Spelling suggestions: "subject:"estimateurs"" "subject:"estimate""
81 |
Contribution à la synthèse de lois de pilotage et de guidage pour les minidronesDrouin, Antoine 20 January 2012 (has links) (PDF)
Les applications mettant en oeuvre les minidrones ont connu un développement très rapide ces dernières années. Ces applications concernent pour beaucoup l'amélioration de notre cadre de vie et principalement de notre sécurité face à des aléas naturels pour lesquels de nouveaux moyens de surveillance ont besoin d'être mis au point. La plupart des missions confiées aux minidrones supposent la réalisation de trajectoires soit planifiées à l'avance, soit définies au fur et à mesure que de nouvelles informations sont disponibles. La qualité du suivi de trajectoire a d'importantes conséquences pour le succès de ces missions. L'objectif principal de cette thèse est de contribuer à la synthèse de lois de pilotage/guidage pour les minidrones présentant des performances améliorées sur un domaine de vol étendu et sur une panoplie de missions diversifiées. Ainsi les minidrones sont ici appréhendés comme des systèmes fortement non linéaires, très souvent naturellement instables, aux paramètres physiques partiellement connus et susceptibles d'être soumis à de fortes perturbations. Les travaux de cette thèse portent donc sur la synthèse de lois de commande non linéaire (commande non linéaire inverse, commande différentiellement plate, commande par \emph{Backstepping}) intégrant, dans le cadre de la commande adaptative, des processus d'apprentissage en ligne. Le principal cas d'étude considéré dans cette thèse est celui du guidage d'un minidrone de type quadrirotor qui présente des caractéristiques opérationnelles particulièrement intéressantes : atterrissage et décollage verticaux, capacité de vol stationnaire, grande manoeuvrabilité même à basse vitesse. Ainsi la dynamique de son vol a été modélisée et les propriétés mathématiques du modèle retenu ont été exploitées pour mettre au point la structure de commande dont les performances ont été évaluées par simulation sur une multitude de trajectoires de guidage.
|
82 |
Sondages pour données fonctionnelles : construction de bandes de confiance asymptotiques et prise en compte d'information auxiliaireJosserand, Etienne 12 October 2011 (has links) (PDF)
Lorsque des bases de données fonctionnelles sont trop grandes pour être observées de manière exhaustive, les techniques d'échantillonnage fournissent une solution efficace pour estimer des quantités globales simples, telles que la courbe moyenne, sans être obligé de stocker toutes les données. Dans cette thèse, nous proposons un estimateur d'Horvitz-Thompson de la courbe moyenne, et grâce à des hypothèses asymptotiques sur le plan de sondage nous avons établi un Théorème Central Limite Fonctionnel dans le cadre des fonctions continues afin d'obtenir des bandes de confiance asymptotiques. Pour un plan d'échantillonnage à taille fixe, nous montrons que le sondage stratifié peut grandement améliorer l'estimation comparativement au sondage aléatoire simple. De plus, nous étendons la règle d'allocation optimale de Neyman dans le contexte fonctionnel. La prise en compte d'information auxiliaire a été développée grâce à des estimateurs par modèle assisté, mais aussi en utilisant directement cette information dans les poids d'échantillonnage avec le sondage à probabilités inégales proportionnelles à la taille. Le cas des courbes bruitées est également étudié avec la mise en place d'un lissage par polynômes locaux. Pour sélectionner la largeur de la fenêtre de lissage, nous proposons une méthode de validation croisée qui tient compte des poids de sondage. Les propriétés de consistance de nos estimateurs sont établies, ainsi que la normalité asymptotique des estimateurs de la courbe moyenne. Deux méthodes de constructions des bandes de confiance sont proposées. La première utilise la normalité asymptotique de nos estimateurs en simulant un processus Gaussien conditionnellement à sa fonction de covariance afin d'en estimer la loi du sup. La seconde utilise des techniques de bootstrap en population finie qui ne nécessitent pas l'estimation de la fonction de covariance.
|
83 |
Optimisation de l’administration des médicaments chez les enfants transplantés grâce à la pharmacocinétique de populationKassir, Nastya 03 1900 (has links)
Ce travail de thèse porte sur l’application de la pharmacocinétique de population dans le but d’optimiser l’utilisation de certains médicaments chez les enfants immunosupprimés et subissant une greffe. Parmi les différents médicaments utilisés chez les enfants immunosupprimés, l’utilisation du busulfan, du tacrolimus et du voriconazole reste problématique, notamment à cause d’une très grande variabilité interindividuelle de leur pharmacocinétique rendant nécessaire l’individualisation des doses par le suivi thérapeutique pharmacologique. De plus, ces médicaments n’ont pas fait l’objet d’études chez les enfants et les doses sont adaptées à partir des adultes. Cette dernière pratique ne prend pas en compte les particularités pharmacologiques qui caractérisent l’enfant tout au long de son développement et rend illusoire l’extrapolation aux enfants des données acquises chez les adultes.
Les travaux effectués dans le cadre de cette thèse ont étudié successivement la pharmacocinétique du busulfan, du voriconazole et du tacrolimus par une approche de population en une étape (modèles non-linéaires à effets mixtes). Ces modèles ont permis d’identifier les principales sources de variabilités interindividuelles sur les paramètres pharmacocinétiques. Les covariables identifiées sont la surface corporelle et le poids. Ces résultats confirment l’importance de tenir en compte l’effet de la croissance en pédiatrie. Ces paramètres ont été inclus de façon allométrique dans les modèles. Cette approche permet de séparer l’effet de la mesure anthropométrique d’autres covariables et permet la comparaison des paramètres pharmacocinétiques en pédiatrie avec ceux des adultes. La prise en compte de ces covariables explicatives devrait permettre d’améliorer la prise en charge a priori des patients.
Ces modèles développés ont été évalués pour confirmer leur stabilité, leur performance de simulation et leur capacité à répondre aux objectifs initiaux de la modélisation.
Dans le cas du busulfan, le modèle validé a été utilisé pour proposer par simulation une posologie qui améliorerait l’atteinte de l’exposition cible, diminuerait l’échec thérapeutique et les risques de toxicité.
Le modèle développé pour le voriconazole, a permis de confirmer la grande variabilité interindividuelle dans sa pharmacocinétique chez les enfants immunosupprimés. Le nombre limité de patients n’a pas permis d’identifier des covariables expliquant cette variabilité.
Sur la base du modèle de pharmacocinétique de population du tacrolimus, un estimateur Bayesien a été mis au point, qui est le premier dans cette population de transplantés hépatiques pédiatriques. Cet estimateur permet de prédire les paramètres pharmacocinétiques et l’exposition individuelle au tacrolimus sur la base d’un nombre limité de prélèvements.
En conclusion, les travaux de cette thèse ont permis d’appliquer la pharmacocinétique de population en pédiatrie pour explorer les caractéristiques propres à cette population, de décrire la variabilité pharmacocinétique des médicaments utilisés chez les enfants immunosupprimés, en vue de l’individualisation du traitement. Les outils pharmacocinétiques développés s’inscrivent dans une démarche visant à diminuer le taux d'échec thérapeutique et l’incidence des effets indésirables ou toxiques chez les enfants immunosupprimés suite à une transplantation. / This thesis deals with the application of population pharmacokinetics in order to optimize the use of certain medications in immunocompromised children undergoing transplantation. Among the various drugs used in immunocompromised children, the use of busulfan, tacrolimus and voriconazole remains problematic, particularly because of high interindividual variability in their pharmacokinetics necessitating individualized doses based on therapeutic drug monitoring. In addition, these drugs have not been studied in children and the doses are adapted from adults. This practice does not take into account the pharmacological characteristics of pediatrics throughout their development and makes illusory the extrapolation of data acquired in adults to children.
The work done in this thesis studied sequentially the pharmacokinetics of busulfan, voriconazole and tacrolimus by a population approach (non-linear mixed effects models). The developed models have identified the main sources of interindividual variability in the pharmacokinetic parameters of these drugs. The identified covariates are body surface area and weight. These results confirm the importance of taking into account the effect of growth in children. These parameters were allometrically included in the models. This approach allows separating the effect of size from other covariates and enables the comparison of pediatric pharmacokinetic parameters with those of adults. The inclusion of these explanatory covariates should improve the management a priori of patients.
The developed models were evaluated to confirm their stability, performance, and their ability to answer the original objectives of modeling.
In the case of busulfan, the validated model was used to simulate dosing regimens that improve reaching the target exposure, reduce treatment failure and toxicity episodes.
The developed population pharmacokinetic model for voriconazole confirmed the large variability in its pharmacokinetics in immunocompromised children. The limited data did not allow identification of covariates explaining this variability.
Based on the population pharmacokinetic model of tacrolimus, a Bayesian estimator was developed, which is the first in this population of pediatric liver transplant recipients. This estimator can predict pharmacokinetic parameters and individual exposure to tacrolimus based on a limited number of samples.
In conclusion, this thesis allowed applying the population pharmacokinetics approach in pediatrics to explore the characteristics of this population and describe the pharmacokinetic variability of drugs used in immunocompromised children, for the individualization of treatment. Pharmacokinetic tools developed are part of efforts to decrease the rate of treatment failure and the incidence of adverse and toxic events in immunocompromised and transplanted pediatrics.
|
84 |
Evaluation et développement de modèles sous-maille pour la simulation des grandes échelles du mélange turbulent basés sur l'estimation optimale et l'apprentissage supervisé / Evaluation et development of subgrid scale models for large eddy simulation of mixing based on optimal estimator and machin learningVollant, Antoine 20 October 2015 (has links)
Dans ce travail, des méthodes de diagnostics et des techniques de développement de modèles sous-maille sont proposées pour la simulation des grandes échelles (SGE) du mélange turbulent. Plusieurs modèles sous-maille issus de ces stratégies sont ainsi présentés pour illustrer ces méthodes.Le principe de la SGE est de résoudre les grandes échelles de l'écoulement responsables des transferts principaux et de modéliser l'action des petites échelles de l'écoulement sur les échelles résolues. Au cours de ce travail, nous nous sommes appuyés sur le classement des modèles sous-maille en deux catégories. Les modèles "fonctionnels" qui s'attachent à reproduire les transferts énergétiques entre les échelles résolues et les échelles modélisées et les modèles "structurels" qui cherchent à bien reproduire le terme sous-maille. Le premier enjeu important a été d'évaluer la performance des modèles sous-maille en prenant en compte leur comportement à la fois fonctionnel (capacité à reproduire les transferts d'énergie) et structurel (capacité à reproduire le terme sous-maille exact). Des diagnosctics des modèles sous-maille ont pu être conduits avec l'utilisation de la notion d'estimateur optimal ce qui permet de connaitre le potentiel d'amélioration structurelle des modèles. Ces principes ont dans un premier temps servi au développement d'une première famille de modèles sous-maille algébrique appelée DRGM pour "Dynamic Regularized Gradient Model". Cette famille de modèles s'appuie sur le diagnostic structurel des termes issus de la régularisation des modèles de la famille du gradient. D'après les tests menés, cette nouvelle famille de modèle structurel a de meilleures performances fonctionnelles et structurelles que les modèles de la famille du gradient. L'amélioration des performances fonctionnelles consiste à supprimer la prédiction excessive de transferts inverses d'énergie (backscatter) observés dans les modèles de la famille du gradient. Cela permet ainsi de supprimer le comportement instable classiquement observé pour cette famille de modèles. La suite de ce travail propose ensuite d'utiliser l'estimateur optimal directement comme modèle sous-maille. Comme l'estimateur optimal fournit le modèle ayant la meilleure performance structurelle pour un jeu de variables donné, nous avons recherché le jeu de variable optimisant cette performance. Puisque ce jeu comporte un nombre élevé de variables, nous avons utilisé les fonctions d'approximation de type réseaux de neurones pour estimer cet estimateur optimal. Ce travail a mené au nouveau modèle substitut ANNM pour "Artificial Neural Network Model". Ces fonctions de substitution se construisent à partir de bases de données servant à émuler les termes exacts nécessaire à la détermination de l'estimateur optimal. Les tests de ce modèle ont montré qu'il avait de très bonnes perfomances pour des configurations de simulation peu éloignées de la base de données servant à son apprentissage, mais qu'il pouvait manquer d'universalité. Pour lever ce dernier verrou, nous avons proposé une utilisation hybride des modèles algébriques et des modèles de substitution à base de réseaux de neurones. La base de cette nouvelle famille de modèles ACM pour "Adaptative Coefficient Model" s'appuie sur les décompositions vectorielles et tensorielles des termes sous-maille exacts. Ces décompositions nécessitent le calcul de coefficients dynamiques qui sont modélisés par les réseaux de neurones. Ces réseaux bénéficient d'une méthode d'apprentissage permettant d'optimiser directement les performances structurelles et fonctionnelles des modèles ACM. Ces modèles hybrides allient l'universalité des modèles algébriques avec la performance élevée mais spécialisée des fonctions de substitution. Le résultat conduit à des modèles plus universels que l'ANNM. / This work develops subgrid model techniques and proposes methods of diagnosis for Large Eddy Simulation (LES) of turbulent mixing.Several models from these strategies are thus presented to illustrate these methods.The principle of LES is to solve the largest scales of the turbulent flow responsible for major transfers and to model the action of small scales of flowon the resolved scales. Formally, this operation leads to filter equations describing turbulent mixing. Subgrid terms then appear and must bemodeled to close the equations. In this work, we rely on the classification of subgrid models into two categories. "Functional" models whichreproduces the energy transfers between the resolved scales and modeled scales and "Structural" models that seek to reproduce the exact subgrid termitself. The first major challenge is to evaluate the performance of subgrid models taking into account their functional behavior (ability to reproduce theenergy transfers) and structural behaviour (ability to reproduce the term subgrid exactly). Diagnostics of subgrid models have been enabled with theuse of the optimal estimator theory which allows the potential of structural improvement of the model to be evaluated.These methods were initially involved for the development of a first family of models called algebraic subgrid $DRGM$ for "Dynamic Regularized GradientModel". This family of models is based on the structural diagnostic of terms given by the regularization of the gradient model family.According to the tests performed, this new structural model's family has better functional and structural performance than original model's family of thegradient. The improved functional performance is due to the vanishing of inverse energy transfer (backscatter) observed in models of thegradient family. This allows the removal of the unstable behavior typically observed for this family of models.In this work, we then propose the use of the optimal estimator directly as a subgrid scale model. Since the optimal estimator provides the modelwith the best structural performance for a given set of variables, we looked for the set of variables which optimize that performance. Since this set of variablesis large, we use surrogate functions of artificial neural networks type to estimate the optimal estimator. This leads to the "Artificial Neural Network Model"(ANNM). These alternative functions are built from databases in order to emulate the exact terms needed to determine the optimal estimator. The tests of this modelshow that he it has very good performance for simulation configurations not very far from its database used for learning, so these findings may fail thetest of universality.To overcome this difficulty, we propose a hybrid method using an algebraic model and a surrogate model based on artificial neural networks. Thebasis of this new model family $ACM$ for "Adaptive Coefficient Model" is based on vector and tensor decomposition of the exact subgrid terms. Thesedecompositions require the calculation of dynamic coefficients which are modeled by artificial neural networks. These networks have a learning method designedto directlyoptimize the structural and functional performances of $ACM$. These hybrids models combine the universality of algebraic model with high performance butvery specialized performance of surrogate models. The result give models which are more universal than ANNM.
|
85 |
Employment dynamics and innovation / Dynamiques de l'emploi et innovationCalvino, Flavio 06 October 2016 (has links)
Cette thèse de doctorat porte sur la dynamique de l’emploi dans les entreprises et sur la relation entre la dynamique de l’emploi et l’innovation, avec une attention particulière portée sur les entreprises nouvellement créées. Cette thèse conceptualise théoriquement et analyse empiriquement les différents aspects de l’interaction complexe entre le changement technologique et la dynamique de l’emploi, en se concentrant sur les effets hétérogènes des différents types d’innovation sur la croissance de l’emploi. Compte tenu le rôle primordial joué par les nouvelles et jeunes entreprises dans le processus de destruction créatrice et leur apport à la création globale de l’emploi, cette thèse fournit une caractérisation de la contribution nette d’emplois des nouvelles entreprises dans un nombre important de pays, en utilisant des données micro-agrégées issues d’une nouvelle base de données. En outre, elle analyse comment un certain nombre de caractéristiques institutionnelles affectent la création nette d’emplois dans les start-ups, en se concentrant sur les effets hétérogènes des politiques sur les nouvelles entreprises et les entreprises déjà existantes. Cette thèse étudie enfin une caractéristique particulière des lois de distribution des taux de croissance de l’emploi, c’est-à-dire la volatilité de la croissance de l’emploi, que non seulement se révèle être une médiation cruciale des effets des politiques sur la création nette d’emplois, mais a aussi d’importantes implications à la fois micro- et macroéconomiques. / This doctoral thesis focuses on employment dynamics in firms, and on the relationship between employment dynamics and innovation, with a particular focus on the entry process. It conceptualizes theoretically and analyses empirically different aspects of the complex interaction between technical change and employment dynamics, focusing on the heterogeneous effects of different types of innovation on employment growth. In the light of the prominent role of newly-born firms in shaping the creative destruction process and contributing to overall job creation, this thesis provides a characterization of the net job contribution by surviving entrants across a significant number of countries. Using newly collected representative micro-aggregated data, it further analyses whether and how a number of institutional characteristics affect start-ups’ net job creation, focusing on the heterogeneous effects of policies on entrants and incumbents. This thesis finally characterizes a particular feature of the employment growth distributions – employment growth volatility – that not only proves to be crucially mediating the effects of policies on entrants’ net job creation, but also has important micro and macroeconomic implications.
|
86 |
Stochastic modelling using large data sets : applications in ecology and genetics / Modélisation stochastique de grands jeux de données : applications en écologie et en génétiqueCoudret, Raphaël 16 September 2013 (has links)
Deux parties principales composent cette thèse. La première d'entre elles est consacrée à la valvométrie, c'est-à-dire ici l'étude de la distance entre les deux parties de la coquille d'une huître au cours du temps. La valvométrie est utilisée afin de déterminer si de tels animaux sont en bonne santé, pour éventuellement tirer des conclusions sur la qualité de leur environnement. Nous considérons qu'un processus de renouvellement à quatre états sous-tend le comportement des huîtres étudiées. Afin de retrouver ce processus caché dans le signal valvométrique, nous supposons qu'une densité de probabilité reliée à ce signal est bimodale. Nous comparons donc plusieurs estimateurs qui prennent en compte ce type d'hypothèse, dont des estimateurs à noyau.Dans un second temps, nous comparons plusieurs méthodes de régression, dans le but d'analyser des données transcriptomiques. Pour comprendre quelles variables explicatives influent sur l'expression de gènes, nous avons réalisé des tests multiples grâce au modèle linéaire FAMT. La méthode SIR peut être envisagée pour trouver des relations non-linéaires. Toutefois, elle est principalement employée lorsque la variable à expliquer est univariée. Une version multivariée de cette approche a donc été développée. Le coût d'acquisition des données transcriptomiques pouvant être élevé, la taille n des échantillons correspondants est souvent faible. C'est pourquoi, nous avons également étudié la méthode SIR lorsque n est inférieur au nombre de variables explicatives p. / There are two main parts in this thesis. The first one concerns valvometry, which is here the study of the distance between both parts of the shell of an oyster, over time. The health status of oysters can be characterized using valvometry in order to obtain insights about the quality of their environment. We consider that a renewal process with four states underlies the behaviour of the studied oysters. Such a hidden process can be retrieved from a valvometric signal by assuming that some probability density function linked with this signal, is bimodal. We then compare several estimators which take this assumption into account, including kernel density estimators.In another chapter, we compare several regression approaches, aiming at analysing transcriptomic data. To understand which explanatory variables have an effect on gene expressions, we apply a multiple testing procedure on these data, through the linear model FAMT. The SIR method may find nonlinear relations in such a context. It is however more commonly used when the response variable is univariate. A multivariate version of SIR was then developed. Procedures to measure gene expressions can be expensive. The sample size n of the corresponding datasets is then often small. That is why we also studied SIR when n is less than the number of explanatory variables p.
|
87 |
Estimation statistique des paramètres pour les processus de Cox-Ingersoll-Ross et de Heston / Statistical inference for the parameters of the Cox-Ingersoll-Ross process and the Heston processDu Roy de Chaumaray, Marie 02 December 2016 (has links)
Les processus de Cox-Ingersoll-Ross et de Heston jouent un rôle prépondérant dans la modélisation mathématique des cours d’actifs financiers ou des taux d’intérêts. Dans cette thèse, on s’intéresse à l’estimation de leurs paramètres à partir de l’observation en temps continu d’une de leurs trajectoires. Dans un premier temps, on se place dans le cas où le processus CIR est géométriquement ergodique et ne s’annule pas. On établit alors un principe de grandes déviationspour l’estimateur du maximum de vraisemblance du couple des paramètres de dimension et de dérive d’un processus CIR. On établit ensuite un principe de déviations modérées pour l’estimateur du maximum de vraisemblance des quatre paramètres d’un processus de Heston, ainsi que pour l’estimateur du maximum de vraisemblance du couple des paramètres d’un processus CIR. Contrairement à ce qui a été fait jusqu’ici dans la littérature,les paramètres sont estimés simultanément. Dans un second temps, on ne se restreint plus au cas où le processus CIR n’atteint jamais zéro et on propose un nouvel estimateur des moindres carrés pondérés pour le quadruplet des paramètres d’un processus de Heston.On établit sa consistance forte et sa normalité asymptotique, et on illustre numériquement ses bonnes performances. / The Cox-Ingersoll-Ross process and the Heston process are widely used in financial mathematics for pricing and hedging or to model interest rates. In this thesis, we focus on estimating their parameters using continuous-time observations. Firstly, we restrict ourselves to the most tractable situation where the CIR processis geometrically ergodic and does not vanish. We establish a large deviations principle for the maximum likelihood estimator of the couple of dimensionnal and drift parameters of a CIR process. Then we establish a moderate deviations principle for the maximum likelihood estimator of the four parameters of an Heston process, as well as for the maximum likelihood estimator of the couple of parameters of a CIR process. In contrast to the previous literature, parameters are estimated simultaneously. Secondly, we do not restrict ourselves anymore to the case where the CIR process never reaches zero and we introduce a new weighted least squares estimator for the quadruplet of parameters of an Heston process. We establish its strong consitency and asymptotic normality, and we illustrate numerically its good performances.
|
88 |
Sondages pour données fonctionnelles : construction de bandes de confiance asymptotiques et prise en compte d'information auxiliaire / Survey sampling for functionnal data : building asymptotic confidence bands and considering auxiliary informationJosserand, Etienne 12 October 2011 (has links)
Lorsque des bases de données fonctionnelles sont trop grandes pour être observées de manière exhaustive, les techniques d’échantillonnage fournissent une solution efficace pour estimer des quantités globales simples, telles que la courbe moyenne, sans être obligé de stocker toutes les données. Dans cette thèse, nous proposons un estimateur d’Horvitz-Thompson de la courbe moyenne, et grâce à des hypothèses asymptotiques sur le plan de sondage nous avons établi un Théorème Central Limite Fonctionnel dans le cadre des fonctions continues afin d’obtenir des bandes de confiance asymptotiques. Pour un plan d’échantillonnage à taille fixe, nous montrons que le sondage stratifié peut grandement améliorer l’estimation comparativement au sondage aléatoire simple. De plus, nous étendons la règle d’allocation optimale de Neyman dans le contexte fonctionnel. La prise en compte d’information auxiliaire a été développée grâce à des estimateurs par modèle assisté, mais aussi en utilisant directement cette information dans les poids d’échantillonnage avec le sondage à probabilités inégales proportionnelles à la taille. Le cas des courbes bruitées est également étudié avec la mise en place d’un lissage par polynômes locaux. Pour sélectionner la largeur de la fenêtre de lissage, nous proposons une méthode de validation croisée qui tient compte des poids de sondage. Les propriétés de consistance de nos estimateurs sont établies, ainsi que la normalité asymptotique des estimateurs de la courbe moyenne. Deux méthodes de constructions des bandes de confiance sont proposées. La première utilise la normalité asymptotique de nos estimateurs en simulant un processus Gaussien conditionnellement à sa fonction de covariance afin d’en estimer la loi du sup. La seconde utilise des techniques de bootstrap en population finie qui ne nécessitent pas l’estimation de la fonction de covariance. / When collections of functional data are too large to be exhaustively observed, survey sampling techniques provide an effective way to estimate global quantities such as the population mean function, without being obligated to store all the data. In this thesis, we propose a Horvitz–Thompson estimator of the mean trajectory, and with additional assumptions on the sampling design, we state a functional Central Limit Theorem and deduce asymptotic confidence bands. For a fixed sample size, we show that stratified sampling can greatly improve the estimation compared to simple random sampling. In addition, we extend Neyman’s rule of optimal allocation to the functional context. Taking into account auxiliary information has been developed with model-assisted estimators and weighted estimators with unequal probability sampling proportional to size. The case of noisy curves is also studied with the help local polynomial smoothers. To select the bandwidth, we propose a cross-validation criterion that takes into account the sampling weights. The consistency properties of our estimators are established, as well as asymptotic normality of the estimators of the mean curve. Two methods to build confidence bands are proposed. The first uses the asymptotic normality of our estimators by simulating a Gaussian process given estimated the covariance function in order to estimate the law of supremum. The second uses bootstrap techniques in a finite population that does not require to estimate the covariance function.
|
89 |
Analyse statistique de quelques modèles de processus de type fractionnaire / Statistical analysis of some models of fractional type processCai, Chunhao 18 April 2014 (has links)
Cette thèse porte sur l’analyse statistique de quelques modèles de processus stochastiques gouvernés par des bruits de type fractionnaire, en temps discret ou continu.Dans le Chapitre 1, nous étudions le problème d’estimation par maximum de vraisemblance (EMV) des paramètres d’un processus autorégressif d’ordre p (AR(p)) dirigé par un bruit gaussien stationnaire, qui peut être à longue mémoire commele bruit gaussien fractionnaire. Nous donnons une formule explicite pour l’EMV et nous analysons ses propriétés asymptotiques. En fait, dans notre modèle la fonction de covariance du bruit est supposée connue, mais le comportement asymptotique de l’estimateur (vitesse de convergence, information de Fisher) n’en dépend pas.Le Chapitre 2 est consacré à la détermination de l’entrée optimale (d’un point de vue asymptotique) pour l’estimation du paramètre de dérive dans un processus d’Ornstein-Uhlenbeck fractionnaire partiellement observé mais contrôlé. Nous exposons un principe de séparation qui nous permet d’atteindre cet objectif. Les propriétés asymptotiques de l’EMV sont démontrées en utilisant le programme d’Ibragimov-Khasminskii et le calcul de transformées de Laplace d’une fonctionnellequadratique du processus.Dans le Chapitre 3, nous présentons une nouvelle approche pour étudier les propriétés du mouvement brownien fractionnaire mélangé et de modèles connexes, basée sur la théorie du filtrage des processus gaussiens. Les résultats mettent en lumière la structure de semimartingale et mènent à un certain nombre de propriétés d’absolue continuité utiles. Nous établissons l’équivalence des mesures induites par le mouvement brownien fractionnaire mélangé avec une dérive stochastique, et en déduisons l’expression correspondante de la dérivée de Radon-Nikodym. Pour un indice de Hurst H > 3=4, nous obtenons une représentation du mouvement brownien fractionnaire mélangé comme processus de type diffusion dans sa filtration naturelle et en déduisons une formule de la dérivée de Radon-Nikodym par rapport à la mesurede Wiener. Pour H < 1=4, nous montrons l’équivalence de la mesure avec celle la composante fractionnaire et obtenons une formule pour la densité correspondante. Un domaine d’application potentielle est l’analyse statistique des modèles gouvernés par des bruits fractionnaires mélangés. A titre d’exemple, nous considérons le modèle de régression linéaire de base et montrons comment définir l’EMV et étudié son comportement asymptotique. / This thesis focuses on the statistical analysis of some models of stochastic processes generated by fractional noise in discrete or continuous time.In Chapter 1, we study the problem of parameter estimation by maximum likelihood (MLE) for an autoregressive process of order p (AR (p)) generated by a stationary Gaussian noise, which can have long memory as the fractional Gaussiannoise. We exhibit an explicit formula for the MLE and we analyze its asymptotic properties. Actually in our model the covariance function of the noise is assumed to be known but the asymptotic behavior of the estimator ( rate of convergence, Fisher information) does not depend on it.Chapter 2 is devoted to the determination of the asymptotical optimal input for the estimation of the drift parameter in a partially observed but controlled fractional Ornstein-Uhlenbeck process. We expose a separation principle that allows us toreach this goal. Large sample asymptotical properties of the MLE are deduced using the Ibragimov-Khasminskii program and Laplace transform computations for quadratic functionals of the process.In Chapter 3, we present a new approach to study the properties of mixed fractional Brownian motion (fBm) and related models, based on the filtering theory of Gaussian processes. The results shed light on the semimartingale structure andproperties lead to a number of useful absolute continuity relations. We establish equivalence of the measures, induced by the mixed fBm with stochastic drifts, and derive the corresponding expression for the Radon-Nikodym derivative. For theHurst index H > 3=4 we obtain a representation of the mixed fBm as a diffusion type process in its own filtration and derive a formula for the Radon-Nikodym derivative with respect to the Wiener measure. For H < 1=4, we prove equivalenceto the fractional component and obtain a formula for the corresponding derivative. An area of potential applications is statistical analysis of models, driven by mixed fractional noises. As an example we consider only the basic linear regression setting and show how the MLE can be defined and studied in the large sample asymptotic regime.
|
90 |
Étude et modélisation des équations différentielles stochastiques / High weak order discretization schemes for stochastic differential equationRey, Clément 04 December 2015 (has links)
Durant les dernières décennies, l'essor des moyens technologiques et particulièrement informatiques a permis l'émergence de la mise en œuvre de méthodes numériques pour l'approximation d'Equations Différentielles Stochastiques (EDS) ainsi que pour l'estimation de leurs paramètres. Cette thèse aborde ces deux aspects et s'intéresse plus spécifiquement à l'efficacité de ces méthodes. La première partie sera consacrée à l'approximation d'EDS par schéma numérique tandis que la deuxième partie traite l'estimation de paramètres. Dans un premier temps, nous étudions des schémas d'approximation pour les EDSs. On suppose que ces schémas sont définis sur une grille de temps de taille $n$. On dira que le schéma $X^n$ converge faiblement vers la diffusion $X$ avec ordre $h in mathbb{N}$ si pour tout $T>0$, $vert mathbb{E}[f(X_T)-f(X_T^n)] vertleqslant C_f /n^h$. Jusqu'à maintenant, sauf dans certains cas particulier (schémas d'Euler et de Ninomiya Victoir), les recherches sur le sujet imposent que $C_f$ dépende de la norme infini de $f$ mais aussi de ses dérivées. En d'autres termes $C_f =C sum_{vert alpha vert leqslant q} Vert partial_{alpha} f Vert_{ infty}$. Notre objectif est de montrer que si le schéma converge faiblement avec ordre $h$ pour un tel $C_f$, alors, sous des hypothèses de non dégénérescence et de régularité des coefficients, on peut obtenir le même résultat avec $C_f=C Vert f Vert_{infty}$. Ainsi, on prouve qu'il est possible d'estimer $mathbb{E}[f(X_T)]$ pour $f$ mesurable et bornée. On dit alors que le schéma converge en variation totale vers la diffusion avec ordre $h$. On prouve aussi qu'il est possible d'approximer la densité de $X_T$ et ses dérivées par celle $X_T^n$. Afin d'obtenir ce résultat, nous emploierons une méthode de calcul de Malliavin adaptatif basée sur les variables aléatoires utilisées dans le schéma. L'intérêt de notre approche repose sur le fait que l'on ne traite pas le cas d'un schéma particulier. Ainsi notre résultat s'applique aussi bien aux schémas d'Euler ($h=1$) que de Ninomiya Victoir ($h=2$) mais aussi à un ensemble générique de schémas. De plus les variables aléatoires utilisées dans le schéma n'ont pas de lois de probabilité imposées mais appartiennent à un ensemble de lois ce qui conduit à considérer notre résultat comme un principe d'invariance. On illustrera également ce résultat dans le cas d'un schéma d'ordre 3 pour les EDSs unidimensionnelles. La deuxième partie de cette thèse traite le sujet de l'estimation des paramètres d'une EDS. Ici, on va se placer dans le cas particulier de l'Estimateur du Maximum de Vraisemblance (EMV) des paramètres qui apparaissent dans le modèle matriciel de Wishart. Ce processus est la version multi-dimensionnelle du processus de Cox Ingersoll Ross (CIR) et a pour particularité la présence de la fonction racine carrée dans le coefficient de diffusion. Ainsi ce modèle permet de généraliser le modèle d'Heston au cas d'une covariance locale. Dans cette thèse nous construisons l'EMV des paramètres du Wishart. On donne également la vitesse de convergence et la loi limite pour le cas ergodique ainsi que pour certains cas non ergodiques. Afin de prouver ces convergences, nous emploierons diverses méthodes, en l'occurrence : les théorèmes ergodiques, des méthodes de changement de temps, ou l'étude de la transformée de Laplace jointe du Wishart et de sa moyenne. De plus, dans dernière cette étude, on étend le domaine de définition de cette transformée jointe / The development of technology and computer science in the last decades, has led the emergence of numerical methods for the approximation of Stochastic Differential Equations (SDE) and for the estimation of their parameters. This thesis treats both of these two aspects. In particular, we study the effectiveness of those methods. The first part will be devoted to SDE's approximation by numerical schemes while the second part will deal with the estimation of the parameters of the Wishart process. First, we focus on approximation schemes for SDE's. We will treat schemes which are defined on a time grid with size $n$. We say that the scheme $ X^n $ converges weakly to the diffusion $ X $, with order $ h in mathbb{N} $, if for every $ T> 0 $, $ vert mathbb{E} [f (X_T) -f (X_T^n)]vert leqslant C_f / h^n $. Until now, except in some particular cases (Euler and Victoir Ninomiya schemes), researches on this topic require that $ C_f$ depends on the supremum norm of $ f $ as well as its derivatives. In other words $C_f =C sum_{vert alpha vert leqslant q} Vert partial_{alpha} f Vert_{ infty}$. Our goal is to show that, if the scheme converges weakly with order $ h $ for such $C_f$, then, under non degeneracy and regularity assumptions, we can obtain the same result with $ C_f=C Vert f Vert_{infty}$. We are thus able to estimate $mathbb{E} [f (X_T)]$ for a bounded and measurable function $f$. We will say that the scheme converges for the total variation distance, with rate $h$. We will also prove that the density of $X^n_T$ and its derivatives converge toward the ones of $X_T$. The proof of those results relies on a variant of the Malliavin calculus based on the noise of the random variable involved in the scheme. The great benefit of our approach is that it does not treat the case of a particular scheme and it can be used for many schemes. For instance, our result applies to both Euler $(h = 1)$ and Ninomiya Victoir $(h = 2)$ schemes. Furthermore, the random variables used in this set of schemes do not have a particular distribution law but belong to a set of laws. This leads to consider our result as an invariance principle as well. Finally, we will also illustrate this result for a third weak order scheme for one dimensional SDE's. The second part of this thesis deals with the topic of SDE's parameter estimation. More particularly, we will study the Maximum Likelihood Estimator (MLE) of the parameters that appear in the matrix model of Wishart. This process is the multi-dimensional version of the Cox Ingersoll Ross (CIR) process. Its specificity relies on the square root term which appears in the diffusion coefficient. Using those processes, it is possible to generalize the Heston model for the case of a local covariance. This thesis provides the calculation of the EMV of the parameters of the Wishart process. It also gives the speed of convergence and the limit laws for the ergodic cases and for some non-ergodic case. In order to obtain those results, we will use various methods, namely: the ergodic theorems, time change methods or the study of the joint Laplace transform of the Wishart process together with its average process. Moreover, in this latter study, we extend the domain of definition of this joint Laplace transform
|
Page generated in 0.0593 seconds