBSD 41
3.1.3 Homogenous layer of catalyst prepared by spin coating 45
3.2 CVD reactors for synthesis of SWCNT 46
3.2.1 R&D vertical flow CVD reactor with showerhead 46
3.2.2 Industrial vertical flow CVD reactor with showerhead 47
3.2.3 Horizontal flow tube CVD reactor 49
3.3 Methods for characterization 50
3.3.1 Atomic force microscopy 50
3.3.2 Raman spectroscopy 50
3.3.3 Spectroscopic ellipsometry 56
3.3.4 X-ray reflection 56
3.3.5 Scanning electron microscopy 56
3.3.6 Transmission electron microscopy 56
4 Growth of SWCNT using PVD catalyst layer in vertical CVD reactor A 57
4.1 Monometallic Co catalyst supported on SiO2 57
4.1.1 Surface and morphological analysis of SiO2/Co 57
4.1.2 Analysis of CCVD grown SWCNT on SiO2/Co 59
4.1.3 Chirality and diameter analysis of SWCNTs on SiO2/Co 61
4.2 Monometallic Co catalyst supported on Al2O3 62
4.2.1 Surface and morphological analysis of Al2O3/Co 62
4.2.2 Analysis of CCVD grown SWCNT on Al2O3/Co 63
4.2.3 Chirality and diameter analysis of SWCNTs on Al2O3/Co 67
4.3 Bimetallic Co-Mo catalyst supported on Al2O3 68
4.3.1 Surface and Morphological analysis of Al2O3/Co-Mo 68
4.3.2 Effect of IBSD deposition parameters on NP formation 71
4.3.3 Analysis of CCVD grown SWCNT on Al2O3/Co-Mo 72
4.3.4 Chirality and diameter analysis of SWCNTs on Al2O3/Co-Mo 76
4.4 Comparison of SWCNT from different catalyst configurations 77
5 Growth of SWCNT using gradient layer of catalyst 79
5.1 Analysis of grown SWCNT on Co-Mo using step gradient A 79
5.2 Analysis of grown SWCNT on Co-Mo using step gradient B 80
5.2.1 Growth of SWCNT by utilizing shutter at position I 80
5.2.2 Growth of SWCNT by utilizing shutter at position II 82
5.2.3 Effect of vacuum breaking on CCVD growth of SWCNT 83
6 Growth of SWCNT using gradient layer catalyst in vertical CVD reactor B 87
6.1 SWCNT growth on gradient layer of monometallic catalyst 87
6.1.1 Analysis of CCVD grown SWCNT on gradient layer of Co 87
6.1.2 Analysis of CCVD grown SWCNT on gradient layer of Ni 89
6.1.3 Comparison of SWCNT properties for monometallic of Ni and Co 90
6.2 SWCNT growth on gradient layer of bimetallic catalyst 92
6.2.1 Analysis of CCVD grown SWCNT on gradient layer of Co-Mo 92
6.2.2 Analysis of CCVD grown SWCNT on gradient layer of Co-Ru 95
6.2.3 Comparison of SWCNTs on Co-Mo and Co-Ru catalyst systems 98
6.2.4 Analysis of CCVD grown SWCNTs on gradient layer of Ni-Ru 100
7 Growth of SWCNT using spin-coated catalyst precursor in horizontal CVD reactor 103
7.1 Effect of CCVD growth temperature on SWCNT properties 103
7.2 Effect of catalyst calcination temperature on SWCNT properties 103
7.3 Analysis of CCVD grown SWCNT on Co and Co-Ru 105
7.3.1 Monolayer configuration of different Co precursors 105
7.3.2 Bilayer configuration of Co and Ru precursors 106
7.3.3 Trilayer configuration of Co and Ru precursors 107
7.3.4 Monolayer configuration of Mixture Co and Ru precursors 109
7.3.5 Comparison of SWCNTs on different catalyst configurations 110
8 Growth of SWCNT using spin-coated catalyst precursor in vertical CVD reactor B 113
8.1 Growth of SWCNT on Mixture of Co and Ru precursors 113
8.2 Effect of CVD reactor geometry on SWCNT properties 115
8.3 Effect of catalyst preparation technique on SWCNT properties 116
8.4 Wafer-level growth of SWCNT on bimetallic Co-Ru 117
9 SWCNT-based device fabrication 119
9.1 Different approaches for SWCNT-based device fabrication 119
9.2 Growth-based technique for SWCNT-based device fabrication 121
9.2.1 FET fabrication on in-plane random network SWCNT 121
9.2.2 FET fabrication on out-of-plane random network SWCNT 123
10 Summary and outlook 127
Appendix 131
Bibliography 171
List of tables 183
List of figures 185
Versicherung 197
Theses 199
Curriculum vitae 201
List of publications 203 / Die hervorragenden elektronischen Eigenschaften von halbleitenden, einwandigen Kohlenstoff-Nanoröhren (sc-SWCNTs haben die Untersuchung dazu veranlasst, sie in verschiedenen Anwendungsbereichen wie der Mikroelektronik, Sensorik, MEMS und MOEMS einzusetzen. Herausforderungen ergeben sich jedoch aus dem Mangel an Selektivität bezüglich elektronischer Bauart und Chiralität sowie der Sicherstellung hoher Qualität, hoher Reinheit und gut aufeinander abgestimmter SWCNTs während des Herstellungsprozesses. Die Katalytische chemische Gasphasenabscheidung (CCVD) zeigt ein großes Potenzial bei der direkten Synthese von hochqualitativen SWCNTs mit Chiraler- oder Typenselektivität.
Diese Dissertation behandelt drei wichtige Aspekte für das Wachstum von sc-SWCNT und deckt die Methodenentwicklung des schnellen Screenings für komplexe Katalysatorsysteme, die Prozessentwicklung für das typselektive Wachstum von SWCNTs und die Übertragung von Prozessen in einen spezifischen CVD-Reaktor ab. Der Reaktor, welcher eingebettet in die mikrotechnologische Prozesslinie ist, kann Wafer bis zu 8- Zoll verarbeiten. Raman-Spektroskopie mit mehreren Wellenlängen wird verwendet, um die Zusammensetzung von SWCNTs zu analysieren. Darüber hinaus werden verschiedene mikroskopische Techniken von REM, TEM und AFM verwendet, um die Oberflächenmorphologie von Katalysatorschichten und die Größe der Nanopartikel sowie die strukturbezogenen Eigenschaften von SWCNTs zu analysieren. Zunächst werden systematische Untersuchungen an monometallischen Co- und Bimetall-Co-Mo-Systemen mit unterschiedlichen Doppelschichtdickenkonfigurationen durchgeführt und deren Einfluss auf die Eigenschaften gewachsener SWCNTs auf Chipebene untersucht. Es wird gezeigt, dass durch Einstellung der Katalysatorabscheidungsbedingungen des Doppelschichtkatalysators sowie durch Optimierung der Gasumgebung im CCVD-Prozess die strukturbezogenen Eigenschaften von SWCNTs drastisch verbessert werden können. Darüber hinaus wurde durch die Verwendung eines Gradientenschichtkatalysators, welcher mittels einer Shutter-unterstützten Zerstäubungsabscheidung hergestellt wurde, ein schnelles und effizientes Verfahren zum Untersuchen verschiedener Doppelschichtkonfigurationen von Co-Mo, Co-Ru und Ni-Ru entwickelt. Unter Verwendung der Abscheidung einer Gradientenschicht mit einer fein aufgelösten Katalysatordicke wurden ungerichtete SWCNTs auf einem bimetallischen Co-Mo-System unter definierten Prozessbedingungen mit 45% (bei 633 nm) und 75% (bei 785 nm) halbleitender Anreicherung von langem und hochwertigem SWCNT gezüchtet. Im Gegensatz dazu wird das bimetallische Co-Ru-System unter definierten Prozessbedingungen entwickelt, um SWCNT in der Ebene mit 85% (bei 633 nm) und 75% (bei 785 nm) halbleitender Anreicherung von kurzer und geringer Qualität von SWCNT zu wachsen. Außerdem werden verschiedene Konfigurationen des Bimetall-Co-Ru-Systems aus Salzvorläufern durch Spin-Coating-Technik hergestellt. Es zeigt sich für die Bimetallkonfiguration, die durch Mischung von Cobalt (II) -chlorid und Ruthenium (III) -nitrosylacetat, ein zufälliges Netzwerk SWCNT zu 70% (bei 633 nm) und 95% (bei 785 nm) halbleitender Anreicherung langer SWCNTs mit hohem Anteil hergestellt wurde Qualität wird auf Waferebene gewachsen. Ein zufälliges Netzwerk-SWCNT mit einem hohen Grad an halbleitender Anreicherung wird als Kanalmaterial für die Herstellung von Dünnschichttransistoren verwendet, was zu einem CNTFET mit einem Ein / Aus-Verhältnis um 10*3 führte.:Bibliographic description 3
Vorwort 9
List of abbreviations and symbols 11
1 Introduction 15
2 Fundamentals of carbon nanotubes 21
2.1 Chemical bonds in carbon structures 21
2.2 Different allotropes of carbon 22
2.3 History of carbon nanotubes research 23
2.4 Structure of carbon nanotubes 24
2.5 Electronic properties of carbon nanotubes 26
2.6 Synthesis of carbon nanotubes 27
2.7 Growth mechanism of carbon nanotubes by CCVD 29
2.8 Catalyst for CCVD synthesis of SWCNTs 31
2.8.1 Catalyst nanoparticle formation from thin film 32
2.8.2 Mechanism of solid state dewetting 33
2.9 CCVD synthesis of SWCNT 35
2.10 Selective synthesis of SWCNT 37
3 Experimental 39
3.1 Preparation of different catalyst/support systems 39
3.1.1 Homogenous layer of catalyst prepared by PVD 39
3.1.2 Gradient layer deposition of catalyst by IBSD 41
3.1.3 Homogenous layer of catalyst prepared by spin coating 45
3.2 CVD reactors for synthesis of SWCNT 46
3.2.1 R&D vertical flow CVD reactor with showerhead 46
3.2.2 Industrial vertical flow CVD reactor with showerhead 47
3.2.3 Horizontal flow tube CVD reactor 49
3.3 Methods for characterization 50
3.3.1 Atomic force microscopy 50
3.3.2 Raman spectroscopy 50
3.3.3 Spectroscopic ellipsometry 56
3.3.4 X-ray reflection 56
3.3.5 Scanning electron microscopy 56
3.3.6 Transmission electron microscopy 56
4 Growth of SWCNT using PVD catalyst layer in vertical CVD reactor A 57
4.1 Monometallic Co catalyst supported on SiO2 57
4.1.1 Surface and morphological analysis of SiO2/Co 57
4.1.2 Analysis of CCVD grown SWCNT on SiO2/Co 59
4.1.3 Chirality and diameter analysis of SWCNTs on SiO2/Co 61
4.2 Monometallic Co catalyst supported on Al2O3 62
4.2.1 Surface and morphological analysis of Al2O3/Co 62
4.2.2 Analysis of CCVD grown SWCNT on Al2O3/Co 63
4.2.3 Chirality and diameter analysis of SWCNTs on Al2O3/Co 67
4.3 Bimetallic Co-Mo catalyst supported on Al2O3 68
4.3.1 Surface and Morphological analysis of Al2O3/Co-Mo 68
4.3.2 Effect of IBSD deposition parameters on NP formation 71
4.3.3 Analysis of CCVD grown SWCNT on Al2O3/Co-Mo 72
4.3.4 Chirality and diameter analysis of SWCNTs on Al2O3/Co-Mo 76
4.4 Comparison of SWCNT from different catalyst configurations 77
5 Growth of SWCNT using gradient layer of catalyst 79
5.1 Analysis of grown SWCNT on Co-Mo using step gradient A 79
5.2 Analysis of grown SWCNT on Co-Mo using step gradient B 80
5.2.1 Growth of SWCNT by utilizing shutter at position I 80
5.2.2 Growth of SWCNT by utilizing shutter at position II 82
5.2.3 Effect of vacuum breaking on CCVD growth of SWCNT 83
6 Growth of SWCNT using gradient layer catalyst in vertical CVD reactor B 87
6.1 SWCNT growth on gradient layer of monometallic catalyst 87
6.1.1 Analysis of CCVD grown SWCNT on gradient layer of Co 87
6.1.2 Analysis of CCVD grown SWCNT on gradient layer of Ni 89
6.1.3 Comparison of SWCNT properties for monometallic of Ni and Co 90
6.2 SWCNT growth on gradient layer of bimetallic catalyst 92
6.2.1 Analysis of CCVD grown SWCNT on gradient layer of Co-Mo 92
6.2.2 Analysis of CCVD grown SWCNT on gradient layer of Co-Ru 95
6.2.3 Comparison of SWCNTs on Co-Mo and Co-Ru catalyst systems 98
6.2.4 Analysis of CCVD grown SWCNTs on gradient layer of Ni-Ru 100
7 Growth of SWCNT using spin-coated catalyst precursor in horizontal CVD reactor 103
7.1 Effect of CCVD growth temperature on SWCNT properties 103
7.2 Effect of catalyst calcination temperature on SWCNT properties 103
7.3 Analysis of CCVD grown SWCNT on Co and Co-Ru 105
7.3.1 Monolayer configuration of different Co precursors 105
7.3.2 Bilayer configuration of Co and Ru precursors 106
7.3.3 Trilayer configuration of Co and Ru precursors 107
7.3.4 Monolayer configuration of Mixture Co and Ru precursors 109
7.3.5 Comparison of SWCNTs on different catalyst configurations 110
8 Growth of SWCNT using spin-coated catalyst precursor in vertical CVD reactor B 113
8.1 Growth of SWCNT on Mixture of Co and Ru precursors 113
8.2 Effect of CVD reactor geometry on SWCNT properties 115
8.3 Effect of catalyst preparation technique on SWCNT properties 116
8.4 Wafer-level growth of SWCNT on bimetallic Co-Ru 117
9 SWCNT-based device fabrication 119
9.1 Different approaches for SWCNT-based device fabrication 119
9.2 Growth-based technique for SWCNT-based device fabrication 121
9.2.1 FET fabrication on in-plane random network SWCNT 121
9.2.2 FET fabrication on out-of-plane random network SWCNT 123
10 Summary and outlook 127
Appendix 131
Bibliography 171
List of tables 183
List of figures 185
Versicherung 197
Theses 199
Curriculum vitae 201
List of publications 203
|
14 |
Synthesis and Characterization of Transition Metal Complexes as well as their Application in the Formation of Metal-based Materials and the Investigation of their (Spectro)Electrochemical BehaviorPreuß, Andrea 30 July 2020 (has links)
This Ph.D. thesis concentrates on the synthesis and characterization of tailor-made metal-based precursors and their application in the metal-organic chemical vapor deposition (MOCVD), combustion chemical vapor deposition (CCVD) and in the spin-coating process. Therefore, different complexes containing copper, ruthenium, palladium and gold were synthesized and investigated concerning their thermal properties, especially their decomposition behavior and volatility.
Copper(II) and palladium(II) β-ketoiminates were synthesized and used in MOCVD or spin-coating deposition experiments for the formation of metal and metal oxide materials. Ruthenium complexes of type Ru(CO)2(PEt3)2(O2CR)2 (R = Me, Et, iPr, tBu, CH2OMe, CF3) were investigated concerning their physical characteristics depending on the different carboxylates. While primarily focusing on the thermal decomposition behavior, VT IR (variable temperature infrared) spectroscopy, TG-MS (thermogravimetry-mass-spectrometry) studies and DFT (density-functional theory) calculations were carried out to gain a deeper inside into the degradation of the respective complexes, whereby it was possible to propose decomposition mechanisms. Furthermore, from these results it was possible to propose decomposition mechanisms. Gold carboxylates of type [AuO2CCH2OMe(PR’3)] (R’ = Et, nBu) were synthesized and characterized for the use as precursors within CCVD processes to generate Au and SiOx:Au materials. The deposits were used as heterogeneous catalyst in the reduction of 4-nitrophenol. The deposition behavior of zinc diolate towards zinc oxide layer formation was studied by MOCVD experiments, whereby an influence on the crystallinity of the received films was observed depending on the deposition conditions.
The second part of this dissertation focuses on the synthesis of polyaromatic hydrocarbons (napthalene, phenanthrene and pyrene) functionalized with Fc (Fc = Fe(η5-C5H4)(η5-C5H5)) units as redox-active group. Thereby, the main emphasis was on the investigation of the charge transfer properties between the ferrocenyl entities through the π-conjugated bridges. The charge transfer behavior was affected by the substituents or substitution pattern at the aryls resulting in more or less intense intervalence charge transfer (IVCT) excitations of the respective compounds. In order to explore the interaction between the Fc-functionalized arenes and SWCNTs (single-walled carbon nanotubes), these molecules were studied by single-crystal X-ray diffraction analysis and DFT calculations. Moreover, disentangling experiments of SWCNTs with a Fc-functionalized pyrene led to the formation of a novel nanoconjugation, whereby the electrochemical response of the ferrocenyl entities is still present. / Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung von maßgeschneiderten Übergangsmetall-basierten Precursoren und deren Anwendung in der metallorganischen chemischen Gasphasenabscheidung (MOCVD), in der Flammenbeschichtung (CCVD), oder in der Rotationsbeschichtung. Dafür wurden Kupfer-, Ruthenium-, Palladium- und Gold-haltige Komplexe hergestellt und bezüglich ihrer thermischen Eigenschaften, insbesondere das Zersetzungsverhalten und die Flüchtigkeit, charakterisiert.
Cu(II)- und Pd(II)-β-Ketoiminate wurden synthetisiert und in der MOCVD oder in der Rotationsbeschichtung genutzt, um metallische und metalloxidische Materialien abzuscheiden. Ruthenium Komplexe des Typs Ru(CO)2(PEt3)2(O2CR)2 (R = Me, Et, iPr, tBu, CH2OMe, CF3) wurden hinsichtlich ihrer physikalischen Eigenschaften in Abhängigkeit der verschiedenen Substituenten der Carboxylate untersucht. Dabei lag der Fokus im Besonderen auf der thermischen Zersetzungen, welche mittels VT IR (variable Temperatur-Infrarot) Spektroskopie, TG-MS (Thermogravimetrie-Massenspektrometrie) Untersuchungen und DFT (Dichtefunktionaltheorie) Berechnungen genauer beleuchtet wurden. Dabei war es anhand der erhaltenen Ergebnisse möglich Zersetzungsmechanismen zu formulieren. Weiterhin wurden Goldcarboxylate der Art [AuO2CCH2OMe(PR’3)] (R’ = Et, nBu) synthetisiert und in der CCVD untersucht, um Au und SiOx:Au Materialien herzustellen, welche im Weiteren als heterogene Katalysatoren für die Reduktion von 4-Nitrophenol genutzt wurden. Das Abscheideverhalten von Zinkdiolaten in der MOCVD zur Erzeugung von dünnen Zinkoxidfilmen wurde beispielsweise in Hinblick des Einflusses auf die Kristallinität der Filme untersucht.
Im zweiten Teil der Dissertation wird die Synthese von Fc-funktionalisierten (Fc = Fe(η5-C5H4)(η5-C5H5)) polyaromatischen Kohlenwasserstoffen (Naphthalen, Phenanthren, Pyren) diskutiert. Der Schwerpunkt lag dabei auf der Untersuchung des Elektrontransferverhaltens zwischen den Redox-aktiven Gruppen in Abhängigkeit der Substituenten und des Substitutionsmusters der π-konjugierten Brücke. Diese Verbindungen wurden mittels Röntgeneinkristallstrukturanalyse
und DFT-Berechnungen untersucht um festzustellen, ob eine Wechselwirkung zwischen den Fcfunktionalisierten Arenen und SWCNTs (einwandige Kohlenstoffnanoröhren) möglich ist. Entbündelungsversuche von SWCNTs in Anwesenheit eines Fc-funktionalisierten Pyrens lieferten ein neuartiges Hybridsystem, welches Fc-basierte Redoxprozesse zeigte.
|
15 |
Oberflächenmodifizierung von Kohlenstofffasern und organischen Membranen mittels GasphasenabscheidungKnohl, Stefan 20 November 2015 (has links)
Gegenstand dieser Arbeit ist die Modifizierung von Oberflächen durch die Abscheidung alternierender Schichtsysteme auf Kohlenstofffasern und die Abscheidung von Aluminiumoxid auf organischen Membranen. Im ersten Kapitel wird das Vorgehen zur Abscheidung von organischen und anorganischen Schichten auf Kohlenstofffasern mittels der Atomlagenabscheidung und der oberflächeninitiierten Gasphasenabscheidung betrachtet. Dabei wird als Erstes auf die Abscheidung von Einzellagen und deren Optimierung eingegangen sowie im Anschluss auf die Übertragung dieser Parameter auf die Abscheidung von alternierenden Multilagensystemen. Mittels elektronenmikroskopischen-Untersuchungen, Rasterelektronenmikroskopie und energiedispersiver Röntgenspektroskopie, wird die Abscheidung der Materialien untersucht. Weiterhin können mit Hilfe von thermogravimetrischen Analysen die Oxidationsbeständigkeit der beschichteten Kohlenstofffasern sowie die einzelnen Schichtdicken bestimmt werden. Im zweiten Kapitel wird auf die Beschichtung von organischen Membranen eingegangen. Das Hauptaugenmerk liegt dabei auf der Beschichtung von nicht-hierarchisch und hierarchisch strukturierten Membranen mit Aluminiumoxid. Dafür werden die Atomlagenabscheidung und die Grenzflächenreaktion der Gasphase mit der im Feststoff gebundenen Flüssigphase angewendet. Unter Anwendung dieser beiden Verfahren ist es gelungen, dünne und gleichmäßige Schichten auf den Membranen abzuscheiden. Die Charakterisierung erfolgte mittels Rasterelektronenmikroskopie und energiedispersiver Röntgenspektroskopie. Zum Schluss wurden Filtrationsexperimente zum Vergleich der Stabilität und Durchflussraten der beschichteten mit den unbeschichteten Membranen durchgeführt.:Abkürzungsverzeichnis
Symbolverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis
1. Einleitung und Zielsetzung
2 Oberflächenmodifizierung von Kohlenstofffasern
2.1 Einleitung
2.2 Stand der Wissenschaft
2.2.1 Kohlenstofffasern
2.2.2 Faserverstärkte Verbundwerkstoffe
2.2.3 Gasphasenabscheidung
2.2.3.1 Physikalische Gasphasenabscheidung
2.2.3.2 Chemische Gasphasenabscheidung
2.2.3.3 Atomlagenabscheidung
2.2.3.4 Oberflächeninitiierte Gasphasenabscheidung von
Furfurylalkohol
2.3 Theoretische Grundlagen
2.3.1 Aufbau der Beschichtungsanlage
2.3.2 Versuchsplanung
2.3.3 Bestimmung der Schichtdicken
2.3.3.1 Bestimmung mittels Rasterkraftmikroskopie
2.3.3.2 Bestimmung mittels
Rasterelektronenmikroskopie-Aufnahmen
2.3.3.3 Bestimmung mittels thermogravimetrischer Analyse
2.3.4 Untersuchungs- und Charakterisierungsmöglichkeiten von
beschichteten Glas-, Kohlenstofffasern und planaren Substraten
2.4 Ergebnisse und Diskussion
2.4.1 Abscheidung von Aluminiumoxid
2.4.2 Abscheidung von Titanoxid
2.4.3 Abscheidung von Aluminiumphosphat
2.4.4 Abscheidung von Polyfurfurylalkohol
2.4.4.1 Beschichtung von Glasfasern
Bestimmung der Versuchsparameter
Verringerung der Furfurylalkohol-Zugabezeit
Abscheidung von PFFA ohne Initiatorschicht
2.4.4.2 Pyrolyse von PFFA-Schichten zu kohlenstoffhaltigen
Schichten
2.4.5 Herstellung von Multilagensystemen mit alternierender Abfolge
verschiedener Schichten
2.4.5.1 Anorganische/organische Multilagensysteme auf
planaren Substraten
2.4.5.2 Anorganische/organische Multilagensysteme auf
Kohlenstofffasern
2.4.5.3 Anorganische/anorganische Multilagensysteme auf
Kohlenstofffasern
Abscheidung und Charakterisierung der Multilagensysteme
Ermittlung der Schichtdicken
2.4.6 Bestimmung der Oxidationsstabilität der Multilagensysteme
2.4.6.1 Untersuchung der Oxidationsstabilität der
Multilagensysteme mit TiO2 und PFFA (KP1 und KP2)100
2.4.6.2 Untersuchung der Oxidationsstabilität der
Multilagensysteme mit TiO2 und PFFA (KP1-Apy und
KP2-Apy und K1-py und K2-py)
2.4.6.3 Untersuchung der Oxidationsstabilität der
anorganischen Multilagensysteme (K1 – K6)
2.4.6.4 Langzeitversuche zur Untersuchung der
Oxidationsstabilität
3 Oberflächenmodifizierung von organischen Membranen
3.1 Einleitung
3.2 Stand der Wissenschaft
3.3 Ergebnisse und Diskussion
3.3.1 Abscheidung von Aluminiumoxid
3.3.2 Bestimmung der Permeabilitätskoeffizienten der einzelnen
Mikrosiebe
4 Experimenteller Teil
4.1 Verwendete Geräte und Chemikalien
4.2 Durchführung der Abscheidungen
4.3 Untersuchung der Oxidationsstabilität
4.4 Parameter für die Festkörper-Kernspinresonanzspektroskopie Messungen
4.5 IR-Spektroskopie
4.6 XPS-Untersuchungen
4.7 PXRD-Untersuchungen
4.8 Untersuchung der Schichticken mittels Rasterkraftmikroskopie
4.9 Charakterisierung der Partikel und Mikrosiebe
5 Zusammenfassung und Ausblick
6 Literaturverzeichnis
A Anhang
Selbstständigkeitserklärung
Lebenslauf
Veröffentlichungen und Tagungsbeiträge
Danksagung
|
16 |
Atomic scale in situ control of Si(100) and Ge(100) surfaces in CVD ambientBrückner, Sebastian 06 February 2014 (has links)
In dieser Arbeit wurde die atomare Struktur von Si(100)- und Ge(100)-Oberflächen untersucht, die mit metallorganischer chemischer Gasphasenabscheidung (MOCVD) für anschließende Heteroepitaxie von III-V-Halbleitern präpariert wurden. An der III-V/IV Grenzfläche werden atomare Doppelstufen auf der Substratoberfläche benötigt, um Antiphasenunordnung in den III-V-Schichten zu vermeiden. Die MOCVD-Prozessgasumgebung beeinflusst die Domänen- und Stufenbildung der Si- und Ge(100)-Oberfläche sehr stark. Deswegen wurden in situ Reflexions-Anisotropie-Spektroskopie (RAS) und Ultrahochvakuum-(UHV)-basierte oberflächensensitive Messmethoden verwendet, um die verschiedenen Oberflächen zu charakterisieren. In situ RAS ermöglicht die Identifizierung der Oberflächenstruktur und somit Kontrolle über die Oberflächenpräparation, insbesondere der Domänenbildung auf Si- und Ge(100). Beide Oberflächen wechselwirken stark mit dem H2-Prozessgas, was zu Monohydrid-Bedeckung während der Präparation führt und sogar zu Si-Abtrag während Präparation unter hohem H2-Druck. Die Erzeugung von Leerstellen auf den Terrassen bewirkt eine kinetisch bedingte Oberflächenstruktur, basierend auf Diffusion von Leerstellen und Atomen. Dadurch kommt es zu ungewöhnlichen DA-Doppelstufen auf verkippten Si(100)-Substraten während auf exakten Substraten ein schichtweiser Abtrag stattfindet. Unter niedrigem H2-Druck bildet sich eine energetisch bedingte Domänen- und Stufenstruktur. Während das H2-Prozessgas keinen direkten Einfluss auf die Stufen- und Domänenbildung von verkippten Ge(100)-Oberflächen zeigt, ist der Einfluss von Gruppe-V-Elemente entscheidend. Die As-terminierten Ge(100)-Oberflächen bilden eindomänige Oberflächen unterschiedlicher Dimerorientierung und Stufenstruktur abhängig von Temperatur und As-Quelle. Angebot von P an Ge(100)-Oberflächen durch Heizen in Tertiärbutylphosphin führt zu einer ungeordneten, P-terminierten Ge(100)-Oberfläche, die instabiler als die Ge(100):As-Oberfläche ist. / In this work, the atomic surface structure of Si(100) and Ge(100) surfaces prepared in metalorganic chemical vapor phase deposition (MOCVD) ambient was studied with regard to subsequent heteroepitaxy of III-V semiconductors. At the III-V/IV interface, double-layer steps on the substrate surface are required to avoid anti-phase disorder in the epitaxial film. The MOCVD process gas ambient strongly influences the domain and step formation of Si and Ge(100) surfaces. Therefore, in situ reflection anisotropy spectroscopy (RAS) and ultra-high vacuum-based (UHV) surface sensitive methods were applied to investigate the different surfaces. In situ RAS enabled identification of the surface structure and the crucial process steps, leading to complete control of Si and Ge(100) surface preparation. Both surfaces strongly interact with H2 process gas which leads to monohydride termination of the surfaces during preparation and Si removal during processing in high H2 pressure ambient. The generation of vacancies on the terraces induces a kinetically driven surface structure based on diffusion of vacancies and Si atoms leading to an energetically unexpected step structure on vicinal Si(100) substrates with DA-type double-layer steps, whereas Si layer-by-layer removal occurs on substrates with large terraces. Processing in low H2 pressure ambient leads to an energetically driven step and domain structure. In contrast, H2-annealed vicinal Ge(100) surfaces show no direct influence of the H2 ambient on the step structure. At the Ge(100) surface, group-V elements strongly influence step and domain formation. Ge(100):As surfaces form single domain surfaces with different majority domain and significantly different step structures depending on temperature and As source, respectively. In contrast, exposure to P by annealing in tertiarybutylphosphine leads to a very disordered P-terminated vicinal Ge(100) surface which is less stable compared to the Ge(100):As surfaces.
|
17 |
Nanomanipulation and In-situ Transport Measurements on Carbon Nanotubes / Nanomanipulation und In-situ Transportmessung an Kohlenstoff-NanoröhrenLöffler, Markus 20 May 2010 (has links) (PDF)
With the advent of microelectronics and micromechanical systems, the benefits of miniaturized technology became evident. With the discovery of carbon nanotubes by Iijima in 1991, a material has been found that offers superior porperties such as high tensile strength, excellent electrical and heat conductivity while being lightweight, flexible and tunable by the specific atomic arrangement in its structure.
The first part of this thesis deals with a new synthesis approach, which combines the known routes of chemical vapour deposition and laser ablation. The results concerning diameter and yield fit well within an established model for the nucleation and growth of carbon nanotubes and extend it by considering a larger parameter space. Furthermore, conventional laser ablation has been used to synthesize C-13 augmented carbon nanotubes, whose diameters depend among the usual synthesis parameters also on the C-13 content, an influence which is in line with the changed thermal conductivities of isotope mixtures.
Manipulation of carbon nanotubes inside a transmission electron microscope forms the second part of this thesis. With the help of an in-situ nanomanipulator, several experiments involving the mechanical and electrical properties of carbon nanotubes have been performed. Two-probe resistances of individual nanotubes have been measured and the observation of individual shell failures allowed for the determination of current limits per carbon shell. With the help of electrical current, a nanotube was modified in its electrical characteristics by reshaping its structure.
By application of DC-currents or square current pulses, the filling of iron- or cementite-filled multi-wall carbon nanotubes has been found to move in a polarity-defined direction guided by the nanotube walls. Depending on the current, nanotube shape, and composition of the filling different regimes of material transport have been identified, including the reworking of the inner nanotube shells. The application of a high driving current leads to a complete reworking of the host nanotube and the current-induced growth of carbonaceous nanostructures of changed morphology. Utilizing the obtained results, a transport mechanism involving momentum transfer from the electron wind to the filling atoms and a solid filling core during transport is developed and discussed.
Finally, measurements of mechanical properties using electrically induced resonant or non-resonant vibrations inside the transmission electron microscope have been observed and important mechanical parameters have been determined with the help of a modified Euler-Bernoulli-beam approach. / Mit dem Aufkommen von Mikroelektronik und mikromechanischen Systemen wurden die Vorteile miniaturisierter Geräte augenscheinlich. Mit der Entdeckung von Kohlenstoff-Nanoröhren durch Iijima 1991 wurde ein Material gefunden, welches überlegene Eigenschaften wie hohe Festigkeit, exzellente elektrische und Wärmeleitfähigkeit zeigt, während es zeitgleich leicht und flexibel ist. Diese Eigentschaften können durch eine Änderung der spezifischen atomaren Anordnung in der Nanoröhrenhülle beeinflusst werden.
Der erste Teil dieser Dissertationsschrift behandelt einen neuartigen Syntheseansatz, welche die bekannten Syntheserouten der chemischen Gasphasenabscheidung und Laserablation kombiniert. Die Ergebnisse bezüglich des Durchmessers und der Ausbeute lassen sich gut mit einem etablierten Modell der Nukleation und des Wachstums von Kohlenstoff-Nanoröhren beschreiben - sie erweitern es, indem sie einen größeren Parameterraum berücksichtigen. Des Weiteren wurde konventionelle Laserablation benutzt, um C-13 angereicherte Kohlenstoff-Nanoröhren herzustellen, deren Durchmesser nicht nur von den üblichen Parametern, sondern auch vom C-13 Anteil abhängt. Diese Abhängigkeit geht mit der veränderten thermischen Leitfähigkeit von Isotopenmischungen einher.
Die Manipulation von Kohlenstoff-Nanoröhren in einem Transmission-Elektronenmikroskop formt den zweiten Teil der Dissertationschrift. Mit Hilfe eines in-situ Manipulators wurden vielfältige Experimente durchgeführt, um die mechanischen und elektrischen Eigenschaften der Kohlenstoff-Nanoröhren zu bestimmen. Zweipunktmessungen des Widerstands einzelner Nanoröhren und die Beobachtung des Versagens einzelner Kohlenstoffschichten erlaubte die Bestimmung der Stromtragfähigkeit einzelner Hüllen. Mit Hilfe eines elektrischen Stromes konnte eine Nanoröhre durch die veränderung der Struktur in ihren elektrischen Eigenschaften verändert werden.
Unter Verwendung dauerhaften oder gepulsten Gleichstroms konnte die Eisen- oder Zementit-Füllung der Kohlenstoff-Nanoröhren in eine polaritätsabhängige Richtung bewegt werden. Die Füllung wurde dabei durch die Wände der Nanoröhre geführt. Abhängig von Strom, Form der Nanoröhre und Zusammensetzung der Füllung ließen sich verschiedene Bereiche des Materialtransports identifizieren, u.a. das Umarbeiten einiger innerer Kohlenstoffschichten. Ein hoher Strom hingegen bewirkt eine Umarbeitung der kompletten Nanoröhre und strominduziertes Wachstum von Kohlenstoff-Nanostrukturen mit veränderter Morphologie. Mit Hilfe der gewonnenen Resultate wurde ein Transportmodell entwickelt, welches den Impulstransfer von Elektronen an Füllungsatome sowie einen festen Füllungskern während des Transports diskutiert.
Messungen der mechanischen Eigenschaften, welche mit Hilfe von resonanter oder nicht-resonanter elektrischer Anregung von Schwingungen im Transmissions-Elektronenmikroskop durchgeführt wurden bilden den Abschluss der Arbeit. Durch die Beobachtungen konnten mit einem modifizierten Euler-Bernoulli-Balkenmodell wichtige mechanische Eigenschaften bestimmt werden.
|
18 |
Growth of carbon nanotubes on different support/catalyst systems for advanced interconnects in integrated circuits / Wachstum von Kohlenstoffnanoröhren auf verschiedenen Untergrund/Katalysator-Systemen für zukünftige Leitungsverbindungen in integrierten SchaltkreisenHermann, Sascha 15 November 2011 (has links) (PDF)
Since there is a continuous shrinking of feature sizes in ultra-large scale integrated (ULSI) circuits, requirements on materials and technology are going to rise dramatically in the near future. In particular, at the interconnect system this calls for new concepts and materials. Therefore, carbon nanotubes (CNTs) are considered as a promising material to replace partly or entirely metal interconnects in such devices. The present thesis aims to make a contribution to the CNT growth control with the thermal chemical vapor deposition (CVD) method and the integration of CNTs as vertical interconnects (vias) in ULSI circuits. Different support/catalyst systems are examined in processes for catalyst pretreatment and CNT growth. The investigations focus on the catalyst formation and the interactions at the interfaces. Those effects are related to the CNT growth. To get an insight into interactions at interfaces, film structure, composition, and CNT growth characteristics, samples are extensively characterized by techniques like AFM, SEM, TEM, XRD, XPS, and Raman spectroscopy. Screening studies on nanoparticle formation and CNT growth with the well known system SiO2/Ni are presented. This system is characterized by a weak support/catalyst interaction, which leads to undirected growth of multi-walled CNTs (MWCNTs). By contrast, at the Ta/Ni system a strong interaction causes a wetting of catalyst nanoparticles and vertically aligned MWCNT growth. At the system W/Ni a strong interaction at the interface is found as well, but there it induces Stranski-Krastanov catalyst film reformation upon pretreatment and complete CNT growth inhibition. Studies on the SiO2/Cr/Ni system reveal that Cr and Ni act as a bi-catalyst system, which leads to a novel nanostructure defined as interlayer CNT (ICNT) structure. The ICNT films are characterized by well crystallized vertically aligned MWCNTs, which grow out a Cr/Ni layer lifted off as a continuous and very smooth layer from the substrate with the growth. Besides, this nanostructure offers new possibilities for the integration of CNTs in different electronic applications. Based on the presented possibilities of manipulating CNT growth, an integration technology was derived to fabricate CNT vias. The technology uses a surface mediated site-selective CVD for the growth of MWCNTs in via structures. Developments are demonstrated with the fabrication of via test vehicles and the site-selective growth of MWCNTs in vias on 4 inch wafers. Furthermore, the known resistance problem of CNT vias, caused by too low CNT density, is addressed by a new approach. A CNT/metal heterostructure is considered, where the metal is implemented through atomic layer deposition (ALD). The first results of the coating of CNTs with readily reducible copper oxide nanoparticles are presented and discussed. / Aufgrund der kontinuierlichen Verkleinerung von Strukturen in extrem hoch integrierten (engl. Ultra-Large Scale Integration − ULSI) Schaltkreisen werden die Anforderungen an die Materialien und die Technologie in naher Zukunft dramatisch ansteigen. Besonders im Leitbahnsystem sind neue Materialien und Konzepte gefragt. Kohlenstoffnanoröhren (engl. Carbon Nanotubes − CNT) stellen hierbei ein vielversprechendes Material dar, um teilweise oder sogar vollständig metallische Leitbahnen zu ersetzen. Die vorliegende Arbeit liefert einen Beitrag zur CNT-Wachstumskontrolle mit der thermischen Gasphasenabscheidung (engl. Chemical Vapor Deposition − CVD) sowie der Integration von CNTs als vertikale Leitungsverbindungen (Via) in ULSI-Schaltkreisen. Verschiedene Untergrund/Katalysator-Systeme werden in Prozessen zur Katalysatorvorbehandlung sowie zum CNT-Wachstum betrachtet. Die Untersuchungen richten sich insbesondere auf die Katalysatorformierung und die Wechselwirkungen an den Grenzflächen. Diese werden mit dem CNT-Wachstum in Verbindung gebracht. Für Untersuchungen von Grenzflächeninteraktionen, Schichtstruktur, Zusammensetzung sowie CNT-Wachstumscharakteristik werden Analysen mit AFM, REM, TEM, XRD, XPS und Raman-Spektroskopie genutzt. Zunächst werden Voruntersuchungen an dem gut bekannten System SiO2/Ni zur Nanopartikelformierung und CNTWachstum vorgestellt. Dieses System ist gekennzeichnet durch eine schwache Wechselwirkung zwischen Untergrund und Katalysator sowie ungerichtetem Wachstum von mehrwandigen CNTs (MWCNTs). Im Gegensatz dazu hat bei dem System Ta/Ni eine starke Interaktion an der Grenzfläche eine Katalysatornanopartikelbenetzung und vertikales MWCNT-Wachstum zur Folge. Für das W/Ni-System gelten ebenfalls starke Interaktionen an der Grenzfläche. Bei diesem System wird allerdings eine Stranski-Krastanov-Schichtformierung des Katalysators und eine vollständige Unterbindung von CNT-Wachstum erreicht. Bei dem System SiO2/Cr/Ni agieren Cr und Ni als Bi- Katalysatorsystem. Dies führt zu einer neuartigen Nanostruktur, die als Zwischenschicht-CNT (engl. Interlayer Carbon Nanotubes − ICNTs) Struktur definiert wird. Die Schichten sind durch eine gute Qualität von gerichteten MWCNTs charakterisiert, die aus einer geschlossenen, sehr glatten und von den CNTs getragenen Cr/Ni-Schicht herauswachsen. Darüber hinaus bietet die Struktur neue Möglichkeiten für die Integration von CNTs in verschiedene elektronische Anwendungen. Auf der Grundlage der vorgestellten Manipulationsmöglichkeiten von CNT-Wachstum wurde eine Integrationstechnologie für CNTs in Vias abgeleitet. Der Ansatz ist eine oberflächeninduzierte selektive CVD von vertikal gerichteten MWCNTs in Via-Strukturen. Diese Technologie wird mit der Herstellung von einem Via-Testvehikel und dem selektiven CNT-Wachstum in Vias auf 4 Zoll Wafern demonstriert. Um das Widerstandsproblem von CNT-Vias, verursacht durch eine zu niedrige CNT-Dichte, zu reduzieren, wird eine Technologieerweiterung vorgeschlagen. Der Ansatz geht von einer CNT/Metall-Heterostruktur aus, bei der das Metall mit Hilfe der Atomlagenabscheidung (engl. Atomic Layer Deposition − ALD) implementiert wird. Es werden erste Ergebnisse zur CNT-Beschichtung mit reduzierbaren Kupferoxidnanopartikeln vorgestellt und diskutiert.
|
19 |
Nanomanipulation and In-situ Transport Measurements on Carbon NanotubesLöffler, Markus 18 March 2010 (has links)
With the advent of microelectronics and micromechanical systems, the benefits of miniaturized technology became evident. With the discovery of carbon nanotubes by Iijima in 1991, a material has been found that offers superior porperties such as high tensile strength, excellent electrical and heat conductivity while being lightweight, flexible and tunable by the specific atomic arrangement in its structure.
The first part of this thesis deals with a new synthesis approach, which combines the known routes of chemical vapour deposition and laser ablation. The results concerning diameter and yield fit well within an established model for the nucleation and growth of carbon nanotubes and extend it by considering a larger parameter space. Furthermore, conventional laser ablation has been used to synthesize C-13 augmented carbon nanotubes, whose diameters depend among the usual synthesis parameters also on the C-13 content, an influence which is in line with the changed thermal conductivities of isotope mixtures.
Manipulation of carbon nanotubes inside a transmission electron microscope forms the second part of this thesis. With the help of an in-situ nanomanipulator, several experiments involving the mechanical and electrical properties of carbon nanotubes have been performed. Two-probe resistances of individual nanotubes have been measured and the observation of individual shell failures allowed for the determination of current limits per carbon shell. With the help of electrical current, a nanotube was modified in its electrical characteristics by reshaping its structure.
By application of DC-currents or square current pulses, the filling of iron- or cementite-filled multi-wall carbon nanotubes has been found to move in a polarity-defined direction guided by the nanotube walls. Depending on the current, nanotube shape, and composition of the filling different regimes of material transport have been identified, including the reworking of the inner nanotube shells. The application of a high driving current leads to a complete reworking of the host nanotube and the current-induced growth of carbonaceous nanostructures of changed morphology. Utilizing the obtained results, a transport mechanism involving momentum transfer from the electron wind to the filling atoms and a solid filling core during transport is developed and discussed.
Finally, measurements of mechanical properties using electrically induced resonant or non-resonant vibrations inside the transmission electron microscope have been observed and important mechanical parameters have been determined with the help of a modified Euler-Bernoulli-beam approach. / Mit dem Aufkommen von Mikroelektronik und mikromechanischen Systemen wurden die Vorteile miniaturisierter Geräte augenscheinlich. Mit der Entdeckung von Kohlenstoff-Nanoröhren durch Iijima 1991 wurde ein Material gefunden, welches überlegene Eigenschaften wie hohe Festigkeit, exzellente elektrische und Wärmeleitfähigkeit zeigt, während es zeitgleich leicht und flexibel ist. Diese Eigentschaften können durch eine Änderung der spezifischen atomaren Anordnung in der Nanoröhrenhülle beeinflusst werden.
Der erste Teil dieser Dissertationsschrift behandelt einen neuartigen Syntheseansatz, welche die bekannten Syntheserouten der chemischen Gasphasenabscheidung und Laserablation kombiniert. Die Ergebnisse bezüglich des Durchmessers und der Ausbeute lassen sich gut mit einem etablierten Modell der Nukleation und des Wachstums von Kohlenstoff-Nanoröhren beschreiben - sie erweitern es, indem sie einen größeren Parameterraum berücksichtigen. Des Weiteren wurde konventionelle Laserablation benutzt, um C-13 angereicherte Kohlenstoff-Nanoröhren herzustellen, deren Durchmesser nicht nur von den üblichen Parametern, sondern auch vom C-13 Anteil abhängt. Diese Abhängigkeit geht mit der veränderten thermischen Leitfähigkeit von Isotopenmischungen einher.
Die Manipulation von Kohlenstoff-Nanoröhren in einem Transmission-Elektronenmikroskop formt den zweiten Teil der Dissertationschrift. Mit Hilfe eines in-situ Manipulators wurden vielfältige Experimente durchgeführt, um die mechanischen und elektrischen Eigenschaften der Kohlenstoff-Nanoröhren zu bestimmen. Zweipunktmessungen des Widerstands einzelner Nanoröhren und die Beobachtung des Versagens einzelner Kohlenstoffschichten erlaubte die Bestimmung der Stromtragfähigkeit einzelner Hüllen. Mit Hilfe eines elektrischen Stromes konnte eine Nanoröhre durch die veränderung der Struktur in ihren elektrischen Eigenschaften verändert werden.
Unter Verwendung dauerhaften oder gepulsten Gleichstroms konnte die Eisen- oder Zementit-Füllung der Kohlenstoff-Nanoröhren in eine polaritätsabhängige Richtung bewegt werden. Die Füllung wurde dabei durch die Wände der Nanoröhre geführt. Abhängig von Strom, Form der Nanoröhre und Zusammensetzung der Füllung ließen sich verschiedene Bereiche des Materialtransports identifizieren, u.a. das Umarbeiten einiger innerer Kohlenstoffschichten. Ein hoher Strom hingegen bewirkt eine Umarbeitung der kompletten Nanoröhre und strominduziertes Wachstum von Kohlenstoff-Nanostrukturen mit veränderter Morphologie. Mit Hilfe der gewonnenen Resultate wurde ein Transportmodell entwickelt, welches den Impulstransfer von Elektronen an Füllungsatome sowie einen festen Füllungskern während des Transports diskutiert.
Messungen der mechanischen Eigenschaften, welche mit Hilfe von resonanter oder nicht-resonanter elektrischer Anregung von Schwingungen im Transmissions-Elektronenmikroskop durchgeführt wurden bilden den Abschluss der Arbeit. Durch die Beobachtungen konnten mit einem modifizierten Euler-Bernoulli-Balkenmodell wichtige mechanische Eigenschaften bestimmt werden.
|
20 |
Atomistische Modellierung und Simulation des Filmwachstums bei GasphasenabscheidungenLorenz, Erik E. 27 November 2014 (has links)
Gasphasenabscheidungen werden zur Produktion dünner Schichten in der Mikro- und Nanoelektronik benutzt, um eine präzise Kontrolle der Schichtdicke im Sub-Nanometer-Bereich zu erreichen. Elektronische Eigenschaften der Schichten werden dabei von strukturellen Eigenschaften determiniert, deren Bestimmung mit hohem experimentellem Aufwand verbunden ist.
Die vorliegende Arbeit erweitert ein hochparalleles Modell zur atomistischen Simulation des Wachstums und der Struktur von Dünnschichten, welches Molekulardynamik (MD) und Kinetic Monte Carlo-Methoden (KMC) kombiniert, um die Beschreibung beliebiger Gasphasenabscheidungen. KMC-Methoden erlauben dabei die effiziente Betrachtung der Größenordnung ganzer Nano-Bauelemente, während MD für atomistische Genauigkeit sorgt.
Erste Ergebnisse zeigen, dass das Parsivald genannte Modell Abscheidungen in Simulationsräumen mit einer Breite von 0.1 µm x 0.1 µm effizient berechnet, aber auch bis zu 1 µm x 1 µm große Räume mit 1 Milliarden Atomen beschreiben kann. Somit lassen sich innerhalb weniger Tage Schichtabscheidungen mit einer Dicke von 100 Å simulieren. Die kristallinen und amorphen Schichten zeigen glatte Oberflächen, wobei auch mehrlagige Systeme auf die jeweilige Lagenrauheit untersucht werden. Die Struktur der Schicht wird hauptsächlich durch die verwendeten molekulardynamischen Kraftfelder bestimmt, wie Untersuchungen der physikalischen Gasphasenabscheidung von Gold, Kupfer, Silizium und einem Kupfer-Nickel-Multilagensystem zeigen. Stark strukturierte Substrate führen hingegen zu Artefakten in Form von Nanoporen und Hohlräumen aufgrund der verwendeten KMC-Methode. Zur Simulation von chemischen Gasphasenabscheidungen werden die Precursor-Reaktionen von Silan mit Sauerstoff sowie die Hydroxylierung von alpha-Al2O3 mit Wasser mit reaktiven Kraftfeldern (ReaxFF) berechnet, allerdings ist weitere Arbeit notwendig, um komplette Abscheidungen auf diese Weise zu simulieren.
Mit Parsivald wird somit die Erweiterung einer Software präsentiert, die Gasphasenabscheidungen auf großen Substraten effizient simulieren kann, dabei aber auf passende molekulardynamische Kraftfelder angewiesen ist.:Inhaltsverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis
Abkürzungsverzeichnis
Symbolverzeichnis
1 Einleitung
2 Grundlagen
2.1 Gasphasenabscheidungen
2.1.1 Physikalische Gasphasenabscheidung
2.1.2 Chemische Gasphasenabscheidung
2.1.3 Atomlagenabscheidung
2.1.4 Methoden zur Simulation von Gasphasenabscheidungen
2.2 Molekulardynamik
2.2.1 Formulierung der Molekulardynamik
2.2.2 Auswahl verfügbarer Molekulardynamik-Software
2.2.3 Molekulardynamische Kraftfelder
2.3 Kinetic Monte Carlo-Methoden
2.4 Datenstrukturen
2.4.1 Numerische Voraussetzungen an Gasphasenabscheidungen
2.4.2 Vergleich der Laufzeiten für verschiedene Datenstrukturen
2.4.3 Effiziente Datenstrukturen
2.4.4 Alpha-Form
3 Methoden und Modelle
3.1 Stand der Forschung
3.1.1 Anwendungen von KMC-Simulationen für die Gasphasenabscheidung
3.1.2 Anwendung von MD-Simulationen für die Gasphasenabscheidung
3.2 Parsivald-Modell
3.2.1 Zielsetzung für Parsivald
3.2.2 Beschreibung des Parsivald-Modells
3.2.3 Annahmen und Einschränkungen
3.2.4 Erweiterungen im Rahmen der Masterarbeit
3.2.5 Behandlung von fehlerhaften Ereignissen
3.3 Laufzeitanalyse von Parsivald-Simulationen
3.3.1 Ereignis-Laufzeit TE
3.3.2 Ereignis-Durchsatz RE
3.3.3 MD-Laufzeit TMD
3.3.4 Worker-Laufzeit Tworker
3.3.5 Serielle Laufzeit T1
3.3.6 Anzahl der parallelen Prozesse p
3.3.7 Workerdichte rhoworker
3.3.8 Parallele Laufzeit Tp
3.3.9 Speedup Sp
3.3.10 Parallele Effizienz Ep
3.3.11 Auswertung der Laufzeitparameter
3.3.12 Fazit
3.4 MD-Simulationen: Methoden und Auswertungen
3.4.1 Zeitskalen in MD-Simulationen
3.4.2 Relaxierungen
3.4.3 Strukturanalysen
3.4.4 Bestimmung der Dichte und Temperatur
3.4.5 Radiale Verteilungsfunktionen, Bindungslänge und Koordinationszahl
3.4.6 Oberfläche, Schichtdicke, Rauheit und Porösität
3.4.7 Reaktionen und Stabilität von Molekülen
4 Simulationen von Gasphasenabscheidungen
4.1 Gold-PVD
4.1.1 Voruntersuchungen
4.1.2 Thermodynamische Eigenschaften
4.1.3 Simulation von Gold-PVD
4.1.4 Skalierbarkeit mit der Simulationsgröße
4.1.5 Fazit
4.2 Kupfer-PVD
4.2.1 Voruntersuchungen
4.2.2 Thermodynamische Eigenschaften
4.2.3 Simulation von Kupfer-PVD
4.2.4 Untersuchung der maximalen Workerdichte
4.2.5 Fazit
4.3 Multilagen-PVD
4.3.1 Multilagen-Simulationen mit Parsivald
4.3.2 Vergleich mit Ergebnissen reiner MD-Simulationen
4.3.3 Vergleich der Parallelisierbarkeit
4.3.4 Fazit
4.4 Silizium-PVD
4.4.1 Voruntersuchungen
4.4.2 Simulationen von Silizium-PVD
4.4.3 Fazit
4.5 Aluminiumoxid-ALD
4.5.1 ReaxFF-Parametersätze
4.5.2 Voruntersuchungen
4.5.3 Fazit
5 Zusammenfassung und Ausblick
5.1 Zusammenfassung
5.2 Ausblick
A Physikalische Konstanten und Stoffeigenschaften
B Datenstrukturen
B.1 Übersicht über KMC-Operationen
B.2 Beschreibung grundlegender Datenstrukturen
B.3 Delaunay-Triangulationen
B.3.1 Ausgewählte Eigenschaften einer Delaunay-Triangulation
B.3.2 Algorithmen zur Konstruktion einer Delaunay-Triangulation
C Ergänzungen zur Laufzeitanalyse von Parsivald
C.1 Einfluss der Ereignis-Laufzeit auf die effiziente Raumgröße weff
C.2 Zusätzliche Einflüsse auf das Maximum der Prozesse pmax
C.3 Abschätzung der maximalen Workerdichte per Random Sequential Adsorption
D Ergänzungen zur Simulation von Gold-PVD
E Multilagen-PVD
E.1 Porenbildung bei Unterrelaxation
E.2 Simulationen mit Lagendicken von jeweils 5 nm
F Simulation der CVD-Precursormoleküle Silan und Sauerstoff
F.1 Stabilität der Precursormoleküle
F.2 Reaktion der Precursormoleküle
Literaturverzeichnis
|
Page generated in 0.0953 seconds