• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 55
  • 21
  • 13
  • 13
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Single- and entangled-photon emission from strain tunable quantum dots devices

Zhang, Jiaxiang 08 September 2015 (has links) (PDF)
On demand single-photon and entangled-photon sources are key building-blocks for many proposed photonic quantum technologies. For practical device applications, epitaxially grown quantum dots (QDs) are of increasing importance due to their bright photon emission with sharp line width. Particularly, they are solid-state systems and can be easily embedded within a light-emitting diode (LED) to achieve electrically driven sources. Therefore, one would expect a full-fledged optoelectronic quantum network that is running on macroscopically separated, QD-based single- and entangled-photon devices. An all-electrically operated wavelength-tunable on demand single-photon source (SPS) is demonstrated first. The device consists of a LED in the form of self-assembled InGaAs QDs containing nanomembrane integrated onto a piezoelectric crystal. Triggered single photons are generated via injection of ultra-short electrical pulses into the diode, while their energy can be precisely tuned over a broad range of about 4.8 meV by varying the voltage applied to the piezoelectric crystal. High speed operation of this single-photon emitting diode up to 0.8 GHz is demonstrated. In the second part of this thesis, a fast strain-tunable entangled-light-emitting diode (ELED) is demonstrated. It has been shown that the fine structure splitting of the exciton can be effectively overcome by employing a specific anisotropic strain field. By injecting ultra-fast electrical pulses to the diode, electrically triggered entangled-photon emission with high degree of entanglement is successfully realized. A statistical investigation reveals that more than 30% of the QDs in the strain-tunable quantum LED emit polarization-entangled photon-pairs with entanglement-fidelities up to f+ = 0.83(5). Driven at the highest operation speed ever reported so far (400 MHz), the strain-tunable quantum LED emerges as unique devices for high-data rate entangled-photon applications. In the end of this thesis, on demand and wavelength-tunable LH single-photon emission from strain engineered GaAs QDs is demonstrated. Fourier-transform spectroscopy is performed, from which the coherence time of the LH single-photon emission is studied. It is envisioned that this new type of LH exciton-based SPS can be applied to realize an all-semiconductor based quantum interface in the foreseeable distributed quantum networks.
42

Strain-tuning of single semiconductor quantum dots

Plumhof, Johannes David 06 February 2012 (has links) (PDF)
Polarization entangled photon pairs on demand are considered to be an important building block of quantum communication technology. It has been demonstrated that semiconductor quantum dots (QDs), which exhibit a certain spatial symmetry, can be used as a triggered, on-chip source of polarization entangled photon pairs. Due to limitations of the growth, the as-grown QDs usually do not exhibit the required symmetry, making the availability of post-growth tuning techniques essential. In this work first the QD-morphology of hundreds of QDs is correlated with the optical emission of neutral excitons confined in GaAs/AlGaAs QDs. It is presented how elastic anisotropic stress can be used to partially restore the symmetry of self-assembled GaAs/AlGaAs and InGaAs/GaAs QDs, making them as candidate sources of entangled photon pairs. As a consequence of the tuning of the QD-anisotropy we observe a rotation of the polarization of the emitted light. The joint modification of polarization orientation and QD anisotropy can be described by an anticrossing of the so-called bright excitonic states. Furthermore, it is demonstrated that anisotropic stress can be used to tune the purity of the hole states of the QDs by modifying the degree of heavy and light hole mixing. This ability might be interesting for applications using the hole spin as a so-called quantum bit.
43

Telecom wavelength quantum devices

Felle, Martin Connor Patrick January 2017 (has links)
Semiconductor quantum dots (QDs) are well established as sub-Poissonian sources of entangled photon pairs. To improve the utility of a QD light source, it would be advantageous to extend their emission further into the near infrared, into the low absorption wavelength windows utilised in long-haul optical telecommunication. Initial experiments succeeded in interfering O-band (1260—1360 nm) photons from an InAs/GaAs QD with dissimilar photons from a laser, an important mechanism for quantum teleportation. Interference visibilities as high as 60 ± 6 % were recorded, surpassing the 50 % threshold imposed by classical electrodynamics. Later, polarisation-entanglement of a similar QD was observed, with pairs of telecom-wavelength photons from the radiative cascade of the biexciton state exhibiting fidelities of 92.0 ± 0.2 % to the Bell state. Subsequently, an O-band telecom-wavelength quantum relay was realised. Again using an InAs/GaAs QD device, this represents the first implementation of a sub-Poissonian telecom-wavelength quantum relay, to the best knowledge of the author. The relay proved capable of implementing the famous four-state BB84 protocol, with a mean teleportation fidelity as high as 94.5 ± 2.2 %, which would contribute 0.385 secure bits per teleported qubit. After characterisation by way of quantum process tomography, the performance of the relay was also evaluated to be capable of implementing a six-state QKD protocol. In an effort to further extend the emitted light from a QD into the telecom C-band (1530—1565 nm), alternative material systems were investigated. InAs QDs on a substrate of InP were shown to emit much more readily in the fibre-telecom O- and C-bands than their InAs/GaAs counterparts, largely due to the reduced lattice mismatch between the QD and substrate for InAs/InP (~3 %) compared to InAs/GaAs (~7 %). Additionally, to minimize the fine structure splitting (FSS) of the exciton level, which deteriorates the observed polarisation-entanglement, a new mode of dot growth was investigated. Known as droplet epitaxy (D-E), QDs grown in this mode showed a fourfold reduction in the FSS compared to dots grown in the Stranski-Krastanow mode. This improvement would allow observation of polarisation-entanglement in the telecom C-band. In subsequent work performed by colleagues at the Toshiba Cambridge Research Labs, these D-E QDs were embedded in a p-i-n doped optical cavity, processed with electrical contacts, and found to emit entangled pairs of photons under electrical excitation. The work of this thesis provides considerable technological advances to the field of entangled-light sources, that in the near future may allow for deterministic quantum repeaters operating at megahertz rates, and in the further future could facilitate the distribution of coherent multipartite states across a distributed quantum network.
44

Strain-tuning of single semiconductor quantum dots

Plumhof, Johannes David 03 February 2012 (has links)
Polarization entangled photon pairs on demand are considered to be an important building block of quantum communication technology. It has been demonstrated that semiconductor quantum dots (QDs), which exhibit a certain spatial symmetry, can be used as a triggered, on-chip source of polarization entangled photon pairs. Due to limitations of the growth, the as-grown QDs usually do not exhibit the required symmetry, making the availability of post-growth tuning techniques essential. In this work first the QD-morphology of hundreds of QDs is correlated with the optical emission of neutral excitons confined in GaAs/AlGaAs QDs. It is presented how elastic anisotropic stress can be used to partially restore the symmetry of self-assembled GaAs/AlGaAs and InGaAs/GaAs QDs, making them as candidate sources of entangled photon pairs. As a consequence of the tuning of the QD-anisotropy we observe a rotation of the polarization of the emitted light. The joint modification of polarization orientation and QD anisotropy can be described by an anticrossing of the so-called bright excitonic states. Furthermore, it is demonstrated that anisotropic stress can be used to tune the purity of the hole states of the QDs by modifying the degree of heavy and light hole mixing. This ability might be interesting for applications using the hole spin as a so-called quantum bit.
45

Growth, characterization and implementation of semiconductor sources of highly entangled photons

Keil, Robert 19 November 2020 (has links)
Sources of single and polarization-entangled photons are an essential component in a variety of potential quantum information applications. Suitable emitters need to generate photons deterministically and at fast repetition rates, with highest degrees of single-photon purity, entanglement and indistinguishability. Semiconductor quantum dots are among the leading candidates for this task, offering entangled-photon pair emission on-demand, challenging current state-of-the-art sources based on the probabilistic spontaneous parametric down-conversion (SPDC). Unfortunately, their susceptibility to perturbations from the solid-state environment significantly affects the photon coherence and entanglement degree. Furthermore, most quantum dot types suffer from poor wavelength control and emitter yield, due to a random growth process. This thesis investigates the emerging family of GaAs/AlGaAs quantum dots obtained by in-situ Al droplet etching and nanohole infilling. Particular focus is laid on the interplay of growth parameters, quantum dot morphology and optical properties. An unprecedented emission wavelength control with distributions as narrow as ± 1 nm is achieved, using four independent growth parameters: The GaAs infilling amount, the deposition sequence, the migration time and the Al concentration in the barrier material. This enables the generation of large emitter ensembles tailored to match the optical transitions of rubidium, a leading quantum memory candidate. The photon coherence is enhanced by an optimized As flux during the growth process using the GaAs surface reconstruction. With these improvements, we demonstrate for the first time two-photon interference from separate, frequency-stabilized quantum dots using a rubidium-based Faraday filter as frequency reference. Two-photon resonant excitation of the biexciton state is employed for the coherent and deterministic generation of photon pairs with negligible multi-photon emission probability. The GaAs/AlGaAs quantum dots exhibit a very small average fine structure of (4.8 ±2.4) µeV and short average radiative lifetimes of 200 ps, enabling entanglement fidelities up to F = 0.94, which are among the highest reported for any entangled-photon source to date. Furthermore, almost all fabricated emitters on a single wafer exhibit fidelities beyond the classical limit - without any post-growth tuning. By embedding the quantum dots into a broadband-optical antenna we enhance the photon collection efficiency significantly without impairing the high degrees of entanglement. Thus, for the first time, quantum dots are able to compete with SPDC sources, paving the way towards the realization of a semiconductor-based quantum repeater - among many other key enabling quantum photonic elements.:Contents List of Figures ix List of Tables xiii 1 Introduction 1 1.1 Researchmotivation ...................1 1.1.1 Structure of this thesis ................. 3 1.2 Applications based on entangled photons ............. 4 1.2.1 Quantum bits ...................4 1.2.2 Quantum key distribution ................ 5 1.2.3 Qubit teleportation .................. 7 1.2.4 Teleportation of entanglement ..............9 1.2.5 The photonic quantumrepeater .............. 10 1.3 Generation of entangled photons ...............12 1.3.1 The ideal entangled-photon source ............. 12 1.3.2 Non-deterministic photon sources ............. 13 1.3.3 Deterministic photon sources ..............14 2 Fundamentals 17 2.1 Semiconductor quantumdots ................17 2.1.1 Introduction to semiconductor quantum dots .......... 17 2.1.2 Formation of confined excitonic states ............ 19 2.1.3 Energy hierarchy of excitonic states ............. 21 2.2 Entangled photons from semiconductor quantumdots ......... 22 2.2.1 The concept of entanglement ............... 22 2.2.2 Polarization-entangled photon pairs fromthe biexciton radiative decay .. 23 2.2.3 Origin and impact of the exciton fine structure splitting ....... 25 2.2.4 Impact of spin-scattering, dephasing and background photons on the degree of entanglement ..................29 2.3 Quantum dot entangled-photon sources - State of the art ........32 2.4 Exciton radiative lifetime .................. 34 2.4.1 The concept of radiative lifetime .............. 34 2.4.2 Measurement of the radiative lifetime ............35 2.5 Single-photon purity ...................37 2.5.1 Photon number distributions ............... 37 2.5.2 Second-order correlation function .............38 2.5.3 Measurement of the second-order correlation function ....... 40 2.6 Measurement of entanglement ................42 2.6.1 Quantum state tomography ...............43 2.7 Photon coherence and spectral linewidth .............46 2.7.1 The concept of coherence ................ 46 2.7.2 First-order coherence ................. 46 2.7.3 Relation between coherence and spectral linewidth ........ 49 2.7.4 homogeneous vs. inhomogeneous broadening in single quantumdots ..50 2.8 Photon indistinguishability .................51 2.8.1 Hong-Ou-Mandel interference ..............51 2.8.2 Hong-Ou-Mandel interference between photons fromseparate sources .. 52 2.8.3 The Bell state measurement with linear optics .......... 53 3 Experimentalmethods 55 3.1 The GaAs and AlAs material system ............... 55 3.2 Molecular beam epitaxy ..................56 3.2.1 The Concept of molecular beam epitaxy ...........56 3.2.2 Layout and components of the III-V Omicron MBE ........58 3.2.3 Growth parameters .................. 59 3.2.4 Reflection high-energy electron diffraction (RHEED) ........ 60 3.2.5 Growth rate determination using RHEED oscillations .......61 3.3 Optical setups .....................63 4 Results 67 4.1 Growth of GaAs/AlGaAs quantum dots by in-situ Al droplet etching .....68 4.1.1 Motivation for the study of GaAs / AlGaAs quantum dots ......68 4.1.2 GaAs / AlGaAs quantum dot growth process ..........69 4.1.3 Interplay between growth parameters, quantumdot morphology and optical properties ................. 71 4.1.4 Nanohole morphology and quantumdot formation ........ 73 4.1.5 Optical characterization ................75 4.1.6 Deterministic wavelength control .............77 4.1.7 Photon coherence and radiative lifetime ...........84 4.1.8 Decoherence processes in semiconductor quantum dots ......86 4.1.9 Chamber conditioning and growth process optimization ......87 4.1.10 Arsenic flux calibration using the GaAs surface reconstruction ..... 88 4.1.11 Enhanced photon coherence after growth process adjustments ....92 4.2 Two-photon interference from frequency-stabilized GaAs/AlGaAs quantum dots .................94 4.2.1 Frequency tuning of semiconductor quantumdots ........95 4.2.2 Experimental setup .................. 95 4.2.3 Optical characterization of the separate GaAs/AlGaAs quantum dots ... 98 4.2.4 Faraday anomalous dispersion optical filter and frequency feedback ... 99 4.2.5 Two-photon interference between remote, frequency-stabilized quantum dots 100 4.3 Solid-state ensemble of highly entangled photon sources at rubidiumatomic transitions ........................102 4.3.1 Fine-structure splitting ................103 4.3.2 Resonant excitation of the biexciton state ...........105 4.3.3 Single photon purity and radiative lifetime ........... 107 4.3.4 Radiative lifetime of GaAs/AlGaAs quantumdots - comparison to other quantumdot types ...................108 4.3.5 Degree of entanglement ................109 4.3.6 Highly-efficient extraction of the obtained entangled photons ..... 116 5 Conclusions 119 5.1 Summary ....................... 119 5.2 Discussion and outlook ..................122 Bibliography 127 Publications and scientific presentations 150 Acknowledgments 154 Selbstständigkeitserklärung 157 Curriculum vitae 157
46

Spin orbital coupling in 5d Transition Metal Oxides And Topological Flat Bands

Zhang, Wenjuan January 2021 (has links)
No description available.
47

The Hubbard model on a honeycomb lattice with fermionic tensor networks

Schneider, Manuel 09 December 2022 (has links)
Supervisor at Deutsches Elektronen-Synchrotron (DESY) in Zeuthen: Dr. Habil. Karl Jansen / Mit Tensor Netzwerken (TN) untersuchen wir auf einem hexagonalen Gitter das Hubbard-Modell mit einem chemischen Potential. Wir zeigen, dass ein TN als Ansatz für die Zustände des Modells benutzt werden kann und präsentieren die berechneten Eigenschaften bei niedrigen Energien. Unser Algorithmus wendet eine imaginäre Zeitentwicklung auf einen fermionischen projected engangled pair state (PEPS) auf einem endlichen Gitter mit offenen Randbedingungen an. Der Ansatz kann auf einen spezifischen fermionischen Paritätssektor beschränkt werden, was es uns ermöglicht, den Grundzustand und den Zustand mit einem Elektron weniger zu simulieren. Mehrere in unserer Arbeit entwickelte Verbesserungen des Algorithmus führen zu einer erheblichen Steigerung der Effizienz und Genauigkeit. Wir messen Erwartungswerte mit Hilfe eines boundary matrix product state. Wir zeigen, dass Observablen in dieser Näherung mit einer weniger starken Trunkierung, als in der Literatur erwartet wird, berechnet werden können. Dies führt zu einer erheblichen Reduzierung der numerischen Kosten des Algorithmus. Für verschiedene Stärken der lokalen Wechselwirkung, sowie für mehrere chemische Potentiale berechnen wir die Energie, die Teilchenzahl und die Magnetisierung mit guter Genauigkeit. Wir zeigen die Abhängigkeit der Teilchenzahl vom chemischen Potential und berechnen die Energielücke. Wir demonstrieren die Skalierbarkeit zu großen Gittern mit bis zu 30 × 15 Gitterpunkten und machen Vorhersagen in einem Teil des Phasenraums, der für Monte-Carlo nicht zugänglich ist. Allerdings finden wir auch Limitierungen des Algorithmus aufgrund von Instabilitäten, die die Berechnungen im Paritätssektor behindern, welcher orthogonal zum Grundzustand ist. Wir diskutieren Ursachen und Indikatoren und schlagen Lösungen vor. Unsere Arbeit bestätigt, dass TN genutzt werden können, um den niederenergetischen Sektors des Modells zu erforschen. Dies eröffnet den Weg zu einem umfassenden Verständnis des Phasendiagramms. / Using tensor network (TN) techniques, we study the Hubbard model on a honeycomb lattice with a chemical potential, which models the electron structure of graphene. In contrast to Monte Carlo methods, TN algorithms do not suffer from the sign problem when a chemical potential is present. We demonstrate that a tensor network state can be used to simulate the model and present the calculated low energy properties of the Hubbard model. Our algorithm applies an imaginary time evolution to a fermionic projected entangled pair state (PEPS) on a finite lattice with open boundary conditions. The ansatz can be restricted to a specific fermionic parity sector which allows us to simulate the ground state and the state with one electron less. Several improvements of the algorithm developed in our work lead to a substantial performance increase of the efficiency and precision. We measure expectation values with a boundary matrix product state and show that observables can be calculated with a lower bond dimension of this approximation than expected from the literature. This decreases the numerical costs of the algorithm significantly. For varying onsite interactions and chemical potentials we calculate the energy, particle number and magnetization with good precision. We show the dependence of the particle number on the chemical potential and compute the single particle gap. We demonstrate the scalability to large lattices of up to 30 × 15 sites and make predictions in a part of the phase space that is not accessible to Monte Carlo methods. However, we also find limitations of the algorithm due to instabilities that spoil the calculations in the parity sector orthogonal to the ground state. We discuss the causes and indicators of such instabilities and propose solutions. Our work validates that TNs can be utilized to study the low energy properties of the Hubbard model on a honeycomb lattice with a chemical potential, thus opening the road to finally understand its phase diagram.
48

Control of electronic and optical properties of single and double quantum dots via electroelastic fields

Zallo, Eugenio 23 March 2015 (has links) (PDF)
Semiconductor quantum dots (QDs) are fascinating systems for potential applications in quantum information processing and communication, since they can emit single photons and polarisation entangled photons pairs on demand. The asymmetry and inhomogeneity of real QDs has driven the development of a universal and fine post-growth tuning technique. In parallel, new growth methods are desired to create QDs with high emission efficiency and to control combinations of closely-spaced QDs, so-called "QD molecules" (QDMs). These systems are crucial for the realisation of a scalable information processing device after a tuning of their interaction energies. In this work, GaAs/AlGaAs QDs with low surface densities, high optical quality and widely tuneable emission wavelength are demonstrated, by infilling nanoholes fabricated by droplet etching epitaxy with different GaAs amounts. A tuning over a spectral range exceeding 10 meV is obtained by inducing strain in the dot layer. These results allow a fine tuning of the QD emission to the rubidium absorption lines, increasing the yield of single photons that can be used as hybrid semiconductor-atomic-interface. By embedding InGaAs/GaAs QDs into diode-like nanomembranes integrated onto piezoelectric actuators, the first device allowing the QD emission properties to be engineered by large electroelastic fields is presented. The two external fields reshape the QD electronic properties and allow the universal recovery of the QD symmetry and the generation of entangled photons, featuring the highest degree of entanglement reported to date for QD-based photon sources. A method for controlling the lateral QDM formation over randomly distributed nanoholes, created by droplet etching epitaxy, is demonstrated by depositing a thin GaAs buffer over the nanoholes. The effect on the nanohole occupancy of the growth parameters, such as InAs amount, substrate temperature and arsenic overpressure, is investigated as well. The QD pairs show good optical quality and selective etching post-growth is used for a better characterisation of the system. For the first time, the active tuning of the hole tunnelling rates in vertically aligned InGaAs/GaAs QDM is demonstrated, by the simultaneous application of electric and strain fields, optimising the device concept developed for the single QDs. This result is relevant for the creation and control of entangled states in optically active QDs. The modification of the electronic properties of QDMs, obtained by the combination of the two external fields, may enable controlled quantum operations.
49

Correlações quânticas e transição quântico-clássica em cavidades ópticas

Rossatto, Daniel Zini 27 February 2014 (has links)
Made available in DSpace on 2016-06-02T20:15:31Z (GMT). No. of bitstreams: 1 5792.pdf: 2150785 bytes, checksum: 967083b129be653705657afbcab00714 (MD5) Previous issue date: 2014-02-27 / Universidade Federal de Sao Carlos / This thesis consists of three studies in the context of cavity quantum electrodynam- ics. Firstly, we investigate the quantum-to-classical transition of a dissipative cavity .eld by measuring the correlations between two non-interacting atoms coupled to the cavity mode. We note that there is a time window in which the mode presents a classical be- havior, which depends on the cavity decay rate, the atom-.eld coupling strength and the number of atoms. Then, considering the steady state of two atoms inside the cavity, we note that the entanglement between the atoms disappears while the intracavity mean number of photons (ñ) increases. However, the mutual information, the classical corre- lations and the quantum discord reach asymptotic non-zero values even in the limit of (continue...) / Esta tese é constituída por três estudos no contexto de Eletrodinâmica Quântica de Cavidades. Primeiramente, investigamos a transição quântico-clássica de um campo de uma cavidade dissipativa através da geração de correlação entre dois átomos de dois níveis não interagentes acoplados a um modo da cavidade. Em primeiro lugar, mostramos que há uma janela de tempo na qual o modo da cavidade exibe um comportamento clássico, que depende da taxa de decaimento da cavidade, do acoplamento átomo-campo e do número de átomos. Em seguida, considerando o regime estacionário, vemos que o emaranhamento entre os átomos desaparece à medida que o número médio de fótons intracavidade (ñ) é aumentado. Entretanto, a informação mútua, as correlações clássicas e a discórdia quântica atingem valores assintóticos não nulos mesmo no limite (continua...)
50

Vernetzt! / Kontaktnetze von Frauen um 1848 in den deutschen und italienischen Staaten / Interconnected!

Frontoni, Giulia 09 April 2014 (has links)
No description available.

Page generated in 0.0605 seconds