• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 204
  • 79
  • 27
  • 18
  • 10
  • 5
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 421
  • 286
  • 113
  • 84
  • 80
  • 57
  • 55
  • 50
  • 47
  • 43
  • 38
  • 36
  • 35
  • 29
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Monofilament entangled materials : relationship between microstructural properties and macroscopic behaviour / Matériaux monofilamentaires enchevêtrés : étude des relations microstructure-propriétés mécaniques

Courtois, Loïc 13 December 2012 (has links)
Les matériaux architecturés attirent de plus en plus d’attentions de par leur capacité à combiner différentes propriétés ciblées. Dans ce contexte, les matériaux enchevêtrés, et plus particulièrement les matériaux monofilamentaires enchevêtrés, présentent des propriétés intéressantes en terme de légèreté, de ductilité, et de facteur de perte. En raison de l’architecture interne complexe de ces matériaux, leur caractérisation et la compréhension des mécanismes de déformation nécessitent une méthodologie adaptée. Dans cette étude, l’enchevêtrement est réalisé manuellement pour différents fils d’acier et soumis à une compression oedométrique. De manière à étudier le comportement sous charge de ce type de matériaux, un dispositif de compression uniaxiale guidée a été mis en place dans le tomographe. Il est ainsi possible de suivre, à l’aide de mesures quantitatives, la déformation de l’échantillon et l’évolution du nombre de contacts pour différentes fraction volumiques. L’utilisation de ces données microstructurales a permis un meilleure compréhension du comportement mécanique de tels enchevêtrements. Une rigidité pouvant varier de 20 à 200 MPa en fonction des paramètres de mise en forme (diamètre et forme du fil, fraction volumique, matériau constitutif) a été déterminé. Un matériau homogène de rigidité plus faible a pu être obtenu en pré-déformant le fil sous forme de ressort avant enchevêtrement. Le facteur de perte du matériau a ensuite été mesuré à la fois sous chargement statique et dynamique. L’analyse mécanique dynamique a mis en évidence la capacité de ce matériau à absorber de l’énergie avec une valeur de facteur de perte d’environ 0.25. Les propriétés mécaniques du matériau ont tout d’abord été modélisées analytiquement par un modèle de poutres et un bon accord avec les résultats expérimentaux a pu être obtenu en définissant un paramètre d’orientation equivalent, spécifique à la compression oedométrique de matériaux enchevêtrés. En parallèle, un modéle éléments discrets a été developé afin de simuler le comportement en compression de matériaux monofilamentaires enchevêtrés. Ce modèle s’appuie sur une discrétisation du fil en éléments sphériques, acquise à partir de données de tomographie. Bien que seul le comportement élastique du fil constitutif ait été pris en compte, une bonne adéquation entre résultats numériques et expérimentaux a été obtenu en ajustant les coefficients de frottement du modèle. / Playing with the architecture of a material is a clever way of tailoring its properties for multi-functional applications. A lot of research have been made, in the past few years, on what is now referred to as “architectured materials” (metal foams, entangled materials, steel wool, etc), mostly for their capacity to be engineered in order to present specific properties, inherent to their architecture. In this context, some studies have been carried out concerning entangled materials but only a few on monofilament entangled materials. Such a material, with no filament ends, could exhibit interesting properties for shock absorption, vibration damping and ductility. In this study, entanglements were manually produced, using different types of wire, and submitted to constrained (inside a PTFE die) in-situ compressive tests within the laboratory tomograph. This technique enabled a 3D, non destructive, microstructural characterization of the complex architecture of these materials, along with the analysis of their macroscopic mechanical properties. The stiffness of this material was found to be in a 20-200 MPa range and homogeneous samples could be obtained, while lowering their stiffness, by pre-deforming the initial wire as a spring. Damping measurements were performed using different types of entanglements (constitutive materials, volume fraction, wire diameter, wire shape) under both monotonic and dynamic loadings and directly linked to the measurements of the number of contacts. The Dynamic Mechanical Analysis underlined the great capacity of this material to absorb energy with a loss factor of about 0.25 and damping was found to decrease with the stiffness of the entanglement. The mechanical properties of this material were first modeled using an analytical “beam” model based on the experimental evolution of the mean distance between contacts and a good agreement was found with the experimental results. In parallel, a Discrete Element Method was used in order to model the compressive behaviour of Monofilament Entangled Materials. Although purely elastic properties were taken into account in the model, a very good agreement with the experimental results was obtained by adjusting the friction coefficients of the model. This tends to prove that the plasticity of these entangled materials is rather due to the structure (friction) than to the constitutive material itself.
402

Transfert d'information quantique et intrication sur réseaux photoniques

Bossé, Éric-Olivier 08 1900 (has links)
No description available.
403

Synchronisation toute optique d’un réseau de communication quantique / All-optical synchronization for quantum networking

Bin Ngah, Lufti Arif 11 December 2015 (has links)
Ce manuscrit expose le développement de ressources fondamentales pour les communications quantiques à longues distances basées sur les technologies des fibres optiques télécoms et des guides d'onde optiques non linéaires. Après une introduction générale sur les communications quantiques, cette thèse est structurée en trois parties principales. La première partie illustre le développement de deux sources pour la génération de paires de photons intriqués en polarisation et émis à une longueur d'onde télécom via conversion paramétrique spontanée (SPDC) dans des guides d'ondes non linéaires intégrés sur niobate de lithium périodiquement polarisé. Les sources s'appuient respectivement sur un accord de phase de type-II et un accord de phase de type-0 et sur des solutions de filtrage et d'interférométrie mises en place après le cristal non linéaire. Dans la seconde partie, sont discutées les réalisations de deux sources de photons uniques annoncés haut débit. La première s'appuie sur le multiplexage spatial sur puce de photons uniques annoncés. La seconde exploite le multiplexage temporel passif grâce à l'utilisation d'un laser télécom cadencé à 10 GHz. Enfin, nous présentons une approche tout-optique visant la synchronisation de sources distantes de paires de photons intriqués, agencées selon une architecture de type relais quantique distribué. Cette technique innovante repose sur l'utilisation d'un laser télécom impulsionnel en tant qu'horloge optique de référence. Cette horloge autorise la synchronisation de l'émission de paires de photons dans la bande C des télécoms en deux lieux distants. Des résultats préliminaires d'interférence à deux photons sont montrés et discutés. / This manuscript reports the development of fundamental resources for long distance quantum communication based on fibre telecom technology and non-linear optical waveguides. After a general introduction on quantum communication, the thesis is structured along three parts. The first part illustrates the development of two photonic polarization entanglement sources suitable for quantum networking. Both sources generate paired photons at telecom wavelength via spontaneous parametric down conversion (SPDC) in periodically poled lithium niobate waveguides (PPLN/W). They rely on type-II and type 0 phase matching, respectively. In the second part, two high quality heralded single photon sources are highlighted. The first one relies on on-chip generation and spatial multiplexing of heralded single photons towards achieving higher bit rates. The second one takes advantage of passive temporal multiplexing of a single SPDC process. Finally, an all-optical approach towards efficient and accurate synchronization of remote entangled photon pair sources within quantum relay architecture over long distances is presented. This particular synchronization technique highlights the use of ultra-fast picosecond pulsed telecom fiber laser, operating at 2.5 GHz repetition rate, acting as a master optical clock, enabling to accurately synchronize the emission of photon pairs in the telecom C-band of wavelengths at two remote locations. This innovative approach is applied for synchronizing two remote PLLN/W based sources operated at 2.5 GHz, and preliminary results on two-photon interference obtained with single photons coming from each source are shown and discussed.
404

Studies Of Electronic, Magnetic And Entanglement Properties Of Correlated Models In Low-Dimensional Systems

Sahoo, Shaon 09 1900 (has links) (PDF)
This thesis consists of six chapters. The first chapter gives an introduction to the field of low-dimensional magnetic and electronic systems and relevant numerical techniques. The recent developments in molecular magnets are highlighted. The numerical techniques are reviewed along with their advantages and disadvantages from the present perspective. Study of entanglement of a system can give a great insight into the system. At the last part of this chapter a general overview is given regarding entanglement, its measures and its significance in studying many-body systems. Chapter 2 deals with the technique that has been developed by us for the full symmetry adaptation of non-relativistic Hamiltonians. It is advantageous both computationally and physically/chemically to exploit both spin and spatial symmetries of a system. It has been a long-standing problem to target a state which has definite total spin and also belongs to a definite irreducible representation of a point group, particularly for non-Abelian point groups. A very general technique is discussed in this chapter which is a hybrid method based on valence-bond basis and the basis of the z-component of the total spin. This technique is not only applicable to a system with arbitrary site spins and belonging to any point group symmetry, it is also quite easy to implement computationally. To demonstrate the power of the method, it is applied to the molecular magnetic system, Cu6Fe8, with cubic symmetry. In chapter 3, the extension of the previous hybrid technique to electronic systems is discussed. The power of the method is illustrated by applying it to a model icosahedral half-filled electronic system. This model spans a huge Hilbert space (dimension 1,778,966) and is in the largest non-Abelian point group. All the eigenstates of the model are obtained using our technique. Chapter 4 deals with the thermodynamic properties of an important class of single-chain magnets (SCMs). This class of SCMs has alternate isotropic spin-1/2 units and anisotropic high spin units with the anisotropy axes being non-collinear. Here anisotropy is assumed to be large and negative, as a result, anisotropic units behave like canted spins at low temperatures; but even then simple Ising-type model does not capture the essential physics of the system due to quantum mechanical nature of the isotropic units. A transfer matrix (TM) method is developed to study statistical behavior of this class of SCMs. For the first time, it is also discussed in detail that how weak inter-chain interactions can be treated by a TM method. The finite size effect is also discussed which becomes important for low temperature dynamics. This technique is applied to a real helical chain magnet, which has been studied experimentally. In the fifth chapter a bipartite entanglement entropy of finite systems is studied using exact diagonalization techniques to examine how the entanglement changes in the presence of long-range interactions. The PariserParrPople model with long-range interactions is used for this purpose and corresponding results are com-pared with those for the Hubbard and Heisenberg models with short-range interactions. This study helps understand why the density matrix renormalization group (DMRG) technique is so successful even in the presence of long-range interactions in the PPP model. It is also investigated if the symmetry properties of a state vector have any significance in relation to its entanglement. Finally, an interesting observation is made on the entanglement profiles of different states, across the full energy spectrum, in comparison with the corresponding profile of the density of states. The entanglement can be localized between two noncomplementary parts of a many-body system by performing local measurements on the rest of the system. This localized entanglement (LE) depends on the chosen basis set of measurement (BSM). In this chapter six, an optimality condition for the LE is derived, which would be helpful in finding optimal values of the LE, besides, can also be of use in studying mixed states of a general bipartite system. A canonical way of localizing entanglement is further discussed, where the BSM is not chosen arbitrarily, rather, is fully determined by the properties of a system. The LE obtained in this way, called the localized entanglement by canonical measurement (LECM), is not only easy to calculate practically, it provides a nice way to define the entanglement length. For spin-1/2 systems, the LECM is shown to be optimal in some important cases. At the end of this chapter, some numerical results are presented for j1 −j2 spin model to demonstrate how the LECM behaves.
405

Higher Spins, Entanglement Entropy And Holography

Datta, Shouvik 01 1900 (has links) (PDF)
The idea of holography [1, 2] finds a concrete realization in form of the AdS/CFT correspondence [3, 4]. This duality relates a field theory with conformal symmetries to quantum gravity living in one higher dimension. In this thesis we study aspects of black hole quasinormal modes, higher spin theories and entanglement entropy in the context of this duality. In almost all cases we have been able to subject the duality to some precision tests. Quasinormal modes encode the spectrum of black holes and the time-scale of pertur- bations therein [5]. From the dual CFT viewpoint they are the poles of retarded Green's function (or peaks in the spectral function) [6]. Quasinormal modes were previously studied for scalar, gauge field and fermion fluctuations [7]. We solve for these quasinormal modes of higher spin (s _ 2) fields in the background of the BTZ black hole [8, 9]. We obtain an exact solution for a field of arbitrary spin s (integer or half-integer) in the BTZ background. This implies that the BTZ is perhaps the only known black hole background where such an analysis can be done analytically for all bosonic and fermionic fields. The quasinormal modes are shown to match precisely with the poles of the corresponding Green's function in the CFT living on the boundary. Furthermore, we show that one-loop determinants of higher spin fields can also be written as a product form [10] in terms of these quasinormal modes and this agrees with the same obtained by integrating the heat-kernel [11]. We then turn our attention to dualities relating higher-spin gravity to CFTs with W algebra symmetries. Since higher spin gravity does go beyond diffeomorphism invariance, one needs re_ned notions of the usual concepts in differential geometry. For example, in general relativity black holes are defined by the presence of the horizon. However, higher spin gravity has an enlarged group of symmetries of which the diffeomorphisms form a subgroup. The appropriate way of thinking of solutions in higher spin gravity is via characterizations which are gauge invariant [12, 13]. We study classical solutions embedded in N = 2 higher spin supergravity. We obtain a general gauge-invariant condition { in terms of the odd roots of the superalgebra and the eigenvalues of the holonomy matrix of the background { for the existence of a Killing spinor such that these solutions are supersymmetric [14]. We also study black holes in higher spin supergravity and show that the partition function of these black holes match exactly with that obtained from a CFT with the same asymptotic symmetry algebra [15]. This involved studying the asymptotic symmetries of the black hole and thereby developing the holographic dictionary for the bulk charges and chemical potentials with the corresponding quantities of the CFT. We finally investigate entanglement entropy in the AdS3/CFT2 context. Entanglement entropy is an useful non-local probe in QFT and many-body physics [16]. We analytically evaluate the entanglement entropy of the free boson CFT on a circle at finite temperature (i.e. on a torus) [17]. This is one of the simplest and well-studied CFTs. The entanglement entropy is calculated via the replica trick using correlation functions of bosonic twist operators on the torus [18]. We have then set up a systematic high temperature expansion of the Renyi entropies and determined their finite size corrections. These _nite size corrections both for the free boson CFT and the free fermion CFT were then compared with the one-loop corrections obtained from bulk three dimensional handlebody spacetimes which have higher genus Riemann surfaces (replica geometry) as its boundary [19]. One-loop corrections in these geometries are entirely determined by the spectrum of the excitations present in the bulk. It is shown that the leading _nite size corrections obtained by evaluating the one-loop determinants on these handlebody geometries exactly match with those from the free fermion/boson CFTs. This provides a test for holographic methods to calculate one-loop corrections to entanglement entropy. We also study conformal field theories in 1+1 dimensions with W-algebra symmetries at _nite temperature and deformed by a chemical potential (_) for a higher spin current. Using OPEs and uniformization techniques, we show that the order _2 correction to the Renyi and entanglement entropies (EE) of a single interval in the deformed theory is universal [20]. This universal feature is also supported by explicit computations for the free fermion and free boson CFTs { for which the EE was calculated by using the replica trick in conformal perturbation theory by evaluating correlators of twist fields with higher spin operators [21]. Furthermore, this serves as a verification of the holographic EE proposal constructed from Wilson lines in higher spin gravity [22, 23]. We also examine relative entropy [24] in the context of higher-spin holography [25]. Relative entropy is a measure of distinguishability between two quantum states. We confirm the expected short-distance behaviour of relative entropy from holography. This is done by showing that the difference in the modular Hamiltonian between a high-temperature state and the vacuum matches with the difference in the entanglement entropy in the short-subsystem regime.
406

Interplay of excitation transport and atomic motion in flexible Rydberg aggregates

Leonhardt, Karsten 18 October 2016 (has links)
Strong resonant dipole-dipole interactions in flexible Rydberg aggregates enable the formation of excitons, many-body states which collectively share excitation between atoms. Exciting the most energetic exciton of a linear Rydberg chain whose outer two atoms on one end are closely spaced causes the initiation of an exciton pulse for which electronic excitation and diatomic proximity propagate directed through the chain. The emerging transport of excitation is largely adiabatic and is enabled by the interplay between atomic motion and dynamical variation of the exciton. Here, we demonstrate the coherent splitting of such pulses into two modes, which induce strongly different atomic motion, leading to clear signatures of nonadiabatic effects in atomic density profiles. The mechanism exploits local nonadiabatic effects at a conical intersection, turning them from a decoherence source into an asset. The conical intersection is a consequence of the exciton pulses moving along a linear Rydberg chain and approaching an additional linear, perpendicularly aligned Rydberg chain. The intersection provides a sensitive knob controlling the propagation direction and coherence properties of exciton pulses. We demonstrate that this scenario can be exploited as an exciton switch, controlling direction and coherence properties of the joint pulse on the second of the chains. Initially, we demonstrate the pulse splitting on planar aggregates with atomic motion one-dimensionally constrained and employing isotropic interactions. Subsequently, we confirm the splitting mechanism for a fully realistic scenario in which all spatial restrictions are removed and the full anisotropy of the dipole-dipole interactions is taken into account. Our results enable the experimental observation of non-adiabatic electronic dynamics and entanglement transport with Rydberg atoms. The conical intersection crossings are clearly evident, both in atomic mean position information and excited state spectra of the Rydberg system. This suggests flexible Rydberg aggregates as a test-bench for quantum chemical effects in experiments on much inflated length scales. The fundamental ideas discussed here have general implications for excitons on a dynamic network.
407

Émergence du bruit dans les systèmes ouverts classiques et quantiques / Appearance of noise in classical and quantum open systems

Deschamps, Julien 22 March 2013 (has links)
Nous nous intéressons dans cette thèse à certains modèles mathématiques permettant une description de systèmes ouverts classiques et quantiques. Dans l'étude de ces systèmes en interaction avec un environnement, nous montrons que la dynamique induite par l'environnement sur le système donne lieu à l'apparition de bruits. Dans une première partie de la thèse, dédiée aux systèmes classiques, le modèle décrit est le schéma d'interactions répétées. Etant à la fois hamiltonien et markovien, ce modèle en temps discret permet d'implémenter facilement la dissipation dans des systèmes physiques. Nous expliquons comment le mettre en place pour des systèmes physiques avant d'en étudier la limite en temps continu. Nous montrons la convergence Lp et presque sûre de l'évolution de certains systèmes vers la solution d'une équation différentielle stochastique, à travers l'étude de la limite de la perturbation d'un schéma d'Euler stochastique. Dans une seconde partie de la thèse sur les systèmes quantiques, nous nous intéressons dans un premier temps aux actions d'environnements quantiques sur des systèmes quantiques aboutissant à des bruits classiques. A cette fin, nous introduisons certains opérateurs unitaires appelés « classiques », que nous caractérisons à l'aide de variables aléatoires dites obtuses. Nous mettons en valeur comment ces variables classiques apparaissent naturellement dans ce cadre quantique à travers des 3-tenseurs possédant des symétries particulières. Nous prouvons notamment que ces 3-tenseurs sont exactement ceux diagonalisables dans une base orthonormée. Dans un second temps, nous étudions la limite en temps continu d'une variante des interactions répétées quantiques dans le cas particulier d'un système biparti, c'est-à-dire composé de deux systèmes isolés sans interaction entre eux. Nous montrons qu'à la limite du temps continu, une interaction entre ces sous-systèmes apparaît explicitement sous forme d'un hamiltonien d'interaction; cette interaction résulte de l'action de l'environnement et de l'intrication qu'il crée / This dissertation is dedicated to some mathematical models describing classical and quantum open systems. In the study of these systems interacting with an environment, we particularly show that the dynamics induced by the environment leads to the appearance of noises. In a first part of this thesis, devoted to classical open systems, the repeated interaction scheme is developed. This discrete-time model, being Hamiltonian and Markovian at the same time, has the advantage to easily implement the dissipation in physical systems. We explain how to set this scheme up in some physical examples. Then, we investigate the continuous-time limit of these repeated interactions. We show the Lp and almost sure convergences of the evolution of the system to the solution of a stochastic differential equation, by studying the limit of a perturbed Stochastic Euler Scheme. In a second part of this dissertation on quantum systems, we characterize in a first work classical actions of a quantum environment on a quantum system. In this study, we introduce some “classical” unitary operators representing these actions and we highlight a strong link between them and some random variables, called obtuse random variables. We explain how these random variables are naturally connected to some 3-tensors having some particular symmetries. We particularly show that these 3 tensors are exactly the ones that are diagonalizable in some orthonormal basis. In a second work of this part, we study the continuous-time limit of a variant of the repeated interaction scheme in a case of a bipartite system, that is, a system made of two isolated systems not interaction together. We prove that an explicit Hamiltonian interaction between them appears at the limit. This interaction is due to the action of the environment and the entanglement between the two systems that it creates
408

Entropie d’intrication de régions squelettiques

Vigeant, Alex 04 1900 (has links)
Ces vingts dernières années ont vu le concept d’intrication quantique prendre une place importante dans l’étude des systèmes quantiques à N corps rencontrés par exemple en théorie de la matière condensée. L’entropie d’intrication est une mesure de l’intrication entre deux parties formant un système dans un état quantique pur. L’étude de cette entropie permet d’obtenir des informations cruciales sur les systèmes considérés. Dans ce mémoire, nous étudions l’entropie d’intrication de régions dites squelettiques, pour un réseau harmonique bidimensionnel correspondant à une version discrète de la théorie d’un champ scalaire relativiste sans masse. Une région squelettique ne possède pas de volume, en opposition à une région dite pleine. Au sein d’un réseau à deux dimensions, il s’agira d’une chaîne finie de sites. Nous montrons que le comportement de l’entropie d’intrication d’une région unidimensionnelle diffère de celui de l’entropie d’une région pleine (à deux dimensions). En particulier, nous montrons qu’il apparaît de nouveaux termes universels associés à ces nouveaux comportements pour des régions squelettiques. Notre étude est principalement menée à l’aide de calculs numériques, bien que certains résultats soient obtenus de manière semi-analytique. / In the last twenty years, the concept of entanglement entropy has taken an important place in the study of N-body quantum systems seen in condensed matter, among others. Entanglement entropy is an entanglement measure between two parts forming a system in a pure quantum state. The study of this entropy allows one to obtain crucial information about N-body quantum systems. In this master’s thesis, we will study the entanglement entropy of so-called skeletal regions, for a harmonic two-dimensional lattice corresponding to a discrete version of a massless relativistic scalar field theory. A skeletal region doesn’t possess a volume, unlike a region said to be full. In the case of a two-dimensional lattice, the skeletal region is defined by a finite chain of sites. We show that the behaviour of entanglement entropy of an unidimensional region differs from the case of a full region (which is two-dimensional). In particular, we show the appearance of new universal coefficients linked to skeletal regions. Our study consists mainly of numerical calculations, although some results are obtained in a semi-analytical manner.
409

Triply-Resonant Cavity-Enhanced Spontaneous Parametric Down-Conversion

Ahlrichs, Andreas 22 July 2019 (has links)
Die verlässliche Erzeugung einzelner Photonen mit wohldefinierten Eigenschaften in allen Freiheitsgraden ist entscheidend für die Entwicklung photonischer Quantentechnologien. Derzeit basieren die wichtigsten Einzelphotonenquellen auf dem Prozess der spontanen parameterischen Fluoreszenz (SPF), bei dem ein Pumpphoton in einem nichtlinearen Medium spontan in ein Paar aus Signal und Idlerphotonen zerfällt. Resonator-überhöhte SPF, also das Plazieren des nichtlinearen Mediums in einem optischen Resonator, ist ein weit verbreitetes Verfahren, um Einzelphotonenquellen mit erhöhter Helligkeit und angepassten spektralen Eigenschaften zu konstruieren. Das Anpassen der spektralen Eigenschaften durch gezielte Auswahl der Resonatoreigenschaften ist besonders für hybride Quantentechnologienvon Bedeutung, welche darauf abzielen, unterschiedliche Quntensysteme so zu kombinieren, dass sich deren Vorteile ergänzen. Diese Arbeit stellt eine umfassende theoretische und experimentelle Analyse der dreifach resonanten SPF vor. Das aus der Literatur bekannte theoretische Modell wird diesbezüglich verbessert, dass der Einfluss sämtlicher Eigenschaften des Resonators auf die wichtigen experimentellen Größen (z.B. die Erzeugungsrate) gezielt ausgewertet werden kann. Dieses verbesserte und hoch genaue Modell stellt eine wichtige Grundlage für die Entwicklung und Optimierung neuartiger Photonenpaarquellen dar. Im experimentellen Teil dieser Arbeit wird der Aufbau und die Charakterisierung einer dreifach resonanten Photonenpaarquellen präsentiert. Die neu entwickelte digitale Regelelektronik sowie ein hochstabiler, schmalbandiger Monochromator welcher auf monolitischen, polarisationsunabhängigen Fabry-Pérot Resonatoren basiert, werden vorgestellt. Indem diese temperaturstabilisierten Resonatoren als Spetrumanalysator verwendet werden, wird zum ersten Mal die Frequenzkammstruktur des Spektrums der erzeugten Signal- und Idlerphotonen nachgewiesen. Des Weiteren wird der Einfluss der Pumpresonanz auf die Korrelationsfunktion und die Zweiphotoneninterferenz von Signal- und Idlerphotonen simuliert und vermessen. Abschließend werden Experimente aus dem Bereich der hybriden Quantennetzwerke präsentiert, in welchen Quantenfrequenzkonversion verwendet wird um die erzeugten Signalphotonen in das Telekommunikationsband zu transferieren. Dabei wird nachgewiesen, dass das temporale Wellenpaket durch die Konversion nicht beeinflusst wird und aufgezeigt, wie Quantennetzwerke von kommerziellen Telekommunikationstechnologien profitieren können. / The consistent generation of single photons with well-defined properties in all degrees of freedom is crucial for the development of photonic quantum technologies. Today, the most prominent sources of single photons are based on the process of spontaneous parametric down-conversion (SPDC) where a pump photon spontaneously decays into a pair of signal and idler photons inside a nonlinear medium. Cavity-enhanced SPDC, i.e., placing the nonlinear medium inside an optical cavity, is widely used to build photon-pair sources with increased brightness and tailored spectral properties. This spectral tailoring by selective adjustment of the cavity parameters is of particular importance for hybrid quantum technologies which seek to combine dissimilar quantum systems in a way that their advantages complement each other. This thesis provides a comprehensive theoretical and experimental analysis of triply-resonant cavity-enhanced SPDC. We improve the theoretical model found in the literature such that the influence of all resonator properties on the important experimental parameters (e.g., the generation rate) can be analyzed in detail. This convenient and highly accurate model of cavity-enhanced SPDC represents an important basis for the design and optimization of novel photonpair sources. The experimental part of this thesis presents the setup and characterization of a triply-resonant photon-pair source. We describe the digital control system used to operate this source over days without manual intervention, and we present a highly stable, narrow-linewidth monochromator based on cascaded, polarization-independent monolithic Fabry-Pérot cavities. Utilizing these temperature-stabilized cavities as a spectrum analyzer, we verify, for the first time, the frequency comb spectral structure of photons generated by cavity-enhanced SPDC. We further simulate and measure the impact of the pump resonance on the temporal wave-packets and the two-photon interference of signal and idler photons. Finally, we present a series of experiments in the context of hybrid quantum networks where we employ quantum frequency conversion (QFC) to transfer the generated signal photons into the telecommunication band. We verify the preservation of the temporal wave-packet upon QFC and highlight how quantum networks can benefit from advanced commercial telecommunication technologies.
410

Hamiltoniens locaux et information quantique en dimensions réduites

Boudreault, Christian 11 1900 (has links)
Cette thèse exploite les liens profonds entre la physique des systèmes quantiques locaux, les propriétés non locales de leurs états fondamentaux et le contenu en information de ces états. Les deux premiers chapitres sont consacrés à l’application des systèmes quantiques locaux pour les fins d’une tâche informationnelle précise, soit le calcul quantique. Au terme d’un bref survol de la théorie, nous proposons un patron pour le calcul quantique universel et évolutif pouvant être réalisé sur une grande variété de plateformes physiques, et démontrons qu’il est particulièrement résilient face à un bruit anisotrope. Les quatre derniers chapitres sont pour leur part consacrés à l’approche informationnelle des systèmes quantiques à corps multiples. Nous décrivons les principales propriétés des corrélations et de l’intrication dans les états fondamentaux des systèmes de dimensions réduites les plus courants, en distinguant systèmes non critiques et systèmes critiques. Nous montrons que ces propriétés sont fortement modifiées par la présence de frustration géométrique dans les chaînes de spins. Enfin, nous réalisons une analyse exhaustive des corrélations et de l’intrication dans les états fondamentaux de deux théories quantiques de champs non triviales. / This thesis exploits the deep connections between the physics of local quantum systems, the nonlocal features in their ground states, and the information content of these states. The first two chapters are dedicated to the application of local quantum systems for the purpose of a definite information-theoretical task, namely quantum computation. After a brief survey of the theory, we propose a scheme for scalable universal quantum computation that, we argue, could be implemented on a wide variety of physical platforms, and show that it is particularly resilient to anisotropic noise. The last four chapters are dedicated to the information-theoretical approach of many-body quantum systems. We describe the main properties of correlations and entanglement in the ground states of the most common low-dimensional many-body systems, distinguishing between noncritical systems and critical ones. We show how these properties can be dramatically modified by the presence of geometric frustration in spin chains. Finally, we perform an intensive study of correlations and entanglement in the ground states of two nontrivial one-dimensional quantum field theories.

Page generated in 0.0603 seconds