• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 12
  • 6
  • Tagged with
  • 36
  • 34
  • 33
  • 30
  • 16
  • 15
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Transiente Stimulation der Proliferation humaner cornealer Endothelzellen für das Tissue Engineering und eine potenzielle klinische Translation

Donau, Jennifer 30 August 2023 (has links)
Humane corneale Endothelzellen (HCEC) bilden einen Monolayer aus differenzierten Zellen an der posterioren Oberfläche der Cornea und sind essenziell für den Erhalt der cornealen Transparenz. HCEC zeigen nahezu keine proliferative Aktivität in vivo und nur eine begrenzte Proliferationsfähigkeit in vitro. Bei übermäßigem Zellverlust aufgrund von Traumata, Erkrankungen oder des Alters kann die Transparenz der Cornea irreversibel beeinträchtigt werden und die Transplantation einer Spenderhornhaut erforderlich sein, um die Hornhauttransparenz und damit die Sehfähigkeit wiederherzustellen. Dabei ist die weltweite Begrenzung der medizinischen Versorgung mit hochwertigen Spenderhornhäuten das derzeit größte Problem für die Therapie von Cornea-assoziierten Erkrankungen. Zellersatzstrategien mit in vitro kultivierten, quantitativ und qualitativ ausreichenden Spenderzellen sollen die weitestgehend ausgereizten logistischen Ansätze zur Verringerung des Spendermangels ergänzen. Die Entwicklung einer abschaltbaren bzw. transienten Methode zur in vitro- und in situ-Vervielfältigung primärer HCEC ohne Verlust ihrer typischen morphologischen Merkmale würde die Herstellung sowie eine detaillierte und umfassende Charakterisierung von Transplantaten aus primären HCEC ermöglichen. In dieser Arbeit sollten daher zunächst verschiedene proliferationsfördernde Faktoren (PF) identifiziert werden, die nach stabilem retroviralen Gentransfer mit Integrations-kompetenten lentiviralen Vektoren (ICLV) in primären HCEC ein starkes proliferationsförderndes Signal provozieren, das eine Immortalisierung der Zellen zur Folge hat. Dabei sollte die Pseudotypisierung der ICLV-Partikel mit alternativen viralen Glykoproteinen zytopathische Effekte verringern und die Transduktionseffizienz steigern. Nachfolgend sollten die identifizierten PF auf ihre Fähigkeit, die Proliferation primärer HCEC transient zu stimulieren, ohne die Zellen dabei zu transformieren, getestet werden. Mit Hilfe verschiedener retroviraler Expressionssysteme sollte ein klinisch anwendbares System entwickelt werden, das eine kontrollierte, zeitlich begrenzte Stimulierung der Proliferation bei gleichzeitiger Unterdrückung eines tumorartigen Zellwachstums ermöglichte. Hierzu dienten 1) Integrase-defiziente lentivirale Vektoren (IDLV), die eine transiente Transgenexpression durch direkte Transkription des episomalen DNA-Vektorgenoms erlauben, und 2) das transiente Foamyvirus-Vektorsystem (TraFo-VS), dass auf der Enkapsidierung und dem Transfer nicht-viraler mRNA in permissiven Zielzellen basiert. Es konnte gezeigt werden, dass ICLV-Pseudotypen, die entweder eine SFVmcy-Glykoproteinvariante (ICLVSFV) oder das VSV-G-Protein enthielten (ICLVVSV), eine signifikante Transduktionseffizienz aufwiesen und dabei keine zytopathischen Effekte in den Zielzellen auslösten, weshalb beide Glykoproteine für weiterführende Experiment genutzt wurden. Unter Verwendung des optimierten ICLV-Systems konnten drei PF identifiziert werden, die eine reproduzierbare Immortalisierung primärer HCEC infolge stabiler Expression durch Transduktion mit den ICLV-Pseudotypen ermöglichten. Dazu zählten der Cyclin D1/CDK4-Proteinkomplex (4D), die SV40 T-Antigene (SV40T) sowie die transformierenden Proteine E6 und E7 (E6/E7) des HPV-16. Es konnte auch gezeigt werden, dass die Proliferation transduzierter primärer HCEC nach stabiler Transduktion mit PF-codierenden ICLV-Partikeln in einer dosisabhängigen Weise signifikant erhöht werden konnte. Untersuchungen mit IDLV-Varianten haben jedoch gezeigt, dass transduzierte HCEC ein vergleichbares proliferatives Verhalten wie ihre stabil transduzierten Äquivalente aufwiesen. Dies demonstrierte die restliche, geringgradige, nicht-kanonische Integrationskapazität von IDLV-Partikeln besonders im Zusammenhang mit der Expression von potenten PF. Nach erfolgter Transduktion mit TraFo-VP konnten die transferierten PF-codierenden mRNA in den Primärzellen nachgewiesen werden. Die Anwendung dieses Systems resultierte jedoch weder in einer nachweisbaren PF-Expression noch konnte eine proliferationsfördernde Wirkung in transduzierten Zellen festgestellt werden. Auch durch sequenzielle Transduktion der Zielzellen konnte keine Steigerung der Proliferationsrate induziert werden. Durch Verwendung von 50 fach konzentrierten SV40T-codierenden TraFo-VP konnte der mRNA-Transfer erhöht werden, wodurch dann auch die SV40T-Proteinexpression in den transduzierten Zellen nachweisbar wurde. Zudem konnte erstmalig gezeigt werden, dass sich im zeitlichen Verlauf sowohl die zellassoziierte SV40T-mRNA als auch die SV40T-Proteinkonzentration verringerte, bis sie nicht mehr nachweisbar war. Dabei konnte jedoch auch mit den konzentrierten TraFo VP keine nachweisbare transiente Immortalisierung primärer HCEC erreicht werden. Zusammenfassend kann festgestellt werden, dass eine permanente genetische Manipulation mit den viralen PF und dem 4D-Komplex eine Verlängerung der replikativen Lebensdauer ermöglichte und damit einhergehend die Immortalisierung primärer HCEC. Obgleich eine transiente Immortalisierung primärer HCEC mit den getesteten Systemen in dieser Arbeit nicht möglich war, ist eine klinische Anwendung des TraFo-VS, nicht aber des IDLV-Systems, in der angewandten Form, vielversprechend, um die Verfügbarkeit von qualitativ geeignetem Spendergewebe für die Transplantation bzw. Zellen für das Bioengineering des Hornhautendothels zu erhöhen. Daneben könnte das TraFo-VS ebenfalls genutzt werden, um andere zelluläre Funktionen in HCEC oder auch anderen Zielzellen transient zu modifizieren, z. B. Ionenfluss, replikative Seneszenz, Phagozytose oder Apoptose. / Human corneal endothelial cells (HCEC) form a monolayer of differentiated cells on the posterior surface of the cornea and are essential for maintaining corneal transparency. HCECs show almost no proliferative activity in vivo and only limited proliferative capacity in vitro. With excessive cell loss due to trauma, disease, or age-related degeneration, corneal transparency may be irreversibly compromised, and donor cornea transplantation may be required to restore vision. In this context, the global limitations in the medical supply of high-quality donor corneas are currently the most significant obstacle to the treatment of cornea-associated diseases. Cell replacement strategies using in vitro cultured donor cells of sufficient quantity and quality could complement the largely exhausted logistic approaches to alleviate donor shortage. The development of a method for strictly transient in vitro and in situ replication of primary HCECs without loss of their natural morphological characteristics would allow the production of well-characterized grafts derived from primary HCECs. To this end, I first aimed to identify different proliferation factors (PF) that provoke a robust proliferation-promoting signal in primary HCECs through stable retroviral gene transfer of candidate PF genes with integration-competent lentiviral vectors (ICLVs). Additionally, the pseudotyping of ICLV particles with alternative viral glycoproteins should reduce cytopathic effects and increase transduction efficiency. Subsequently, it should be clarified to what extent the identified PFs are capable of stimulating the proliferation of primary HCEC for a limited duration in a non-transformed context. Using different retroviral expression systems, I attempted to develop a clinically applicable system that allowed controlled, time-limited stimulation of proliferation while circumventing tumor-like cell growth. For this purpose, 1) integrase-deficient lentiviral vectors (IDLV), which allow transient transgene expression by direct transcription of the episomal DNA vector genome, and 2) the transient foamy virus vector system (TraFo-VS), which is based on encapsidation and transfer of non-viral mRNA in permissive target cells, were used. It was shown that ICLV pseudotypes containing either an SFVmcy glycoprotein variant (ICLVSFV) or the VSV-G protein (ICLVVSV) exhibited significant transduction efficiency without eliciting cytotoxic effects in target cells, highlighting both as viable candidates. Employing the optimized ICLV system, three PFs were identified that enabled reproducible immortalization of primary HCECs through stable expression after transduction with the ICLV pseudotypes. These included the cyclin D1/CDK4 protein complex (4D), the SV40 T antigens (SV40T), and the transforming proteins E6 and E7 (E6/E7) of HPV16. It was also shown that proliferation of transduced primary HCEC could be significantly increased in a dose-dependent manner following stable transduction with PF encoding ICLV particles. However, studies conducted using IDLV variants showed that PF-transduced HCEC exhibited a comparable proliferative behavior to their stably transduced equivalents. This demonstrated the residual, non-canonical integration capacity of IDLV particles especially in the context of potent PF expression. After successful transduction with TraFo-VP, the transferred PF-encoding mRNA could be detected in primary cells. However, application of this system did not result in detectable PF protein expression, nor could a proliferation-promoting phenotype be detected in transduced cells. Sequential transduction of target cells also failed to induce an increased proliferation rate. By using 50-fold concentrated SV40T-encoding TraFo-VPs, mRNA transfer could be increased, enabling detectable SV40T protein expression in transduced cells. In addition, it was shown for the first time that both cell-associated SV40T mRNA and SV40T protein levels decreased over time until they were no longer detectable. No observable transient immortalization of primary HCEC could be achieved even with the concentrated SV40T-encoding TraFo-VP. In conclusion, permanent genetic manipulation with the viral PFs and 4D protein complex allowed the prolonging of the cellular replicative lifespan in vitro and concomitant immortalization of primary HCEC. Although transient immortalization of primary HCECs was not possible with the systems tested in this investigation, clinical application of the TraFo-VS, but not the IDLV system as applied, remains a promising approach to increase the availability of suitable donor tissue for transplantation or cells for corneal endothelial bioengineering. Additionally, the TraFo-VS could also be used to transiently modify other cellular functions in HCEC or other target cells, e.g., ion flux, replicative senescence, phagocytosis, or apoptosis, for further cell biological research approaches.
32

Pathogenesis of hantavirus infection in the endothelial cell model

Kraus, Annette Alexandra 20 October 2004 (has links)
Hantaviren sind wichtige menschliche Krankheitserreger und können das Hämorrhagische Fieber mit renalem Syndrome (HFRS) auslösen, welches sich durch endotheliale Dysfunktion kennzeichnet. Pathogene und nicht-pathogene Hantaviren replizieren sich in Endothelzellen, ohne zytopathische Effekte auszulösen. Dies legt nahe, dass immunpathologische Mechanismen eine entscheidende Rolle in der Pathogenese spielen. Wir haben die antivirale Antwort nach Infektion mit dem pathogenen Hantaan Virus (HTNV) sowie mit dem weniger pathogenen Tula Virus (TULV) in humanen Endothelzellen (HUVEC) verglichen. Die mit HTNV und auch die mit TULV infizierten Zellen zeigten eine erhöhte Expression von Antigen-präsentierenden Molekülen. Hierbei induzierte TULV die Expression von HLA Klasse I-Molekülen noch effizienter. HTNV sorgte für die Induktion von Interferon (IFN)-???während dieses Zytokin im Überstand von TULV-infizierten HUVEC kaum nachzuweisen war. Trotzdem konnte die Hochregulation von HLA Klasse I-Molekülen auf HTNV- und TULV-infizierten Zellen durch anti-IFN-?-Antikörper blockiert werden. Interessanterweise wurde das antiviral wirksame MxA-Protein, welches die virale Replikation hemmt, bereits 16 Stunden nach einer Infektion mit TULV induziert. Im Gegensatz dazu war MxA in HTNV-infizierten Zellen erst nach 48 Stunden der Infektion nachzuweisen. Der Kinetik der MxA-Expression entsprechend, replizierte sich TULV nur sehr schwach in HUVEC, wohingegen HTNV-infizierte Zellen hohe Virustiter aufwiesen, die nach 48 Stunden der Infektion wieder zurückgingen. Beide Hantavirus-Spezies waren jedoch gleichermaßen effizient in der Lage, sich in Vero E6-Zellen zu replizieren, denen die IFN-induzierte MxA-Antwort fehlt. Die verzögerte Induktion des MxA nach einer Infektion der HUVEC mit HTNV, könnte die Virusausbreitung ermöglichen und mit zur Pathogenese des HFRS beitragen. Das Risiko, sich während der Arbeit im Forschungslabor versehentlich mit Hantaviren zu infizieren, macht spezielle Sicherheitsmaßnahmen zwingend erforderlich. Die Wirkung von chemischen oder physikalischen Inaktivierungsmethoden wurde an HTNV-infizierten Proben untersucht. Die beschriebenen Maßnahmen zur Virus-Desinfektion sind geeignet, eine sichere Handhabung der Proben zu gewährleisten. / Hantaviruses represent important human pathogens and can induce hemorrhagic fever with renal syndrome (HFRS), which is characterised by endothelial dysfunction. Both pathogenic and nonpathogenic hantaviruses replicate without causing any apparent cytopathic effect suggesting that immunopathological mechanisms play an important role in pathogenesis. We compared the antiviral response triggered by Hantaan virus (HTNV), a pathogenic hantavirus associated with HFRS, and Tula virus (TULV), a rather nonpathogenic hantavirus, in human umbilical vein endothelial cells (HUVEC). Both HTNV- and TULV-infected cells showed increased levels of molecules involved in antigen presentation. However, TULV-infected HUVEC more rapidly upregulated HLA class I molecules. Interestingly, HTNV clearly induced the production of interferon (IFN)-( whereas expression of this cytokine was barely detectable in the supernatant or in extracts from TULV-infected HUVEC. Nevertheless, upregulation of HLA class I on both TULV- and HTNV-infected cells could be blocked by neutralising anti-IFN-( antibodies. Most strikingly, antiviral MxA protein, which interferes with hantavirus replication, was induced already 16 h after infection with TULV. In contrast, HTNV-infected HUVEC showed no expression of MxA until 48 h postinfection. In accordance with the kinetics of MxA expression TULV only inefficiently replicated in HUVEC whereas HTNV-infected cells produced high titers of virus particles that decreased 48 h postinfection. Both hantavirus species, however, could replicate equally well in Vero E6 cells which lack an IFN-induced MxA response. Thus, a delayed induction of antiviral MxA in endothelial cells after infection with HTNV could allow viral dissemination and contribute to the pathogenesis leading to HFRS. The potential risk of accidental infection by hantaviruses in a clinical or research laboratory necessitates special precautionary measures. To study the elimination of hantavirus infectivity, the effects of different chemical and physical inactivation and depletion procedures were investigated on HTNV-containing materials. The virus inactivation and depletion methods described herein are suitable to prepare non-infectious samples for further use in immunological, virological and cell biological assays.
33

Streptococcus pneumoniae induziert Apoptose in zerebralen Endothelzellen

Halle, Annett 25 January 2005 (has links)
Die bakterielle Meningitis ist trotz der Anwendung modernster Antibiotika mit einer hohen Letalität und neurologischen Spätkomplikationen verbunden. Ein entscheidendes Ereignis ist dabei der Zusammenbruch der Blut-Hirn-Schranke (BHS). Die genauen Mechanismen, die zu ihrer Schädigung führen, sind bis heute unklar. In dieser Arbeit wurde untersucht, ob lebende Pneumokokken in einem Zellkulturmodell der BHS zu einer apoptotischen Zellschädigung von zerebralen Endothelzellen, als wichtigstem zellulären Bestandteil der BHS, führen und damit zu ihrer strukturellen Schädigung beitragen. Mittels verschiedener Detektionsmethoden (TUNEL, Fluoreszenzmikroskopie, Elektronenmikroskopie) konnte nachgewiesen werden, daß Streptococcus pneumoniae zu einem apoptotischen endothelialen Zelltod führt. Eine Beteiligung von Caspasen konnte weder mit direkter Aktivitätsmessung noch mittels Inhibitionsexperimenten oder dem Nachweis von Caspase-spezifischen Substraten gezeigt werden. Insgesamt sind die Morphologie der Zellkerne und die spezifische Degradation der endothelialen DNS hinweisend für einen Apoptosis-Inducing-Factor-vermittelten Zelltod ohne Caspasenbeteiligung. Diese Form des Zelltodes ist bereits in anderen Zellmodellen, bisher jedoch nicht bei zerebralen Endothelzellen beschrieben worden. Auf Seiten des Bakteriums konnten Wasserstoffperoxid und Pneumolysin als Auslöser der Apoptose identifiziert werden. Die zytotoxische Potenz des Pneumolysins ist dabei an dessen Poren-formende Aktivität gebunden. Die Ergebnisse sind von potentieller klinischer Relevanz, da es bei einer Bakteriämie und während der Invasion der Pneumokokken in das ZNS zu einem direkten Kontakt zwischen Bakterien und zerebralen Endothelzellen kommt und sich daraus eine Möglichkeit zur Entwicklung adjuvanter Therapien ergeben könnte. / Despite sufficient antibiotic treatment, pneumococcal meningitis has remained a disease associated with high mortality and neurological sequelae. The disruption of the blood brain barrier (BBB) is regarded a key event in the initial phase of pneumococcal meningitis. However, the exact molecular mechanisms involved in this process are still unknown. The aim of this study was to determine if living pneumococci are able to induce apoptosis in cerebral endothelial cells - the main cellular component of BBB - and therefore might contribute to its damage. Using several different detection methods (TUNEL, fluorescence and electron microscopy), induction of apoptotic cell death of endothelial cells by pneumococci could be verified. An accompanying activation of caspases was not detectable, despite the use of specific detection techniques such as inhibition experiments, direct enzyme measurements and detection of caspase-specific protein cleavage. These results as well as the specific nuclear morphology and degradation of endothelial DNA suggest an involvement of the mitochondrial protein Apoptosis inducing factor (AIF). This is the first time this specific form of apoptotic, AIF-driven cell death has been described to be engaged in endothelial cells. On the part of the bacterium, pneumolysin and hydrogen peroxide were identified as the two main inducers of apoptosis. The cytotoxic potency of pneumolysin is related to its pore-forming activity. These results are of clinical relevance since pneumococci are known to reside in close proximity to cerebral endothelial cells during bacteriemia and their entry into the CNS. These findings could contribute to the development of adjuvant treatment of bacterial meningitis.
34

Interaktion von T-Zellen mit sinusoidalen Endothelzellen der Leber

Schrage, Arnhild 14 November 2006 (has links)
Auch unter physiologischen Bedingungen finden sich T-Zellen und andere Leukozyten nicht nur in den Sinusoiden, sondern auch im Parenchym der Leber. Da die Leber u. a. verschiedene Aufgaben für das Immunsystem übernimmt (z. B. Deletion aktivierter T Zellen, Induktion peripherer Toleranz), könnte die Akkumulation der T-Zellen in der Leber - neben der immunologischen Überwachung der Leber - Voraussetzung für ihre Modulation sein. In der vorliegenden Arbeit wurde der Einfluss von Leber-sinusoidalen Endothelzellen (LSEC), der Barriere zwischen Blut und Leber-Parenchym, auf CD4+ T-Zellen untersucht. Zum einen zeigte sich, dass die LSEC sowohl die spontane Transmigration der T-Zellen, als auch ihre Chemotaxis zu CXCL9 und CXCL12 effizienter unterstützen als andere Endothelien. Eine endotheliale Aktivierung durch die Chemokine wurde als Mechanismus ausgeschlossen. Dagegen schien eine effiziente Präsentation der Chemokine auf der luminalen LSEC-Oberfläche nach Aufnahme von abluminal für die gesteigerte Transmigration der T Zellen verantwortlich zu sein. Die LSEC könnten somit in vivo an der Rekrutierung von T-Zellen in die Leber beteiligt sein, indem sie eine rasche Wanderung der T-Zellen aus dem Blut ins Parenchym und möglicherweise auch zurück in die Zirkulation zulassen. Des Weiteren konnte gezeigt werden, dass die LSEC fähig sind, naive CD4+ T-Zellen in vitro Antigen-spezifisch zu aktivieren. Im Vergleich zu professionellen APZ war hierfür eine höhere Antigen-Dosis notwendig, die Expansion schwächer und es waren kaum Effektorzytokin-Produzenten detektierbar. Diese konnten jedoch durch Restimulierung mit professionellen APZ induziert werden (reversibler Phänotyp), was auf einen unreifen Differenzierungsstatus der T-Zellen schließen ließ. Es bleibt zu prüfen, in welchem Maße die Aktivierung naiver CD4+ T-Zellen durch LSEC in vivo stattfindet und diese durch LSEC aktivierten CD4+ T-Zellen funktionelle Bedeutung, z. B. regulatorische Kapazität, für das Immunsystem besitzen. / The liver plays a major role for the metabolism, but it is also of general importance for the immune system, e.g. for the deletion of activated T cells or the induction of peripheral tolerance. Under physiological conditions T cells and other leukocytes can be found in the liver, in the sinusoids as well as in the parenchyma. This hepatic accumulation of T cells might be due to immunosurveillance, but it would also be a prerequisite for modulation of T cells by hepatic cells. The present study investigated two different aspects of the interaction of liver sinusoidal endothelial cells (LSEC), the barrier between the sinusoidal lumen and the hepatic parenchyma, and CD4+ T cells. In the first part of the study it could be demonstrated that LSEC support the spontaneous transmigration of CD4+ T cells as well as their chemotaxis to CXCL12 and CXCL9 more efficiently than other endothelial cells. Whereas a direct endothelial activation by chemokines could be excluded the efficient chemokine presentation at the luminal LSEC surface (after abluminal uptake) might be responsible for the enhanced T cell transmigration. The findings suggest that LSEC might be involved in the recruitment of T cells by supporting a rapid transendothelial migration. The second part of the study focused on the characteristics of LSEC in the context of antigen presentation. LSEC were able to prime and expand naïve CD4+ T cells in vitro but less effective than professional APC as proven by weaker expansion of cells, a requirement for higher antigen concentration and the lack of cytokine producing T cells. The “immature effector” phenotype of the CD4+ T cells primed on LSEC was reversible since it could be overcome by restimulation on professional APC. In conclusion these data suggest that antigen presentation by LSEC results in activation but incomplete differentiation of CD4+ T cells.
35

Regulation des Transkriptionsfaktors COUP‐TFII durch Glukose und den NOTCH‐Signalweg in Endothelzellen

Brunßen, Coy 23 August 2010 (has links) (PDF)
Erkrankungen des Herz-Kreislaufsystems sind die häufigste Todesursache in Deutschland. Eine gestörte Funktion des Gefäßendothels spielt bei der Entstehung von Herz-Kreislauferkrankungen eine Schlüsselrolle. Das Risiko einer kardiovaskulären Erkrankung ist bei Diabetikern stark erhöht. Der Transkriptionsfaktor COUP-TFII spielt eine essentielle Rolle im Glukosemetabolismus. Gleichzeitig ist er für die Differenzierung von Endothelzellen von großer Bedeutung. Für die Differenzierung und Aufrechterhaltung des arteriellen und venösen Phänotyps von Endothelzellen sind dabei maßgeblich der NOTCH-Signalweg und insbesondere die Transkriptionsfaktoren HEY2 (arteriell) und COUP-TFII (venös) verantwortlich. Gesteigerte Glukosespiegel könnten somit Auswirkungen auf die Differenzierung von Endothelzellen haben und damit einen neuen Mechanismus für das erhöhte Risiko von Gefäßerkrankungen bei Diabetikern darstellen. Im Rahmen der Arbeit konnte die exklusive Expression von COUP-TFII im Zellkern von humanen venösen Endothelzellen nachgewiesen werden. Humane arterielle Endothelzellen zeigten keine Expression von COUP-TFII. Außerdem konnte im Rahmen der Arbeit erstmals die spezifische Expression von COUP-TFII in humanen Endothelzellen der Koronararterie nachgewiesen werden. Die Untersuchung der COUP-TFII Promotoraktivität konnte das Expressionsmuster von COUP-TFII bestätigen. Der Promotor zeigte sowohl in den venösen Endothelzellen der humanen Nabelschnur als auch in den humanen Endothelzellen der Koronararterie Aktivität. Die kurzzeitige Stimulation von venösen Endothelzellen mit Glukose führte zu einem starken Anstieg der COUP-TFII Expression. Eine Translokation von COUP-TFII aus dem Zellkern in das Zytoplasma konnte nicht nachgewiesen werden. Die Langzeitstimulation führte interessanterweise zu einer Verminderung der COUP-TFII Expression und zu einer Erhöhung der Expression von E-Selektin. In beiden Fällen zeigte sich keine Beeinträchtigung der Expression durch Insulin. Die durchgeführten Untersuchungen schließen eine Beteiligung des AKT-Signalweges an der Regulation aus. Es zeigte sich jedoch, dass humane venöse Endothelzellen als Insulin-sensitives Gewebe mit funktionsfähigem AKT-Signalweg einzustufen sind. Stimulationsversuche mit L-Glukose zeigten keine Regulation der COUP-TFII Expression. Eine osmotische Wirksamkeit der hohen Glukosekonzentration auf die Expression von COUP-TFII konnte somit ausgeschlossen werden. Die Deletionsanalyse des COUP-TFII Promotors konnte einen Glukose-sensitiven Bereich innerhalb des COUP-TFII Promotors identifizieren. Weiterhin konnte die Repression der Aktivität des COUP-TFII Promotors durch Hypoxie nachgewiesen werden. Eine der wichtigen Aufgaben von Endothelzellen ist die von der endothelialen NO-Synthase (eNOS) katalysierte Bildung von Stickstoffmonoxid (NO). NO hemmt die Expression des Adhäsionsmoleküls E-Selektin. Eine verringerte NO-Produktion hat die Ausbildung einer endothelialen Dysfunktion zur Folge. In dieser Arbeit konnte erstmals eine Erhöhung der eNOS Expression nach Verminderung der Expression von COUP-TFII in humanen venösen Endothelzellen gezeigt werden. Diese könnte die Ursache für die Verminderung der E-Selektin Expression nach Herabregulation von COUP-TFII sein. Durch die Anwendung einer Plattenkegel-Viskometer-Apparatur konnte gezeigt werden, dass die NO-Abgabe entscheidend von den Strömungsbedingungen und Scherkräften abhängig ist. Die Stimulation arterieller Endothelzellen mit laminarer oder oszillatorischer Schubspannung führte zu einer Erhöhung der NO-Abgabe. Turbulente Schubspannung zeigte dagegen keinen Einfluss auf die NO-Abgabe. Durch Überexpression von COUP-TFII in Kombination mit laminarer Schubspannung wurde die NO-Abgabe weiter gesteigert. Die gezeigte direkte Regulation der HEY2 und COUP-TFII Promotoraktivität durch geänderte Strömungsbedingungen spielt in diesem Prozess möglicherweise eine bedeutende Rolle. Die beschriebene Regulation von COUP-TFII durch Glukose in Endothelzellen könnte eine neue Erklärung für die gesteigerte Rate an Gefäßerkrankungen von Typ2-Diabetikern darstellen. Bei der Regulation der endothelialen NO-Synthase und E-Selektin durch COUP-TFII handelt es sich möglicherweise um einen neuen, anti-adhäsiven Feedback-Mechanismus, der zur Verringerung der Leukozyten-Adhäsion an Endothelzellen und damit zur Gefäßprotektion beitragen könnte. Die differentielle Expression der arteriellen Markergene HEY2 und CD44 konnte in humanen venösen und arteriellen Endothelzellen gezeigt werden. Die Untersuchung der Expression von FOXC1 legt nahe, dass es sich bei diesem Transkriptionsfaktor ebenfalls um ein in Endothelzellen arteriovenös differentiell exprimiertes Gen handelt. Die differentielle Exprimierung von HEY2 in Endothelzellen konnte auf transkriptioneller Ebene zusätzlich durch ein HEY2 Promotor Funktionsassay gezeigt werden. Die Überexpression der NOTCH1 intrazellulären Domäne führte zur Induktion der endogenen Expression der NOTCH-Zielgene HEY1 und HEY2 in HEK 293T Zellen. In dem Zelltyp durchgeführte Reportergenassays zeigten ebenfalls eine deutliche Aktivierung des HEY2 Promotors durch die Überexpression der NOTCH1 intrazellulären Domäne. Durch eine Deletionsanalyse konnte der Bereich, der für die Aktivierung verantwortlichen DNA-Sequenz-Motive stark eingegrenzt werden. Weiterhin konnte die Induktion des HEY2 Promotors durch VEGF und seine Repression durch einen γ-Sekretase Inhibitor nachgewiesen werden. Die Überexpression der NOTCH1 intrazellulären Domäne führte zur Verringerung der mRNA- und Protein-Expression von COUP-TFII in HEK 293T Zellen. Dieses Ergebnis konnte zusätzlich durch ein COUP-TFII Promotor Aktivitätsassay nach Überexpression des NOTCH-Zielgens HEY2 gezeigt werden. Die Deletionsanalyse des COUP-TFII Promotors lässt eine direkte Inhibition von COUP-TFII durch HEY2 vermuten. Die Überexpression von COUP-TFII führte zu einer starken Induktion der COUP-TFII mRNA- und Protein-Expression, jedoch weder in HEK 293T Zellen noch in Endothelzellen zu einer Änderung der HEY2 Promotoraktivität. Die Überexpression von FOXC1 und FOXC2 bewirkte eine Inhibition der HEY2 Promotoraktivität in HEK 293T Zellen. Die in der Arbeit gezeigte hohe Expression von FOXC1 in venösen Endothelzellen könnte somit in Kombination mit COUP-TFII für die komplette Repression der Aktivität des HEY2 Promotors in venösen Endothelzellen verantwortlich sein. Die durchgeführte Deletionsanalyse des HEY2 Promotors legt eine direkte Bindung von FOXC1 und FOXC2 an den HEY2 Promotor nahe. Die erzielten Ergebnisse dieser Arbeit sprechen im Kontext mit der Literatur für eine zelltypspezifische Regulierung/Aktivierung des NOTCH-Signalweges und lassen folgendes Modell zur Differenzierung des venösen oder arteriellen endothelialen Phänotyps vermuten: Die Determinierung des Phänotyps wird entschieden durch das Gleichgewicht der Expression der Interaktionspartner des NOTCH-Signalweges. Der VEGF Co-Rezeptor NRP1 und der VEGFR2 sind die entscheidenden Aktivatoren des NOTCH-Signalweges. Die Balance der Bindung des Repressors COUP-TFII an den NRP1 und VEGFR2 Promotor sowie des Aktivatorkomplexes NICD/RBP-JК an den NRP1 Promotor sind damit entscheidend für die Aktivität des NOTCH-Signalweges. NRP1 bindet VEGF und steigert gleichzeitig dessen Bindung an den VEGFR2. Dies führt zur Induktion von DLL4. Die Bindung von DLL4 an die NOTCH1/4 Rezeptoren führt zur Abspaltung der NOTCH intrazellulären Domäne (NICD) des Rezeptors. Die NICD wandert in den Zellkern und aktiviert dort zusammen im Komplex mit dem Transkriptionsfaktor RBP-JК die Gene HEY1, HEY2 und NRP1. Die Transkriptionsfaktoren HEY1 und HEY2 reprimieren über einen Feedback-Mechanismus direkt die Aktivität des COUP-TFII Promotors.
36

Regulation des Transkriptionsfaktors COUP‐TFII durch Glukose und den NOTCH‐Signalweg in Endothelzellen: Regulation des Transkriptionsfaktors COUP‐TFII durch Glukose und den NOTCH‐Signalweg in Endothelzellen

Brunßen, Coy 12 August 2010 (has links)
Erkrankungen des Herz-Kreislaufsystems sind die häufigste Todesursache in Deutschland. Eine gestörte Funktion des Gefäßendothels spielt bei der Entstehung von Herz-Kreislauferkrankungen eine Schlüsselrolle. Das Risiko einer kardiovaskulären Erkrankung ist bei Diabetikern stark erhöht. Der Transkriptionsfaktor COUP-TFII spielt eine essentielle Rolle im Glukosemetabolismus. Gleichzeitig ist er für die Differenzierung von Endothelzellen von großer Bedeutung. Für die Differenzierung und Aufrechterhaltung des arteriellen und venösen Phänotyps von Endothelzellen sind dabei maßgeblich der NOTCH-Signalweg und insbesondere die Transkriptionsfaktoren HEY2 (arteriell) und COUP-TFII (venös) verantwortlich. Gesteigerte Glukosespiegel könnten somit Auswirkungen auf die Differenzierung von Endothelzellen haben und damit einen neuen Mechanismus für das erhöhte Risiko von Gefäßerkrankungen bei Diabetikern darstellen. Im Rahmen der Arbeit konnte die exklusive Expression von COUP-TFII im Zellkern von humanen venösen Endothelzellen nachgewiesen werden. Humane arterielle Endothelzellen zeigten keine Expression von COUP-TFII. Außerdem konnte im Rahmen der Arbeit erstmals die spezifische Expression von COUP-TFII in humanen Endothelzellen der Koronararterie nachgewiesen werden. Die Untersuchung der COUP-TFII Promotoraktivität konnte das Expressionsmuster von COUP-TFII bestätigen. Der Promotor zeigte sowohl in den venösen Endothelzellen der humanen Nabelschnur als auch in den humanen Endothelzellen der Koronararterie Aktivität. Die kurzzeitige Stimulation von venösen Endothelzellen mit Glukose führte zu einem starken Anstieg der COUP-TFII Expression. Eine Translokation von COUP-TFII aus dem Zellkern in das Zytoplasma konnte nicht nachgewiesen werden. Die Langzeitstimulation führte interessanterweise zu einer Verminderung der COUP-TFII Expression und zu einer Erhöhung der Expression von E-Selektin. In beiden Fällen zeigte sich keine Beeinträchtigung der Expression durch Insulin. Die durchgeführten Untersuchungen schließen eine Beteiligung des AKT-Signalweges an der Regulation aus. Es zeigte sich jedoch, dass humane venöse Endothelzellen als Insulin-sensitives Gewebe mit funktionsfähigem AKT-Signalweg einzustufen sind. Stimulationsversuche mit L-Glukose zeigten keine Regulation der COUP-TFII Expression. Eine osmotische Wirksamkeit der hohen Glukosekonzentration auf die Expression von COUP-TFII konnte somit ausgeschlossen werden. Die Deletionsanalyse des COUP-TFII Promotors konnte einen Glukose-sensitiven Bereich innerhalb des COUP-TFII Promotors identifizieren. Weiterhin konnte die Repression der Aktivität des COUP-TFII Promotors durch Hypoxie nachgewiesen werden. Eine der wichtigen Aufgaben von Endothelzellen ist die von der endothelialen NO-Synthase (eNOS) katalysierte Bildung von Stickstoffmonoxid (NO). NO hemmt die Expression des Adhäsionsmoleküls E-Selektin. Eine verringerte NO-Produktion hat die Ausbildung einer endothelialen Dysfunktion zur Folge. In dieser Arbeit konnte erstmals eine Erhöhung der eNOS Expression nach Verminderung der Expression von COUP-TFII in humanen venösen Endothelzellen gezeigt werden. Diese könnte die Ursache für die Verminderung der E-Selektin Expression nach Herabregulation von COUP-TFII sein. Durch die Anwendung einer Plattenkegel-Viskometer-Apparatur konnte gezeigt werden, dass die NO-Abgabe entscheidend von den Strömungsbedingungen und Scherkräften abhängig ist. Die Stimulation arterieller Endothelzellen mit laminarer oder oszillatorischer Schubspannung führte zu einer Erhöhung der NO-Abgabe. Turbulente Schubspannung zeigte dagegen keinen Einfluss auf die NO-Abgabe. Durch Überexpression von COUP-TFII in Kombination mit laminarer Schubspannung wurde die NO-Abgabe weiter gesteigert. Die gezeigte direkte Regulation der HEY2 und COUP-TFII Promotoraktivität durch geänderte Strömungsbedingungen spielt in diesem Prozess möglicherweise eine bedeutende Rolle. Die beschriebene Regulation von COUP-TFII durch Glukose in Endothelzellen könnte eine neue Erklärung für die gesteigerte Rate an Gefäßerkrankungen von Typ2-Diabetikern darstellen. Bei der Regulation der endothelialen NO-Synthase und E-Selektin durch COUP-TFII handelt es sich möglicherweise um einen neuen, anti-adhäsiven Feedback-Mechanismus, der zur Verringerung der Leukozyten-Adhäsion an Endothelzellen und damit zur Gefäßprotektion beitragen könnte. Die differentielle Expression der arteriellen Markergene HEY2 und CD44 konnte in humanen venösen und arteriellen Endothelzellen gezeigt werden. Die Untersuchung der Expression von FOXC1 legt nahe, dass es sich bei diesem Transkriptionsfaktor ebenfalls um ein in Endothelzellen arteriovenös differentiell exprimiertes Gen handelt. Die differentielle Exprimierung von HEY2 in Endothelzellen konnte auf transkriptioneller Ebene zusätzlich durch ein HEY2 Promotor Funktionsassay gezeigt werden. Die Überexpression der NOTCH1 intrazellulären Domäne führte zur Induktion der endogenen Expression der NOTCH-Zielgene HEY1 und HEY2 in HEK 293T Zellen. In dem Zelltyp durchgeführte Reportergenassays zeigten ebenfalls eine deutliche Aktivierung des HEY2 Promotors durch die Überexpression der NOTCH1 intrazellulären Domäne. Durch eine Deletionsanalyse konnte der Bereich, der für die Aktivierung verantwortlichen DNA-Sequenz-Motive stark eingegrenzt werden. Weiterhin konnte die Induktion des HEY2 Promotors durch VEGF und seine Repression durch einen γ-Sekretase Inhibitor nachgewiesen werden. Die Überexpression der NOTCH1 intrazellulären Domäne führte zur Verringerung der mRNA- und Protein-Expression von COUP-TFII in HEK 293T Zellen. Dieses Ergebnis konnte zusätzlich durch ein COUP-TFII Promotor Aktivitätsassay nach Überexpression des NOTCH-Zielgens HEY2 gezeigt werden. Die Deletionsanalyse des COUP-TFII Promotors lässt eine direkte Inhibition von COUP-TFII durch HEY2 vermuten. Die Überexpression von COUP-TFII führte zu einer starken Induktion der COUP-TFII mRNA- und Protein-Expression, jedoch weder in HEK 293T Zellen noch in Endothelzellen zu einer Änderung der HEY2 Promotoraktivität. Die Überexpression von FOXC1 und FOXC2 bewirkte eine Inhibition der HEY2 Promotoraktivität in HEK 293T Zellen. Die in der Arbeit gezeigte hohe Expression von FOXC1 in venösen Endothelzellen könnte somit in Kombination mit COUP-TFII für die komplette Repression der Aktivität des HEY2 Promotors in venösen Endothelzellen verantwortlich sein. Die durchgeführte Deletionsanalyse des HEY2 Promotors legt eine direkte Bindung von FOXC1 und FOXC2 an den HEY2 Promotor nahe. Die erzielten Ergebnisse dieser Arbeit sprechen im Kontext mit der Literatur für eine zelltypspezifische Regulierung/Aktivierung des NOTCH-Signalweges und lassen folgendes Modell zur Differenzierung des venösen oder arteriellen endothelialen Phänotyps vermuten: Die Determinierung des Phänotyps wird entschieden durch das Gleichgewicht der Expression der Interaktionspartner des NOTCH-Signalweges. Der VEGF Co-Rezeptor NRP1 und der VEGFR2 sind die entscheidenden Aktivatoren des NOTCH-Signalweges. Die Balance der Bindung des Repressors COUP-TFII an den NRP1 und VEGFR2 Promotor sowie des Aktivatorkomplexes NICD/RBP-JК an den NRP1 Promotor sind damit entscheidend für die Aktivität des NOTCH-Signalweges. NRP1 bindet VEGF und steigert gleichzeitig dessen Bindung an den VEGFR2. Dies führt zur Induktion von DLL4. Die Bindung von DLL4 an die NOTCH1/4 Rezeptoren führt zur Abspaltung der NOTCH intrazellulären Domäne (NICD) des Rezeptors. Die NICD wandert in den Zellkern und aktiviert dort zusammen im Komplex mit dem Transkriptionsfaktor RBP-JК die Gene HEY1, HEY2 und NRP1. Die Transkriptionsfaktoren HEY1 und HEY2 reprimieren über einen Feedback-Mechanismus direkt die Aktivität des COUP-TFII Promotors.

Page generated in 0.0555 seconds