• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • Tagged with
  • 31
  • 18
  • 14
  • 12
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

IDA Klimat och Energi - Ett lämpligt och användbart alternativ för noggrannare energiberäkningar på VVS GRUPPEN AB?

Levin, Therése January 2007 (has links)
I juli 2006 trädde BBR:s nya krav om byggnaders energiförbrukning ikraft, vilka jämfört medde tidigare kraven väntas medföra förändringar för hela byggprocessen vad gäller hanteringenav energifrågor. De hårdare kraven kommer bland annat i skepnad av ett nytt begrepp,”byggnadens specifika energianvändning”, ett begrepp som med stor förmodan kommer attställa både högre krav på utförande av energiberäkningar i ett tidigare skede avbyggprocessen samt med större noggrannhet.På VVS GRUPPEN AB i Lund utför man egna grövre energiberäkningar i samband medprojektering i ett ganska tidigt skede av processen, främst beräkningar för hand, för att i ettsenare skede låta en byggnadskonstruktör genomföra mer ingående energiberäkningar. Medde nya hårdare kraven uppstår ett eventuellt behov av att framöver utföra egnaenergiberäkningar på en noggrannare nivå redan i ett tidigare skede. BBR anger inga krav ommetod för beräkningarna, utan lämnar upp till var och en att välja lämplig metod för aktuelltprojekt.I samarbete med VVS GRUPPEN utfördes därför en undersökning av en alternativ metod,energiberäkning med hjälp av simuleringsprogrammet IDA Indoor Climate and Energy.Undersökningen begränsades till ett pågående projekt i form av en ny biblioteksbyggnad iLomma, samt till att huvudsakligen syfta till beräkning av den specifika energin. Parallelltmed datasimuleringen utfördes enklare beräkningar för hand, för att kunna jämföra bådemetod och resultat.Syftet med arbetet bestod av att undersöka om IDA klimat och Energi skulle kunna vara ettlämpligt och användbart alternativ, framförallt vad gäller VVS GRUPPENs intressen, förnoggrannare energiberäkningar i stället för den nuvarande kombinationen av handräkningaroch enklare beräkningsprogram. Målet var att få en bra första uppfattning om hur användbartprogrammet skulle kunna vara för VVS GRUPPEN med avseende på beräkning av denspecifika energin.Arbetet med IDA Klimat och Energi resulterade i uppfattningen att det skulle kunna vara ettanvändbart program på VVS GRUPPEN. Företagets objektanpassade och okonventionellalösningar talade till viss del emot användningen av ett så tidsödande program som IDA,5samtidigt som möjligheten till djupare undersökning och uppföljning av specifika faktorerskulle kunna komma till stor nytta både för aktuellt projekt och för erfarenhetsåterföring.Med anledning av företagets objektsanpassade och okonventionella lösningar skulleanvändningen av programmet behöva kombineras med handräkningar ocherfarenhetsbedömningar. Detta delvis för att kunna förvissa sig om rimligheten i resultatenmen framförallt för korrigering av resultatet vid lösningar som inte går att återge mer än iförenklad form på grund av programmets begränsningar. Förenklingar i simuleringsmodellenskulle behöva kombineras med erfarenhetsbedömning och handräkning för korrigering aveventuell inverkan på resultatet. Huruvida ett tidskrävande program som IDA Klimat ochEnergi skulle visa sig tidsmässigt försvarbart i förhållande till de resultat man skulle uppnålämnades till vidare undersökning. / In July 2006 the Building Regulation’s new requirements for energy efficiency took effect,which are expected to lead to changes in the entire building process in the matter of dealingwith energy efficiency and energy consumption. The new requirements introduced theconcept of “specific energy consumption”, a concept which is very likely to bring a futureneed of energy calculations being carried out with greater accuracy at a much earlier stage ofthe process.”VVS GRUPPEN AB” in Lund carry out coarser energy calculations, mostly by hand, at aquite early stage of the process, while more detailed calculations are left to be carried out by aconstructor at a latter stage. Considering the new, tougher requirements, it is probably only amatter of time before the need of carrying out more detailed calculations earlier in the processbecomes obvious, which presumably will be followed by a need of other methods thancalculations by hand. As regards method, no requirements have been stated. Theresponsibility of choosing a suitable method lies in the hands of each project.In cooperation with VVS GRUPPEN, a study of one alternative method for more detailedenergy calculations was carried out. The method used was a computer–based simulation tool,“IDA Indoor Climate and Energy 3.0”. In order to be able to compare the simulations withthe current method used at the company, coarser calculations by hand, comparable to thecompany’s, were carried out. The investigation was restricted to calculation of the specificenergy consumption and also to one specific project, a new library-building in a small towncalled Lomma.The purpose of the study was to investigate whether IDA indoor Climate and Energy couldbe a useful and suitable method, as regards the interests of VVS GRUPPEN, for carrying outmore detailed calculations at the early stage of the process instead of the current method ofcombining courser calculations by hand with simpler computer-based calculations. Theobject of the study was to form an opinion of how useful IDA indoor Climate and Energywould be for VVS GRUPPEN, or a comparable company, when carrying out calculations ofspecific energy consumption.The research resulted in the opinion that IDA Indoor Climate and Energy could be a usefultool at the company. The company’s object-suited and unconventional solutions do questionthe use of such a time-consuming and demanding programme as IDA. At the same time IDAcreates great opportunities for further investigation of specific solutions as well as convenientfollow-ups, useful as regards both current project and documentation of experience for futureprojects. The use of IDA at the company would, due to the object-suited and somewhatunconventional solutions often created by he group, have to be combined with calculations byhand as well as judgement based on experience. This both in order to being able to check thecredibility of the result and to correct the result in case of a created model where the technicalsolution has had to be simplified. The question of whether the use of IDA at VVS GRUPPENwould be appropriate or not considering the programme’s time-consuming qualitiescombined with complicated and object-suited installations was left for further investigation todecide.
12

Energieffektivisering av flerbostadshus i Hammarby Sjöstad : En uppföljning av projektet ”Att förnya en ny stad”

Mackegård, Moa January 2016 (has links)
In this study, efforts to improve energy efficiency in seven housing cooperatives associated to the citizens' initiative HS2020, were studied. The aim of the study was to identify and compile the energysaving measures that have been carried out by the housing cooperatives since 2013. Furthermore the study aims to investigate how much the presented measures can lower the energy consumption. Two of the housing cooperatives served as examples and the expected saving from the energy saving measures were investigated using the simulation program VIP Energy. To better understand the motives and incentives for the work, interviews were made with the board members of the housing cooperatives. The results of the study show that four out of the seven investigated cooperatives have already reached the goal of a specific energy uselower than 100 kWh/m2/year. The most effective energy-saving measuresare the installation of exhaust air heat pump and the lowering of the indoor temperature. The simulation results for the installation of heat pumps showed that the heating demand was reduced by 55.4 percent, and the specific energy consumption was reduced by 30 percent. In summary, the HS2020 is on the right track to reach the goals set for 2020, but further work is required to get there. It is of utmost importance that the cooperatives strengthen their expertise in energyrelated questions, and HS2020 has an important role in this work.
13

Verifiering av beräknad energiprestanda för flerbostadshus byggda år 2007-2009

Haglund, Jonatan, Svedlund, Marcus January 2012 (has links)
The building industry consumes approximately 40 % of the total energy consumption in Sweden, where the using stage is dominating with 80 %. There is a lot of work in progress to reduce energy use in the building industry, and the demands from authorities regarding energy use increases. As a part of this work Building and planning department of Sweden has established a requirement that has been applied since 2006, and restricts a maximum energy use for buildings.The requirement includes that an energy simulation must be done in advance to demonstrate that it is possible to meet the demands. Reality is however more complex than an energy simulation program, that frequently underestimates the energy use of buildings. The purpose of this thesisis to study and analyse deviations between estimated and actual energy use in modern apartment buildings. The study includes four apartment buildings in Stockholm, Gothenburg and Jönköping that were built in 2007-2009. The thesis is done in collaboration with Riksbyggen. Riksbyggen have built and manage the buildings. The energy simulations have been executed in Enorm 2004 and VIP+ 5.2. All the buildings show a higher energy use than were simulated. The deviations are small for the overall use, between 1 and 8,6 %, except for one of the building with a deviation of 20 % higher energy use than simulated. For individual measurements however, there are large differences. The larges deviation is for heating, which were underestimated, up to 50 %. The main reasons of deviation are an underestimation of indoor temperature and no consideration of manual ventilation and culvert losses. Hot tap water on the other hand has been overestimated up to 57 %. One reason is high standard values when calculating.The whole difference does not necessarily depend on miscalculations. Errors can also occur when separate measurement of hot water is not available and an assessment must be made by hot water proportion of total water consumption. The result is the basis for following conclusions and recommendations: A higher indoor temperature than the current recommendation of 21 °C should be considered when calculating. Use of standard values for tap water should be made with caution, as these tend to be exaggerated. A manual ventilation supplement of 4 kWh/m², year has been proven to reduce deviations in heating requirements. Comparison between calculated and declared energy use should be made by individual measurement instead of total energy use. IMD (individual measurement and billing) provides, in addition to energy savings, a more reliable follow-up. / Av hela Sveriges energikonsumtion står byggsektorn för cirka 40 %, där bruksskedet är dominerande med cirka 80 % av den totala energiförbrukningen under byggnadens livscykel. Arbetet kring att minska sektorns energibehov pågår,och kravet på minskad energianvändning i byggnader ökar. Som ett led i arbetet har Boverket sedan 2006 ställt krav på högsta tillåten energianvändning förbyggnader. Vid projektering ska därför en energiberäkning göras för att säkerställa att byggnaden uppfyller gällande krav. Verkligheten är mer komplex än vad som kan simuleras i ett energiberäkningsprogram, och dessa tenderar ofta att underskatta byggnaders energianvändning. Examensarbetet syftar därför till att studera och analysera avvikelser mellan beräknad och faktiskt energianvändning för nybyggda flerbostadshus. Totalt har fyra fastigheter, färdigställda mellan 2007 och 2009, i Stockholm, Göteborg och Jönköping studerats. Examensarbetet är gjort i samarbete med Riksbyggen, som har byggt och förvaltar de studerade fastigheterna. Fastigheterna har beräknats i programmen Enorm 2004 och VIP+ 5.2, och församtliga redovisas en högre energianvändning än beräknat. Avvikelser är dock små, mellan 1 % och 8,6 %, för den totala energianvändningen med undantag för en fastighet som har 22 % högre användning än beräknat. Däremot finns stora skillnader för enskilda mät värden. Störst är avvikelserna för uppvärmning, där beräkningarna underskattade denna med upp till 50 %. Anledningar till avvikelse är underskattad rumstemperatur och att ingen hänsyn till vädring och kulvertförluster tagits vid beräkning. För tappvarmvatten gäller däremot det omvända då detta överskattades i beräkningar med upp till 57 %. En anledning är höga schablonvärden vid beräkning. Hela avvikelsen behöver dock inte bero på missbedömning och felberäkning i projektering, utan fel kan dock också uppstå när separat mätning av tappvarmvatten saknas och en bedömning måste göras av varmvattenandel av total vattenförbrukning. Resultatet ligger till grund förföljande slutsatser och rekommendationer: En högre innetemperatur än dagens rekommendation om 21 °C bör övervägas vid dimensionering. Användning av schablonvärden för tappvarmvatten bör göras med försiktighet, då dessa tenderar att vara för stora. Ett vädringstillägg på 4 kWh/m², år har visat sig minska avvikelser i uppvärmningsbehov. Jämförelse mellan beräknad och deklarerad energianvändning bör göras per mätslag istället för total energianvändning. IMD (individuell mätning med debitering) ger, förutom energibesparing, en mer tillförlitlig uppföljning.
14

Utvärdering av energiberäkningsprogram : Att användas i tidigt planeringsstadium för byggnader / Evaluation of energy simulation software

Olsson, Johan January 2013 (has links)
The regulations for energy consumption are consistently getting more and morestrict. This leads to a higher customer demand for energy analysis early in the buildingdesign process. Many building planners and architects use powerful modeling softwareto visualize their projects. These digital models contain sufficient information aboutthe building’s physical characteristics for reliable energy analysis. This report evaluatesthree different energy analysis software tools and their compatibility with themodeling software Autodesk Revit Architecture. The results in the report are basedon simulations made with a fictional model in the different tools. Some of the resultsobtained from the different programs are not consistent and because of the difficultiesin evaluating these differences the usefulness is limited. Based on several criteria thesoftware have been evaluated and a recommendation for the company Tema has beenproduced. Due to the complexity of energy analysis, the software requires certainpre-knowledge of the subject by the user to perform an accurate analysis. Inconclusion, the software which is best suited for preliminary energy analysis is,according to the author, VIP-Energy because of its efficiency and credibility.
15

En studie i energieffektivisering av miljonprogrammet / A study in energy efficiency of elderly apartment blocks

Eidner, Albin, Engman, Markus January 2018 (has links)
Vi står idag inför stora utmaningar för att minska miljöpåverkan. Fastigheter och främst flerbostadshus står för en stor del av energiåtgången i världen. Det krävs därför åtgärder för att effektivisera deras energianvändning. I Sverige byggdes en miljon bostäder mellan åren 1965 och 1974, en stor del av dessa bostäder var flerbostadshus. Dessa bostäder har med dagens mått mätt dålig energiprestanda och en stor del av beståndet kommer även att behöva omfattande renoveringar under de kommande åren. I denna studie undersöker vi hur renoveringar har gjorts när energieffektivisering dessa bostäder har skett. Vi har studerat olika projekt där man har energioptimerat på olika sätt. Vi har också studerat olika tänkbara lösningar för att energioptimera ett lamellhus i två våningar uppfört 1973. Rapporten presenterar tre olika förslag på tänkbara lösningar för att energioptimera fastigheten. De åtgärder som undersökts är fönsterbyte, tilläggsisolering av väggar både invändigt och utvändigt, tilläggsisolering av plattan invändigt samt tilläggsisolering av sockeln utvändigt.
16

Energibalansberäkning för nybyggnad : Identifiering av avvikelser från primärenergiberäkning för flerbostadshus / Energy balanced calculations for new construction : Identification of deviations from primary energy calculation for apartment buildings

Carlsson, Linus, Ragnarsson, Niklas January 2021 (has links)
Gräshoppan 13 är ett flerbostadshus beläget i Borås. Fastigheten har följts upp av energikonsultbolaget Aktea AB på uppdrag av fastighetsägaren Willhem i syfte att miljöcertifiera byggnaden som GreenBuilding. Den primära beräkningen som utfördes av Isover visade att fastigheten förväntades förbruka 34 kWh/m2, år. Akteas uppföljning efter två år resulterade i att fastigheten förbrukade 45,2 kWh/m2, år vilket inte möjliggör en certifiering enligt GreenBuilding där kraven är 41,3 kWh/m2, år, det vill säga 25 % lägre än kraven från Boverkets byggregler, BBR. I följande rapport diskuteras och analyseras de möjliga felkällorna för varför den beräknade energiförbrukningen utförd av Isover inte uppfylls. Huvudsakligen undersöks systemlösningen för tappvarmvattnet som av Akteas energikonsult Jonas Pettersson antagits vara den mest bidragande faktorn. Detta för att Isover beräknat energiåtgången för tappvarmvatten till 6 kWh/m2, år när det verkliga utfallet resulterade i en energiförbrukning på 18,2 kWh/m2, år. En kontrollberäkning av Isovers energibalansberäkning gjordes, dock utan full tillgång till Isovers beräkningsindata. Beräkningen gav ett snarlikt resultat (Isover 34 kWh/m2, år, kontrollberäkning 35 kWh/m2, år). Detta utfördes för att utesluta fel hos Isovers energibalansberäkning samt styrka Akteas antaganden angående systemlösningen för tappvarmvattnet. En provtryckning av en av lägenheterna i fastigheten utfördes för att kontrollera, vilket kan vara en indikator på, byggkvalitén för fastigheten. Provtryckningen visade att fastigheten håller god lufttäthet (0,23 l/sm2) och bedöms inte påverka fastighetens energiförbrukning negativt. Även detta test styrker Akteas antagande att det inte är energiförluster på grund av luftotätheter. Systemlösningen för tappvarmvattnet krävde mer energi än beräknat eftersom ackumulatortanken i systemet visade sig ha svårt att hålla jämn temperatur. Detta medför att en spetsberedare med elpatron behöver arbeta mer för att tappvarmvattnet ska hålla BBR:s krav på 55 ℃. Varför ackumulatortanken har svårt att hålla jämn temperatur tros vara att volymen är för liten och påverkas för mycket av stora vattentappningar i fastigheten. Även att värmepumpen inte är optimalt inställd kan vara en bidragande orsak. / Gräshoppan 13 is an apartment building located in Borås. The property has been followed up by energy consulting company Aktea AB on behalf of the property owner Willhem in order to environmentally certify the building as GreenBuilding. The primary calculation performed by Isover showed that the property was expected to consume 34 kWh/m2, year. Akteas follow-up after two years resulted in the property consuming 45.2kWh/m2, year, which does not enable certification according to GreenBuilding where the requirements are 41.3kWh/m2, year, that is 25 % lower than the requirements from Boverkets building regulations, BBR. The following report discusses and analyzes the possible sources of error as to why the estimated energy consumption performed by Isover is not met. The system solution for domestic hot water, which has been assumed by Akteas energy consultant Jonas Pettersson to be the most contributing factor, is mainly examined. This is because Isover calculated the energy consumption for domestic hot water to be 6kWh/m2, year when the actual outcome resulted in an energy consumption of 18.2kWh/m2, year. A control calculation of Isover energy balance calculation was made, however without full access to Isovers calculations input. The calculation gave a similar result (Isover 34kWh/m2, year, control calculation 35kWh/m2, year). This was done to exclude errors in Isovers energy balance calculation and to strengthen Akteas assumptions regarding the system solution for the domestic hot water. A pressure test in one of the apartments in the property was carried out to check, which can be an indicator of, the construction quality of the property. The test printing showed that the property maintains a good air tightness (0.23 l/sm2) and does not negatively affect the property's energy consumption. This test also confirms Akteas assumption that there are no energy losses due to leaks. The system solution for the domestic hot water required more energy than calculated because the accumulator tank in the system proved difficult to maintain an even temperature. This means that a water heater with an immersion heater needs to work harder for the domestic hot water to keep BBR's requirements at 55 ℃. Why the accumulator tank has difficulty maintaining an even temperature is believed to be that the volume is too small and is affected too much by large water drains in the property. The fact that the heat pump is not optimally set can also be a contributing factor.
17

Energi- och kostnadsmässig jämförelse av FTX- och FVP-system i ett flerbostadshus : Jämförelse av ventilationssystem i ett flerbostadshus

Tofte, Nathalie January 2021 (has links)
The choice of heating system and to add heat recovery is becoming increasinglyimportant in order to meet the climate goals. The need for renovation of homesbuilt in the so-called million program is extensive. The purpose of the work is toevaluate two different ventilation systems and its profitability in connection withthe renovation of a property in Ljungby. The systems to be compared are asystem with presence-controlled FTX-apartment units and a system with exhaustair heat pumps. The goal is to present a result about which ventilation systemleads to the largest energy and cost savings compared to the existing ventilationsystem in the property.The results show that the ventilation system with presence-controlled FTXapartment units in each apartment should generate the lowest primary energy.The life cycle cost analysis showed that the most economically profitableventilation system is with FTX apartment units. The results also showed thatprojected and calculated average heat transfer coefficient can vary markedly. Insummary, the best choice is FTX apartment units with presence control. Thesystem consumes less energy than the FVP system, while avoiding dependenceon electrical energy.
18

Den mest miljövänliga energin är den som inte blir använd : En studie om energieffektivisering och LCC-beräkningar / The most ecofriendly energy is the one that is not used : A study about energy efficiency and LCC-calculations

Nordström, Filip, Klasson, Oscar January 2022 (has links)
Att energieffektivisera byggnader är en viktig del i att uppnå en lägre energiförbrukning, vilket kan göras på olika sätt. Syftet med rapporten är att visa på olika åtgärders påverkan på en byggnads energianvändning och på åtgärdernas livscykelkostnad (LCC). Med de lösningarna som föreslås kan byggnadens primärenergital sänkas från 95,5 till 69,8 kWh/m2, vilket förbättrar byggnadens energiklassning från D till C beräknat utifrån BBR 29. För att bedöma byggnadens energianvändning genomfördes en energiberäkning som ger utgångspunkten för de energieffektiviserande åtgärderna. Vidare användes LCC-kalkyler för att bedöma åtgärdernas totala livscykelskostad. Lösningarna beräknades också utifrån olika scenarier då energipriserna ökade stegvis för att visa på dess lönsamhet vid olika förutsättningar. I scenario 1 och 2 uppskattades priserna utifrån ett normalläge medan scenario 3 och 4 stresstestades med betydligt högre energipriser, 50 respektive 100 %. Åtgärden som visades ha störst inverkan på primärenergitalet var att tilläggsisolera ytterväggarna med 100 mm mineralull vilket var en av de lösningarna som studerades, vilket sänkte energibehovet med 6,8 kWh/m2. De åtgärder som dock visade sig lönsamma genom LCC-kalkylerna och sänkte energianvändningen var installation av solceller och snålspolande vattenblandare. Solceller sänkte energianvändningen med 2 kWh/m2 och snålspolandevattenblandare med 2,5 kWh/m2. Dessa åtgärder var lönsamma i majoriteten av scenarierna. Åtgärden som var minst lönsam utifrån LCC-kalkylerna var byte utav fönster. Denna åtgärd var inte lönsam i något av scenarierna. En intressant observation under beräkningarnas genomförande var hur byggnadens area påverkade primärenergitalet för flerbostadshus. En byggnad med en större boarea har lättare att uppnå kraven då energianvändningen späds ut på boarean. / Making buildings more energy efficient is an important part of achieving lower energy consumption, which can be done in different ways. The purpose of the report is to show the impact of different actions on a building's energy use and to show the life cycle cost (LCC) of the different actions. With the measures developed, the building's primary energy is reduced from 95.5 to 69,8 kWh/m2, which improves the building's energy rating from D to C calculated based on BBR 29. To assess the building's energy use, an energy calculation was performed that provides the basis for energy efficiency measures. Furthermore, LCC calculations were used to assess the cost of the measures over time. The actions were also calculated based on different scenarios as energy prices varied to show its profitability under different conditions. The actions that were shown to have the greatest impact on primary energy was to additionally insulate the outer walls with 100 mm mineral wool, which reduced the energy requirement by 6.8 kWh/m2. However, the actions that proved profitable through the LCC calculations and reduced energy use were the installation of solar cells and low-flush water mixers. Solar cells reduced energy consumption by 2 kWh/m2 and low-flush water mixers by 2.5 kWh/m2. Furthermore, the actions were also profitable in most of the scenarios. The actions that was least profitable based on the LCC calculations was replacement of windows, the measure was not profitable in any of the scenarios. An interesting observation during the implementation of the calculations was the problem with the current calculation method of the primary energy figure for apartment buildings. A building with a larger living area has easier access to the requirements as energy use is diluted in the living area.
19

Energikartläggning i byggnader : Utredning av två byggnaders skillnad i energianvändning

Kinell, Anders January 2019 (has links)
When analyzing its property portfolio, the property manager Castellum AB noticed that the energy use of buildings with relatively large similarities could differ. In this case it concerned properties Bodarna 8 and Ölstånkan 14 in Örebro. The purpose of this work was to find out what the difference is due to and whether it was possible to reduce the difference with profitable energy efficiency measures. To solve this, previous studies concerning local buildings and handbooks on energy surveys and energy efficiency was studied. Then, an equation based on methods for determining energy use according to the legal requirements was constructed in Excel. And finally, models to calculate the profitability of the measures were created. The result showed differences in how the buildings are designed with different materials and how they are located, which probably affects the transmission losses of the buildings in different ways. Operation settings of the energy systems also contributed to the energy difference. Finally, it was noted that the buildings were below the average of 211 kWh/m2 within enclosing structural parts and year, for buildings in the same category. Ölstånkan nevertheless had a specific energy use, 116 kWh/m2, Atemp and year, that exceeded Bodarnas use of 86 kWh/m2, Atemp and year where energy for heating and estate electricity stood out. However, with proposed measures, it is possible to lower the specific energy of Ölstånkan to 65 kWh/m2, Atemp and year from 116 kWh/m2, Atemp and year while at the same time gaining profitability.
20

Passivhusguiden : Guidning av skissarbetet för passivhus

Kaverén, Erik, Svensson, Johan January 2008 (has links)
Detta examensarbete beskriver arbetsprocessen med att ta fram ett webbverktyg som ska hjälpa arkitekter som är i skisskedet av ett passivhusprojekt att förverkliga sitt projekt på bästa sätt. Det politiska klimat som råder i världen och framförallt Sverige idag manar tillen kraftig sänkning av energiförbrukningen och därigenom koldioxidutsläppen. Detta gäller inte minst för den svenska bostadssektorn som normalt sägs stå för 40 % av Sveriges totala energiförbrukning. Ett av medlen för att sänka denna energiförbrukning är att bygga fler passivhus samt att omvandla befintliga hus till passivhus. Problemet är att många arkitekter och byggherrar inte har någon erfarenhet av passivhus och vågar därför inte starta upp denna typ av projekt. Detta examensarbete syftar till att ta fram ett verktyg som hjälper arkitekter m.m. att utforma denna typ av byggnad, tyngdpunkten ligger på skisskedet. För att få fram lämplig utformning på verktyget så gjordes litteraturstudier,studier av genomförda passivhusprojekt i Sverige samt intervjuer med folk ibyggbranschen som alla har olika erfarenheter av passivhus. Resultatet av detta arbete mynnade ut i en checklista med frågor som arkitekten bör ställa sig i skisskedet av ett passivhus, ett guidedokument som ger tips, råd och till viss del svar på de frågor som ställs i checklistan samt enenergiberäkning. Detta omformades sedan till ett webbaserat verktyg, Passivhusguiden. Det verkliga resultatet av detta arbete är för tidigt för att sia om eftersom detinte går att utvärdera än i vilken omfattning arkitekter kommer att använda sig av det samt vilken påverkan det får för antalet byggda passivhus samtkvaliteten på dessa. I övrigt så uppfyller resultatet till stor del det förväntade. / This final thesis describes the work process to develop a Web Tool that willhelp architects who are in the sketch stage of a passivehouse-project to realisetheir project in the best possible way. The political climate that is prevailing in the world today, especially in Swedencalls for a sharp reduction of energy consumption and thus carbon dioxideemissions. This applies not least for the Swedish housing sector, whichnormally is said to account for 40% of Sweden's total energy consumption. One of the means to reduce this energy consumption is to build more passive houses and to convert existing house to it. The problem is that many architects and developers have no experience of passive houses and dare not therefore to start up this type of project. This final project aims to develop a tool to help architects, etc. to design this type of buildings, the emphasis is on the sketch stage. In order to get the appropriate design of the tool was, literature studies, studies of already accomplished passivehouseprojects in Sweden and interviews with people in the construction industry done, which all have different experiences of passive house. The result of this work resulted in a checklist of questions that the architectshould ask themselves in the sketch stage of a passive house, a guidedocument that provides tips, advice and answers to some of the addressed questions raised in the checklist, and an energy calculation. This was reshaped then into a webbased tool, Passivhusguiden. The real result of this work is too early to predict because it is not possible toevaluate to which extent the architects will make use of it, and the impact it has on the number built passivehouse´s, and the quality of these.

Page generated in 0.0753 seconds