• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 277
  • 58
  • 40
  • 37
  • 13
  • 10
  • 10
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 567
  • 92
  • 56
  • 49
  • 41
  • 39
  • 39
  • 39
  • 38
  • 37
  • 37
  • 36
  • 31
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Thermodynamic and Spectroscopic Studies on the Molecular Interaction of Doxorubicin (DOX) with Negatively Charged Polymeric Nanoparticles

Gaurav, Raval 26 November 2012 (has links)
The aim of this study was to investigate the molecular interactions of the anti-cancer drug Doxorubicin (DOX) with poly(methacrylic acid) grafted starch nanoparticles (PMAA-g-St). In order to fully understand the DOX/PMAA-g-St system, we conducted in-depth studies on DOX dimer dissociation and DOX/PMAA-g-St binding interactions using various techniques such as isothermal titration calorimetry (ITC), dynamic light scattering (DLS), and fluorescence and absorption spectroscopy. Based on our experimental results, we developed a quantitative thermodynamic model with relevant parameters such as dissociation constant, Kd, as well as enthalpy of binding, ΔH, in order to explain DOX/PMAA-g-St interactions. In addition, we also studied the effect of environmental factors such as pH and NaCl on DOX self-association and DOX/PMAA-g-St complex formation. In conclusion, the combination of results obtained from various techniques as well as the multispecies equilibrium model, enables us to interpret quantitatively the data of drug loading onto and release from polymeric nanoparticles.
422

Toward an energy harvester for leadless pacemakers

Deterre, Martin 09 July 2013 (has links) (PDF)
This work consists in the development and design of an energy harvesting device to supply power to the new generation pacemakers, miniaturized leadless implants without battery placed directly in heart chambers. After analyzing different mechanical energy sources in the cardiac environment and associated energy harvesting mechanisms, a concept based on regular blood pressure variation stood out: an implant with a flexible packaging that transmits blood forces to an internal transducer. Advantages compared to traditional inertial scavengers are mainly: greater power density, adaptability to heartbeat frequency changes and miniaturization potential. Ultra-flexible 10-µm thin metal bellows have been designed, fabricated and tested. These prototypes acting as implant packaging that deforms under blood pressure actuation have validated the proposed harvesting concept. A new type of electrostatic transducer (3D multi-layer out-of-plane overlap structure with interdigitated combs) has been introduced and fully analyzed. Promising numerical results and associated fabrication processes are presented. Also, large stroke optimized piezoelectric spiral transducers including their complex electrodes patterns have been studied through a design analysis, numerical simulations, prototype fabrication and experimental testing. Apower density of 3 µJ/cm3/cycle has been experimentally achieved. With further addressed developments, the proposed device should provide enough energy to power autonomously and virtually perpetually the next generation of pacemakers.
423

Low Voltage Electrostatic Actuation and Displacement Measurement through Resonant Drive Circuit

Park, Sangtak January 2011 (has links)
An electrostatic actuator driven by conventional voltage control and charge control requires high actuation voltage and suffers from the pull-in phenomenon that limits its operation range, much less than its entire gap. To provide effective solutions to these problems, we present complete analytical and numerical models of various electrostatic actuators coupled with resonant drive circuits that are able to drive electrostatic actuators at much lower input voltage than that of conventional actuation methods and to extend their operation range beyond their conventional pull-in points in the presence of high parasitic capacitance. Moreover, in order to validate the analytical and numerical models of various electrostatic actuators coupled with the resonant drive circuits, we perform the experiment on the microplate and the micromirror coupled with the resonant drive circuit. For instance, using a high voltage amplifier, we manage to rotate the micromirror with sidewall electrodes by 6 ° at 180 V. However, using the resonant drive circuit, we are able to rotate the same micromirror by 6 ° at much lower input voltage, 8.5 V. In addition, the presented work also facilitates the stability analysis of electrostatic actuators coupled with the resonant drive circuits and provides how the effect of the parasitic capacitance can be minimized. For example, the resonant drive circuit placed within a positive feedback loop of a variable gain amplifier is able to extend the operation range much further even in the presence of very high parasitic capacitance. The resonant drive circuit with the proposed feedback controllers is also able to minimize the detrimental effects of the parasitic capacitance and to displace a parallel-plate actuator over its entire gap without the saddle-node bifurcation. Finally, we present a new displacement measurement method of electrostatic actuators coupled with the resonant drive circuits by sensing the phase delay of an actuation voltage with respect to an input voltage. This new measurement method allows us to easily implement feedback control into existent systems employing an electrostatic actuator without any modification or alteration to the electrostatic actuator itself. Hence, this research work presents the feasibility of electrostatic actuators coupled with the resonant drive circuit in various industrial and medical applications, in which the advantages of miniaturization, low supply voltage, and low power consumption are greatly appreciated.
424

Colloidal Interactions in Aquatic Environments: Effect of Charge Heterogeneity and Charge Asymmetry

Taboada-Serrano, Patricia Larisse 21 November 2005 (has links)
The classical theory of colloids and surface science has universally been applied in modeling and calculations involving solid-liquid interfaces encountered in natural and engineered environments. However, several discrepancies between the observed behavior of charged solid-liquid interfaces and predictions by classical theory have been reported in the past decades. The hypothesis that the mean-field, pseudo-one-component approximation adopted within the framework of the classical theory is responsible for the differences observed is tested in this work via the application of modeling and experimental techniques at a molecular level. Silica and silicon nitride are selected as model charged solid surfaces, and mixtures of symmetric and asymmetric indifferent and non-indifferent electrolytes are used as liquid phases. Canonical Monte Carlo simulations (CMC) of the electrical double layer (EDL) structure of a discretely charged planar silica surface, embedded in solutions of indifferent electrolytes, reveal the presence of a size exclusion effect that is enhanced at larger values of surface charge densities. That effect translates into an unexpected behavior of the interaction forces between a charged planar surface and a spherical particle. CMC simulations of the electrostatic interactions and calculations of the EDL force between a spherical particle and a planar surface, similarly charged, reveal the presence of two attractive force components: a depletion effect almost at contact and a long-range attractive force of electrostatic origin due to ion-ion correlation effects. Those two-force components result from the consideration of discreteness of charge in the interaction of solid-liquid interfaces, and they contradict the classical theory predictions of electrostatic repulsive interaction between similarly charged surfaces. Direct interaction force measurements between a charged planar surface and a colloidal particle, performed by atomic force microscopy (AFM), reveal that, when indifferent and non-indifferent electrolytes are present in solution, surface charge modification occurs in addition to the effects on the EDL behavior reported for indifferent electrolytes. Non-uniformity and even heterogeneity of surface charge are detected due to the action of non-indifferent, asymmetric electrolytes. The phenomena observed explain the differences between the classical theory predictions and the experimental observations reported in the open literature, validating the hypothesis of this work.
425

Development Of Mems Technology Based Microwave And Millimeter-wave Components

Cetintepe, Cagri 01 February 2010 (has links) (PDF)
This thesis presents development of microwave lumped elements for a specific surface-micromachining based technology, a self-contained mechanical characterization of fixed-fixed type beams and realization of a shunt, capacitive-contact RF MEMS switch for millimeter-wave applications. Interdigital capacitor, planar spiral inductor and microstrip patch lumped elements developed in this thesis are tailored for a surface-micromachining technology incorporating a single metallization layer, which allows an easy and low-cost fabrication process while permitting mass production. Utilizing these elements, a bandpass filter is fabricated monolithically with success, which exhibits a measured in-band return loss better than -20 dB and insertion loss of 1.2 dB, a pass-band located in S-band and a stop-band extending up to 20 GHz. Analytical derivations for deflection profile and spring constant of fixed-fixed beams are derived for constant distributed loads while taking axial effects into account. Having built experience with the mechanical domain, next, Finite Difference solution schemes are established for pre-pull-in and post-pull-in electrostatic actuation problems. Using the developed numerical tools / pull-in, release and zipping phenomena are investigated. In particular, semi-empirical expressions are developed for the pull-in voltage with associated errors not exceeding 3.7 % of FEA (Finite Element Analysis) results for typical configurations. The shunt, capacitive-contact RF MEMS switch is designed in electromagnetic and mechanical domains for Ka-band operation. Switches fabricated in the first process run could not meet the design specifications. After identifying sources of relevant discrepancies, a design modification is attempted and re-fabricated devices are operated successfully. In particular, measured OFF-state return and insertion losses better than -16.4 dB and 0.27 dB are attained in 1-40 GHz. By applying a 20-25V actuation, ON-state resonances are tuned precisely to 35 GHz with an optimum isolation level of 39 dB.
426

An electrostatic CMOS/BiCMOS Li ion vibration-based harvester-charger IC

Torres, Erick Omar 11 May 2010 (has links)
The primary objective of this research was to investigate and develop an electrostatic energy-harvesting voltage-constrained CMOS/BiCMOS integrated circuit (IC) that harnesses ambient kinetic energy from vibrations with a vibration-sensitive variable capacitor and channels the extracted energy to charge an energy-storage device (e.g., battery). The proposed harvester charges and holds the voltage across the vibration-sensitive variable capacitor so that vibrations can induce it to generate current into the battery when capacitance decreases (as its plates separate). To that end, the research developed an energy-harvesting system that synchronizes to variable capacitor's state as it cycles between maximum and minimum capacitance by controlling each functional phase of the harvester and adjusting to different voltages of the on-board battery. One of the major challenges of the system was performing all of these duties without dissipating the energy harnessed and gained from the environment. Consequently, the system reduces losses by time-managing and biasing its circuits to operate only when needed and with just enough energy while charging the capacitor through an efficient inductor-based precharger. As result, the proposed energy harvester stores a net energy gain in the battery during each vibration cycle.
427

Experimental Investigations of Wave Motion and Electric Resistance in Collisionfree Plasmas

Wendt, Martin January 2001 (has links)
No description available.
428

Hochempfindliche resonante Gassensoren auf der Basis von einkristallinen Silizium-Plattenschwingern

Grahmann, Jan 25 February 2010 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit der Modellerstellung und Technologie eines gravimetrischen Gassensors für organische Gase. Die Besonderheit liegt in dem verwendeten Resonatortyp. Es handelt sich um einen lateral elektrostatisch angeregten quadratischen Plattenresonator, der mit einer Rezeptorschicht versehen wird. Mit Hilfe von FEM-Berechnungen werden die Eigenfrequenzen und Eigenformen berechnet. Für die untersuchte Lamé- und Square-Mode wird die Sensorgüte unter Berücksichtigung des "Squeeze-Film-Damping" sowie der viskoelastischen Rezeptorschichteigenschaften bestimmt. Die Sensormoden werden durch ein Feder-Masse-Modell mit einem Freiheitsgrad modelliert und durch ein elektrisches Ersatzschaltbild repräsentiert. Die berechneten Nachweisgrenzen für Oktan und Toluol bei 6-facher Rauschgrenze liegen im zweistelligen ppb-Bereich. Für die technologische Umsetzung werden SOI-Wafer verwendet. Die ≤ 100 nm betragenden Spaltbreiten zwischen Elektroden und Resonator werden durch das RIE-Ätzen von Siliziumgräben mit senkrechten Seitenwänden, der Abscheidung von SiO2 als Opferschicht und dem Füllen der Gräben mit hochdotiertem Polysilizium hergestellt. Die Kontaktierung der Resonatoren erfolgt über einen leitenden Stamm, der aufgrund von selbstjustierenden Prozessen die Resonatorplatte zentriert einspannt. / The following work is concerned with the modelling and fabrication technology of a gravimetric sensor for volatile organic compounds (VOC). Novelty is the combination of a lateral electrostatic driven square plate resonator with a gas sensitive detection layer. The eigenfrequencies and -modes are calculated with FEM simulations. Especially suited for gas sensors are the Lamé- and Square eigenmodes which are studied more closely. The quality factor is determined considering "squeeze film damping" and the viscoelastic properties of the gas sensitive detection layer. To present the sensor oscillation modes a spring mass model with one degree of freedom is determined and extended by an equivalent circuit diagram. The calculated limits of detections for octane and toluene are in the binary ppb-range, working with six times the limit of frequency noise. SOI-wafers are the base material for the sensor process flow. Electrode gaps ≤100 nm, essential for the electrostatic drive, are fabricated by RIE-etching vertical trenches into the device layer down to the buried oxide and by depositing a silicon dioxide as sacrifical layer and by refilling the trenches with highly doped polysilicon. The electrical contact of the resonator plate is ensured through an electrical conducting polysilicon stem. The developed process flow enables a self alignment ot the stem, clamping the plate centered.
429

Entwicklung neuartiger Scaffolds für das Tissue Engineering mittels Flocktechnologie

Walther, Anja 04 October 2010 (has links) (PDF)
Flocktechnologie ist eine im Bereich der Textiltechnik angewandte Methode, bei der kurze Fasern nahezu senkrecht auf ein vorher mit Klebstoff beschichtetes Substrat aufgebracht werden. In der vorliegenden Arbeit wurde die elektrostatische Beflockung als Methode zur Herstellung von porösen, dreidimensionalen Scaffolds für das Tissue Engineering von Knorpel und Knochen etabliert. Dieser neuartige Scaffoldtyp wurde eingehend charakterisiert und in Zellversuchen im Hinblick auf seine Biokompatibilität untersucht. Dabei zeigte sich, dass verschiedene Zellen im Scaffold proliferieren und differenzieren können. Die in der Arbeit beschriebenen Flockscaffolds stellen somit eine vielversprechende Matrix für die Therapie von Gelenkknorpeldefekten dar.
430

Drug Partitioning into Natural and Artificial Membranes : Data Applicable in Predictions of Drug Absorption

Engvall, Caroline January 2005 (has links)
When drug molecules are passively absorbed through the cell membrane in the small intestine, the first key step is partitioning of the drug into the membrane. Partition data can therefore be used to predict drug absorption. The partitioning of a solute can be analyzed by drug partition chromatography on immobilized model membranes, where the chromatographic retention of the solute reflects the partitioning. The aims of this thesis were to develop the model membranes used in drug partition chromatography and to study the effects of different membrane components and membrane structures on drug partitioning, in order to characterize drug–membrane interactions. Electrostatic effects were observed on the partitioning of charged drugs into liposomes containing charged detergent, lipid or phospholipid; bilayer disks; proteoliposomes and porcine intestinal brush border membrane vesicles (BBMVs), and on the retention of an oligonucleotide on positive liposomes. Biological membranes are naturally charged, which will affect drug partitioning in the human body. Proteoliposomes containing transmembrane proteins and cholesterol, BBMVs and bilayer disks were used as novel model membranes in drug partition chromatography. Partition data obtained on proteoliposomes and BBMVs demonstrated how cholesterol and transmembrane proteins interact with drug molecules. Such interactions will occur between drugs and natural cell membranes. In the use of immobilized BBMVs for drug partition chromatography, yet unsolved problems with the stability of the membrane were encountered. A comparison of partition data obtained on bilayer disks with data on multi- and unilamellar liposomes indicated that the structure of the membrane affect the partitioning. The most accurate partition values might be obtained on bilayer disks. Drug partition data obtained on immobilized model membranes include both hydrophobic and electrostatic interactions. Such partition data should preferably be used when deriving algorithms or computer programs for prediction of drug absorption.

Page generated in 0.0679 seconds