• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 9
  • 9
  • 6
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 79
  • 12
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Hybridapplikationer med Apache Cordova och Flutter : En jämförande studie ur ett prestandaperspektiv / Hybrid Applications with Apache Cordova and Flutter : A comparative performance study

Malki, Ara January 2021 (has links)
Idag ser man ett ökat intresset för applikationsutveckling. Den hybrida applikationsutvecklingen är något företag inte kan se förbi längre då dess fördelar väger tungt. Fördelarna med hybrida applikationer är bland annat det faktum att de använder en kodbas för flera plattformar. Detta i sin tur leder till en kraftig tids- och resursbesparing under utvecklingsfasen. De två hybrida ramverken som valts ut i ett jämförande syfte är Apache Cordova och Flutter, och syftet är att identifiera vilket ramverk presterar bäst ur ett prestandaperspektiv. Den frågeställning som besvaras i studien är: Vilket ramverk för att skapa en hybrid applikation av Apache Cordova och Flutter, är att rekommendera ur ett prestandaperspektiv? Studien mäter prestandarelaterade variabler, dessa är exekveringshastighet, uppstartstid, CPU-, RAM- och batterianvändning. Studien gör detta genom skapandet av två funktionellt identiska applikationer i respektive ramverk. Datainsamlingen görs genom Android Profiler, Logcat samt egen implementerad kod. Resultatet presenterar mätningar i respektive prestandarelaterad variabel. Det som redovisas i det totala resultatet visar på att Flutter är det ramverk som presterar snabbare men även är det ramverk som har en högre resursanvändning. / Today we see an increased trend around the interest in application development, and in our society there are over three billion smartphone users. Hybrid application development is something companies can no longer overlook because the benefits weigh heavily. The benefits with hybrid applications include the fact that it uses a multi-platform code base. This in turn leads to a significant saving of time and resources during the development process. The two hybrid frameworks chosen for a comparative purpose are Apache Cordova and Flutter, and the purpose is to identify which framework performs the best out of a performance perspective. The question answered in the study is: What framework for creating a hybrid application between Apache Cordova and Flutter, is recommended out of a performance perspective? The study measures performance-related variables, these are execution speed, start-up time, CPU, RAM and battery usage. The study does this by creating two functionally identical applications in each framework. Data collection takes place via Android Profiler, Logcat and own implemented code. The result shows measurements in each performance-related variable. Not only does the overall results show that Flutter is the faster performing framework but also the framework with a higher use of resources.
72

Application de la méthode Monte Carlo à la modélisation d’une source de curiethérapie par diffusion d’émetteurs alpha

Mondor, Julien 12 1900 (has links)
La curiethérapie par diffusion d’émetteurs alpha (DaRT) est un nouveau type de grain interstitiel dont le potentiel thérapeutique pour les tumeurs solides est élevé en raison de l’utilisation de particules alpha. Cette modalité se distingue de la curiethérapie conventionnelle par une contamination des tissus à un niveau thérapeutique. Les radionucléides filles pénètrent la tumeur grâce à l’énergie de recul acquise lors de l’émission d’une particule alpha, puis ils se dispersent par diffusion dans les tissus avoisinants créant un nuage d’émetteurs alpha. Présentement, le \(^{224}\)Ra est la source radioactive utilisée par la modalité car la synergie de ses descendants de courte demi-vie permettent de produire une zone où la mort cellulaire est élevée. De plus, sa longue demie-vie permet de produire des sources thérapeutiques de faible activité. Le modèle de planification dosimétrique Diffusion-Leakage ne permet pas de déterminer la dose livrée à une zone qui seraient étanche aux radionucléides diffusants. Les particules possédant une longue portée, comme les particules beta et gamma, ne sont pas évaluées par le modèle. Pourtant, ces particules secondaires sont les seules qui déposent de l’énergie dans les zones non-traitées par les particules alpha. Le projet cadre est de simuler la distribution de la dose livrée par ces particules à l’aide de la méthode Monte Carlo. Deux distributions sont recherchées. Une première est la dose associée aux descendants du \(^{224}\)Ra qui se sont dispersés autour du grain et la deuxième est associée au \(^{224}\)Ra et à ses descendants distribués quelques nanomètres sous la surface du grain. Ce mémoire présente une méthode permettant de modéliser la distribution interne de la source de \(^{224}\)Ra sous la surface d’un grain DaRT. Des mesures de spectrométrie alpha ont permis de tester le diagramme de flux de travail et de confirmer la faisabilité de l’extraction de la distribution interne pour trois émetteurs alpha. Les distributions permettront d’évaluer la dose provenant exclusivement du grain en plus d’aider à concevoir des simulations du taux de désorption par recul atomique. Ce travail pourrait permettre d’aider à la conception de nouveaux grains et à l’évaluation de la dose beta et gamma entourant un grain DaRT au \(^{224}\)Ra. / Diffusion alpha-emitter Radiation Therapy (DaRT) is a new type of interstitial brachytherapy seed with high therapeutic potential for solid tumors due to the use of alpha particles. This modality differs from conventional brachytherapy by contaminating tissues to a therapeutic level. The daughters penetrate the tumor using the recoil energy acquired when an alpha particle is emitted and they then scatter by diffusion into the surrounding tissue, creating a cloud of alpha emitters. Currently, \(^{224}\)Ra is the radioactive source used by the modality because the synergy of its short half-life progeny allow to produce a zone where cell death is significant. In addition, its long half-life allows the production of therapeutic sources of low activity. The dosimetric planning model Diffusion-Leakage does not allow the determination of the dose delivered to an area that would be impenetrable by diffusing radionuclides. Particles with a long range, such as beta and gamma particles, are not evaluated by the model. However, these secondary particles are the only ones that deposit energy in areas not treated by alpha particles. The framework project is to simulate the dose distribution delivered by these particles using the Monte Carlo method. Two distributions are pursued. The first is the dose associated with the \(^{224}\)Ra progeny that are dispersed around the seed and the second is associated with radium and its progeny distributed a few nanometers below the surface of the seed. This thesis presents a method enabling the modelisation of the internal distribution of the \(^{224}\)Ra source below the surface of a DaRT seed. Alpha spectrometry measurements were used to test the workflow diagram and confirm the feasibility of extracting the internal distribution for three alpha emitters. The distributions will enable an assessment of the dose coming exclusively from the seed, in addition to helping in designing simulations of the desorption rate by atomic recoil. This work could assist in the design of new seeds and in the evaluation of the beta and gamma dose surrounding a \(^{224}\)Ra DaRT seed.
73

Applications and challenges in mass spectrometry-based untargeted metabolomics

Jones, Christina Michele 27 May 2016 (has links)
Metabolomics is the methodical scientific study of biochemical processes associated with the metabolome—which comprises the entire collection of metabolites in any biological entity. Metabolome changes occur as a result of modifications in the genome and proteome, and are, therefore, directly related to cellular phenotype. Thus, metabolomic analysis is capable of providing a snapshot of cellular physiology. Untargeted metabolomics is an impartial, all-inclusive approach for detecting as many metabolites as possible without a priori knowledge of their identity. Hence, it is a valuable exploratory tool capable of providing extensive chemical information for discovery and hypothesis-generation regarding biochemical processes. A history of metabolomics and advances in the field corresponding to improved analytical technologies are described in Chapter 1 of this dissertation. Additionally, Chapter 1 introduces the analytical workflows involved in untargeted metabolomics research to provide a foundation for Chapters 2 – 5. Part I of this dissertation which encompasses Chapters 2 – 3 describes the utilization of mass spectrometry (MS)-based untargeted metabolomic analysis to acquire new insight into cancer detection. There is a knowledge deficit regarding the biochemical processes of the origin and proliferative molecular mechanisms of many types of cancer which has also led to a shortage of sensitive and specific biomarkers. Chapter 2 describes the development of an in vitro diagnostic multivariate index assay (IVDMIA) for prostate cancer (PCa) prediction based on ultra performance liquid chromatography-mass spectrometry (UPLC-MS) metabolic profiling of blood serum samples from 64 PCa patients and 50 healthy individuals. A panel of 40 metabolic spectral features was found to be differential with 92.1% sensitivity, 94.3% specificity, and 93.0% accuracy. The performance of the IVDMIA was higher than the prevalent prostate-specific antigen blood test, thus, highlighting that a combination of multiple discriminant features yields higher predictive power for PCa detection than the univariate analysis of a single marker. Chapter 3 describes two approaches that were taken to investigate metabolic patterns for early detection of ovarian cancer (OC). First, Dicer-Pten double knockout (DKO) mice that phenocopy many of the features of metastatic high-grade serous carcinoma (HGSC) observed in women were studied. Using UPLC-MS, serum samples from 14 early-stage tumor DKO mice and 11 controls were analyzed. Iterative multivariate classification selected 18 metabolites that, when considered as a panel, yielded 100% accuracy, sensitivity, and specificity for early-stage HGSC detection. In the second approach, serum metabolic phenotypes of an early-stage OC pilot patient cohort were characterized. Serum samples were collected from 24 early-stage OC patients and 40 healthy women, and subsequently analyzed using UPLC-MS. Multivariate statistical analysis employing support vector machine learning methods and recursive feature elimination selected a panel of metabolites that differentiated between age-matched samples with 100% cross-validated accuracy, sensitivity, and specificity. This small pilot study demonstrated that metabolic phenotypes may be useful for detecting early-stage OC and, thus, supports conducting larger, more comprehensive studies. Many challenges exist in the field of untargeted metabolomics. Part II of this dissertation which encompasses Chapters 4 – 5 focuses on two specific challenges. While metabolomic data may be used to generate hypothesis concerning biological processes, determining causal relationships within metabolic networks with only metabolomic data is impractical. Proteins play major roles in these networks; therefore, pairing metabolomic information with that acquired from proteomics gives a more comprehensive snapshot of perturbations to metabolic pathways. Chapter 4 describes the integration of MS- and NMR-based metabolomics with proteomics analyses to investigate the role of chemically mediated ecological interactions between Karenia brevis and two diatom competitors, Asterionellopsis glacialis and Thalassiosira pseudonana. This integrated systems biology approach showed that K. brevis allelopathy distinctively perturbed the metabolisms of these two competitors. A. glacialis had a more robust metabolic response to K. brevis allelopathy which may be a result of its repeated exposure to K. brevis blooms in the Gulf of Mexico. However, K. brevis allelopathy disrupted energy metabolism and obstructed cellular protection mechanisms including altering cell membrane components, inhibiting osmoregulation, and increasing oxidative stress in T. pseudonana. This work represents the first instance of metabolites and proteins measured simultaneously to understand the effects of allelopathy or in fact any form of competition. Chromatography is traditionally coupled to MS for untargeted metabolomics studies. While coupling chromatography to MS greatly enhances metabolome analysis due to the orthogonality of the techniques, the lengthy analysis times pose challenges for large metabolomics studies. Consequently, there is still a need for developing higher throughput MS approaches. A rapid metabolic fingerprinting method that utilizes a new transmission mode direct analysis in real time (TM-DART) ambient sampling technique is presented in Chapter 5. The optimization of TM-DART parameters directly affecting metabolite desorption and ionization, such as sample position and ionizing gas desorption temperature, was critical in achieving high sensitivity and detecting a broad mass range of metabolites. In terms of reproducibility, TM-DART compared favorably with traditional probe mode DART analysis, with coefficients of variation as low as 16%. TM-DART MS proved to be a powerful analytical technique for rapid metabolome analysis of human blood sera and was adapted for exhaled breath condensate (EBC) analysis. To determine the feasibility of utilizing TM-DART for metabolomics investigations, TM-DART was interfaced with traveling wave ion mobility spectrometry (TWIMS) time-of-flight (TOF) MS for the analysis of EBC samples from cystic fibrosis patients and healthy controls. TM-DART-TWIMS-TOF MS was able to successfully detect cystic fibrosis in this small sample cohort, thereby, demonstrating it can be employed for probing metabolome changes. Finally, in Chapter 6, a perspective on the presented work is provided along with goals on which future studies may focus.
74

Defining the genetic and physiological basis of Triticum sphaerococcum Perc.

Josekutty, Puthiyaparambil Chacko January 2008 (has links)
ABSTRACT Triticum sphaerococcum (AABBDD, 2n = 6x = 42) is a land race of wheat known from the Indian subcontinent. It has several favourable characters including short and strong culms, hemispherical grains with a shallow crease (that may increase the yield of white flour), higher protein content compared to bread wheat (T. aestivum), and resistance to drought, and yellow rust caused by Puccinia striiformis. However, an unfavourable characteristic of T. sphaerococcum is its lower yield compared to bread wheat. Being a land race, the sphaerococcum wheat is poorly studied. This study was undertaken to increase knowledge of the physiology and genetics of this land race and determine if it may be possible to separate the favourable characters of T. sphaerococcum from its unfavourable characters. Plant height in bread wheat is controlled by many genes. ‘Reduced Height’ (Rht) genes which differ in their response to externally applied gibberellic acid (GA3) are responsible for the short stature of modern bread wheat varieties. Therefore, GA3 was used to probe the relationship between the semidwarf sphaerococcum phenotype and the Rht gene. T. sphaerococcum variety Sp5 showed a unique “seedling response” to externally applied GA3 when compared with T. aestivum varieties harbouring Rht1, Rht2, Rht8, Rht12, Rht13 or Rht18 alleles. A mapping population of doubled haploids was generated through wide hybridisation of F1 (Sp5 x Otane) with Zea mays. A genome-wide scan of Sp5 and Otane (parents) using 348 microsatellite (SSR) markers showed that only 169 of these markers (49%) were polymorphic between the parents. A DArT profiling yielded 348 markers that were polymorphic between the parents. Microsatellite markers and DArT markers were used to create a genetic map. The mapping population was phenotyped and a quantitative trait loci (QTL) analysis was performed for component traits of the complex sphaerococcum trait including plant height, spike length, awn length, yield, grain shape and crease size. Results of the QTL analysis indicated that it may be difficult to separate the favourable characters of T. sphaerococcum from its unfavourable characters through mutation because the component traits of the complex sphaerococcum trait may be under pleiotropic control of the Sp gene. The hypothesis that T. sphaerococcum originated through a mutation in T. aestivum was tested through induced mutation using gamma rays. Mutants from sphaerococcum-type to aestivum-type were isolated and phenotyped. Sphaerococcum-type mutants also were isolated and characterised from mutated aestivum-type wheat suggesting a possible origin of T. sphaerococcum through a mutation in T. aestivum.
75

[fr] L ARCHITECTURE DE L ART: LE PARADOXE DANS LES MUSÉES D ART MODERNE / [pt] A ARQUITETURA DA ARTE: O PARADOXO NOS MUSEUS DE ARTE MODERNA

MARIA CRISTINA NASCENTES CABRAL 30 June 2004 (has links)
[pt] O conceito de museu de arte moderna é paradoxal. A contradição consiste na convivência da instituição museu - cuja atribuição original é de se ocupar de objetos do passado, destituídos de seu contexto original - com a arte da atualidade. Esta contradição está presente em todas as esferas institucionais e artísticas, acirrando-se ao longo do século XX com o surgimento do museu de arte contemporânea. Este trabalho analisa o edifício-museu como local desta contradição, a partir da relação entre as concepções arquitetônica e artística. Para tal, são analisadas propostas arquitetônicas e museológicas da primeira metade do século XX e edifícios paradigmáticos da segunda metade do século XX. Inicialmente, são estudados o Museu do crescimento ilimitado de Le Corbusier, o Museu para cidade pequena de Mies van der Rohe e o Museu de Arte Moderna de Nova York. Em seguida, são realizados estudos de caso do Museu Solomon R. Guggenheim de Nova York, do Museu Nacional de Arte Moderna, no Centro Georges Pompidou, e do Museu Guggenheim de Bilbao. / [fr] Le concept de musée d art moderne est paradoxal. La contradiction consiste dans la coexistence de l institution musée - dont l attribution originelle est de s occuper des objets du passé, destitués de leur contexte originel - avec l art de l actualité. Cette contradiction se trouve dans toutes les sphères institutionnelles et artistiques, augmentant pendant le XXème Siècle avec l apparition du musée d art contemporain. Ce travail analyse l édifice- musée comme l endroit de cette contradiction, à partir de la relation entre les conceptions architecturale et artistique. Dans ce but, se sont analysées des propositions architecturales et muséologues de la première moitié du XXème Siècle, bien que des édifices paradigmatiques de la deuxième moitié du XXème Siècle. Ce sont d abord étudiés le Musée de la croissance ilimitée de Le Corbusier, le Musée pour une petite ville de Mies van der Rohe et le MoMA-NY. Ce sont réalisés des études de cas du Musée Solomon R. Guggenheim de New York, du Mnam, dans le Centre Georges Pompidou, et du Musée Guggenheim de Bilbao.
76

Defining the genetic and physiological basis of Triticum sphaerococcum Perc.

Josekutty, Puthiyaparambil Chacko January 2008 (has links)
ABSTRACT Triticum sphaerococcum (AABBDD, 2n = 6x = 42) is a land race of wheat known from the Indian subcontinent. It has several favourable characters including short and strong culms, hemispherical grains with a shallow crease (that may increase the yield of white flour), higher protein content compared to bread wheat (T. aestivum), and resistance to drought, and yellow rust caused by Puccinia striiformis. However, an unfavourable characteristic of T. sphaerococcum is its lower yield compared to bread wheat. Being a land race, the sphaerococcum wheat is poorly studied. This study was undertaken to increase knowledge of the physiology and genetics of this land race and determine if it may be possible to separate the favourable characters of T. sphaerococcum from its unfavourable characters. Plant height in bread wheat is controlled by many genes. ‘Reduced Height’ (Rht) genes which differ in their response to externally applied gibberellic acid (GA3) are responsible for the short stature of modern bread wheat varieties. Therefore, GA3 was used to probe the relationship between the semidwarf sphaerococcum phenotype and the Rht gene. T. sphaerococcum variety Sp5 showed a unique “seedling response” to externally applied GA3 when compared with T. aestivum varieties harbouring Rht1, Rht2, Rht8, Rht12, Rht13 or Rht18 alleles. A mapping population of doubled haploids was generated through wide hybridisation of F1 (Sp5 x Otane) with Zea mays. A genome-wide scan of Sp5 and Otane (parents) using 348 microsatellite (SSR) markers showed that only 169 of these markers (49%) were polymorphic between the parents. A DArT profiling yielded 348 markers that were polymorphic between the parents. Microsatellite markers and DArT markers were used to create a genetic map. The mapping population was phenotyped and a quantitative trait loci (QTL) analysis was performed for component traits of the complex sphaerococcum trait including plant height, spike length, awn length, yield, grain shape and crease size. Results of the QTL analysis indicated that it may be difficult to separate the favourable characters of T. sphaerococcum from its unfavourable characters through mutation because the component traits of the complex sphaerococcum trait may be under pleiotropic control of the Sp gene. The hypothesis that T. sphaerococcum originated through a mutation in T. aestivum was tested through induced mutation using gamma rays. Mutants from sphaerococcum-type to aestivum-type were isolated and phenotyped. Sphaerococcum-type mutants also were isolated and characterised from mutated aestivum-type wheat suggesting a possible origin of T. sphaerococcum through a mutation in T. aestivum.
77

The Effect of Sample and Sample Matrix on DNA Processing: Mechanisms for the Detection and Management of Inhibition in Forensic Samples

Moreno, Lilliana I 23 March 2015 (has links)
The presence of inhibitory substances in biological forensic samples has, and continues to affect the quality of the data generated following DNA typing processes. Although the chemistries used during the procedures have been enhanced to mitigate the effects of these deleterious compounds, some challenges remain. Inhibitors can be components of the samples, the substrate where samples were deposited or chemical(s) associated to the DNA purification step. Therefore, a thorough understanding of the extraction processes and their ability to handle the various types of inhibitory substances can help define the best analytical processing for any given sample. A series of experiments were conducted to establish the inhibition tolerance of quantification and amplification kits using common inhibitory substances in order to determine if current laboratory practices are optimal for identifying potential problems associated with inhibition. DART mass spectrometry was used to determine the amount of inhibitor carryover after sample purification, its correlation to the initial inhibitor input in the sample and the overall effect in the results. Finally, a novel alternative at gathering investigative leads from samples that would otherwise be ineffective for DNA typing due to the large amounts of inhibitory substances and/or environmental degradation was tested. This included generating data associated with microbial peak signatures to identify locations of clandestine human graves. Results demonstrate that the current methods for assessing inhibition are not necessarily accurate, as samples that appear inhibited in the quantification process can yield full DNA profiles, while those that do not indicate inhibition may suffer from lowered amplification efficiency or PCR artifacts. The extraction methods tested were able to remove >90% of the inhibitors from all samples with the exception of phenol, which was present in variable amounts whenever the organic extraction approach was utilized. Although the results attained suggested that most inhibitors produce minimal effect on downstream applications, analysts should practice caution when selecting the best extraction method for particular samples, as casework DNA samples are often present in small quantities and can contain an overwhelming amount of inhibitory substances.
78

MOLECULAR & STRUCTURAL CHARACTERIZATION OF COMPLEX ATMOSPHERIC AND ENVIRONMENTAL MIXTURES USING MULTI MODAL SEPARATIONS & HIGH RESOLUTION MASS SPECTROMETRY

Christopher P West (7542944) 06 December 2022 (has links)
<p>  </p> <p>Atmospheric aerosols formed through primary emissions, secondary gas-particle formations, and multi-phase chemical processes are composed of solid, semi-solid, or liquid-like particles suspended in the air that have direct implications towards the global radiative balance and human health as air pollutants.  Direct emissions of primary organic aerosols (POA; e.g. soot, BrC) and multi-phase formation of secondary organic aerosols (SOA) from the oxidation of biogenic monoterpene isomers represent two important sources/classes of particulate matter in the atmosphere. Multi-phase chemical processes driving the atmospheric and environmental aging through the photochemistry of iron(III), FeIII in organic aerosol particles and aqueous media drives the multiphase chemistry leading to systematic aging of their chemical composition and modifications to resulting light-absorption properties. The molecular composition, organic structures, physical properties, and sources of emissions are complex requiring development of powerful multi-modal analytical metrology, such as high-resolution mass spectrometry (HRMS) hyphenated with liquid chromatography (LC), photodiode array optical detection, drift tube ion mobility (IM) spectrometry, and desorption and ambient ionization of multi-components mixtures in atmospheric particles using temperature programmed desorption Direct analysis in real time (TPD-DART). Disseminating the molecular-specific composition, chemical and physical properties of complex mixtures in atmospheric organic particles and mixed inorganic/organic systems will help improve our understanding of their formation mechanisms, transformative chemical ageing processes, as well as improved detection of individual components in complex mixtures. </p> <p>     </p> <p>Chapter 1 and 2 of dissertation introduces complexity of atmospheric organic, carbonaceous aerosols, and complex environmental mixtures and discusses analytical metrology, experiments, and data analysis procedures used for detailed molecular-level characterization of mixtures. Chapter 3 the development of a robust analytical method for untargeted screening and determination of the physical and chemical properties (e.g. vapor pressures, enthalpies of sublimation, and saturation mass concentrations) of single components out of complex SOA particles using temperature programmed desorption Direct analysis in real time ionization – high resolution mass spectrometry (TPD-DART-HRMS).  Chapter 4 introduces the use of ion mobility - mass spectrometry (IM-MS) separation and multidimensional characterization of structural isomers in complex SOA mixtures. The chapter discusses the advanced usage of IM-MS to investigate the molecular and structural properties of isomers of alpha-pinene and limonene derived SOA, use of advanced data analysis procedures to resolved complex conformational and structural isomers, and investigate single-molecule structural changes from atmospheric-like ageing in SOA particles using IM-MS.  Chapter 5 discusses the chemical characterization and analysis of individual brown carbon (BrC) chromophores out of mixture of colorless organic carbon constituents and insoluble soot particles generated from controlled flame combustion of ethane fuel, a surrogate system representing gasoline combustion of motor vehicles. The chapter focuses on the quantitative method development and use of state-of-the-art liquid chromatography coupled to photodiode array followed by dopant assisted atmospheric pressure photoionization and HRMS (LC-PDA-HRMS) analysis, followed by conversion to quantitative optical information for comparisons with retrieved literature reports. Chapter 6 examines the complex multiphase photochemical cycling of Fe(III)-citrate, a relevant proxy for [FeIII-carboxylate]2+ complexes in atmospheric water using complementary analytical metrology of optical spectroscopy, LC-PDA-HRMS, oil immersion flow microscopy. Multi-modal datasets from these complementary techniques provide a unique experimental description of various stages of FeIII-citrate photochemistry, elucidate individual components of this reacting system, determine mechanistic insights, and quantify environmental parameters affecting the photochemistry. </p>
79

Creative financing & strategies for mixed-income transit oriented development in Dallas, Texas

Partovi, Lauren Neda 12 December 2013 (has links)
This study evaluates the current environment for mixed-income transit oriented development along DART rail within the city limits of Dallas. A close look at income and racial disparity is used as the foundation for advocating for a more proactive and aggressive approach to the development of affordable units proximate to affordable transportation choices. Assembling financing for mixed-income TOD projects is especially challenging, and multiple layers of federal, state, and city funding mechanisms are required for achieving the capital requirements of the development. Both typical affordable housing funding methods and new and nontraditional funding methods for multifamily housing were researched and evaluated with the intention to propose possibilities for catalyzing development in DART station areas within the City of Dallas that have, to this point, experienced underdevelopment. / text

Page generated in 0.0665 seconds