• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 18
  • 8
  • Tagged with
  • 77
  • 74
  • 52
  • 52
  • 52
  • 28
  • 23
  • 19
  • 18
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Radon: Vorkommen - Wirkung - Schutz

30 June 2022 (has links)
In der Broschüre erhalten Sie Informationen zu den Eigenschaften, sein Vorkommen und Empfehlungen für den Umgang mit Radon. Radon ist ein radioaktives Edelgas. Es ist natürlichen Ursprungs und wird hauptsächlich aus dem Boden in die Luft freigesetzt. Deshalb wird Radon vom Menschen eingeatmet und kann Lungenkrebs verursachen. Der Mensch kann sich vor den schädlichen Wirkungen durch geeignete Maßnahmen schützen. Redaktionsschluss: 26.03.2019, aktualisiert November 2021
42

A multi-dimensional characterization of settlements with Earth Observation data / Mapping patterns and dynamics of structures, material stocks and population

Schug, Franz 09 December 2021 (has links)
Einhergehend mit schnellem Bevölkerungs- und Wirtschaftswachstum erlebt die Welt innerhalb der letzten Jahrzehnte eine schnelle Akkumulation langlebiger Ressourcen in Gebäuden und Infrastruktur, auch gesellschaftlicher Materialbestand genannt. Im 21. Jahrhundert wird die Fortsetzung dieser Entwicklung zur großen Herausforderung für den sozioökonomischen Stoffwechsel der Erde und zum Erreichen biophysikalischer Grenzen führen. Siedlungen sind von besonderem Interesse, da Menschen dort Nachfrage nach Leistungen wie Nahrung oder Mobilität generieren und mit ihnen interagieren. Zukünftig wird neben einer globalen Entwicklungsperspektive auf Materialbestände und Bevölkerung auch ein räumlich explizites, hochauflösendes Verständnis lokaler Muster und Prozesse von Relevanz für eine datenbasierte Antwort auf Herausforderungen des globalen Wandels sein. Diese Arbeit präsentiert einen Workflow zur Kartierung und Quantifizierung von Materialbeständen und Bevölkerungsverteilung und -dynamik mittels hochaufgelöster mehrdimensionaler Siedlungskartierung mit Multisensor-Erdbeobachtungsdaten auf nationaler Ebene. Der erste Abschnitt demonstriert das Potenzial der Verwendung von Sentinel-1 und -2 Zeitreihendaten mit Methoden des maschinellen Lernens für die Kartierung von Siedlungsstrukturen, d.h. Subpixel-Landbedeckung, Gebäudehöhe und Gebäudetyp. Der zweite Abschnitt quantifiziert Schlüsselparameter des sozioökonomischen Metabolismus, d. h. Bevölkerung und Materialbestand, anhand zuvor generierter Datensätze zur Siedlungsstruktur. Der dritte Abschnitt nutzt das Landsat-Datenarchiv und Zeitreihenanalyse, um räumliche Muster und Dynamiken von Bevölkerung und Materialbeständen in Deutschland seit 1985 zu quantifizieren. Frei verfügbare und global konsistente Erdbeobachtungsdaten und Techniken des maschinellen Lernens haben großes Potenzial, das räumlich explizite hochaufgelöste Verständnis sozioökologischer Variablen basierend auf mehrdimensionaler Siedlungskartierung zu verbessern. / During the recent decades of the Anthropocene, the world has experienced rapid growth of population and economic activity. This went along with a considerable accumulation of long-lived resources, for example in buildings and infrastructure, i.e., societal material stock. In the 21st century, a continuation of this development will be a major challenge to the Earth’s socio-economic metabolism, as some limitations of the Earth’s biophysical basis might be reached. Settlements are of particular interest, because they are the places where people generate demand for, and interact with services. Both an overarching perspective on the global long-term development of material stock and population as well as a spatially explicit, high-resolution understanding of local patterns and processes will be of particular relevance for a more data-informed response to challenges of global change. This dissertation presents a workflow to map and quantify material stocks and population distribution and dynamics by means of multi-dimensional settlement mapping with decameter resolution multi-source Earth Observation data on a national scale. The first part demonstrates the potential of using Sentinel-1 and -2 time series imagery with machine learning regression and classification for settlement structure mapping, including sub-pixel land cover, building height and building type mapping. The second part quantifies key parameters of the socio-economic metabolism, i.e., population and material stock, using previously generated datasets on settlement structure. The third part uses the Landsat data archive and Change-Aftereffect-Trend analysis to quantify spatial-temporal patterns and dynamics of population and material stock development in Germany since 1985. Findings demonstrate that freely available and globally consistent Earth Observation data and machine learning techniques have great potential to improve the spatially explicit high-resolution understanding of socio-metabolic variables based on multi-dimensional settlement mapping in a seamless workflow.
43

Bauen mit Holz in Sachsen - modern und klimafreundlich

15 September 2022 (has links)
Die in dieser Broschüre vorgestellten Beispiele aus dem Freistaat Sachsen zeigen, dass Holz ein sehr schöner, flexibler, effizienter und zukunftsweisender Baustoff ist. Wir hoffen, dass damit das Interesse von Bauherren, Architekten und Planern am modernen Holzbau geweckt wird und sie dazu inspiriert, Holz bei künftigen Bauvorhaben verstärkt einzusetzen. Redaktionsschluss: 01.04.2014
44

The ecological and economic advantages of carbon reinforced concrete—Using the C³ result house CUBE especially the BOX value chain as an example

Tietze, Matthias, Kirmse, Susanne, Kahnt, Alexander, Schladitz, Frank, Curbach, Manfred 18 April 2024 (has links)
Against the background of global warming and the associated need to drastically reduce energy and resource consumption, action must also be taken in the building sector. Resource-efficient construction methods must be used that nevertheless allow the increasing construction tasks in areas such as infrastructure and housing to continue to be fulfilled. In order to successfully introduce a new construction method to the market, the aspects of recyclability and economic efficiency are essential, in addition to important government requirements for climate neutrality and technical performance. Above all, the economic viability, that is, the economic advantageousness, as well as its simple applicability compared to competing systems, decides on the success and widespread use of a new technology. Carbon reinforced concrete, with its outstanding technical properties and simultaneous material efficiency, is an important building block toward climate neutrality in the construction industry. It is a promising technology that still has to prove its economic advantages and robust applicability under market conditions. In addition to the infrastructure sector, there is great potential in the area of housing creation, which needs to be tapped for carbon reinforced concrete. For this challenge, it is necessary to design a competitive value chain that allows the realization of marketable products in mass production on existing plant technology. The article gives a short overview of the economic and ecological status quo in the field of prefabricated construction with carbon concrete, using the example of the C3-result building CUBE. In particular, the CUBE-BOX, which is made of prefabricated and semi-prefabricated parts, is examined in more detail and the carbon reinforced concrete components used are compared with classic reinforced concrete constructions in terms of sustainability. In this context, the conceivable global climate protection contribution of the carbon reinforced concrete construction method is forecast based on potential market segments.
45

Zu einer bislang unbekannten mittelalterlichen Wüstung bei Großzöberitz, Ldkr. Bitterfeld (Sachsen-Anhalt)

Fahr, Jochen 29 May 2019 (has links)
Im Frühjahr 1999 wurden bei der Verlegung der Erdgastrasse JAGAL zwischen Großzöberitz und Zörbig (Lkr. Bitterfeld; deshalb zuständig: LfA Halle/Saale) Reste einer mittelalterlichen ländlichen Siedlung, einer Wüstung entdeckt. Das Grabungsteam unter der Leitung von Frau Dr. K. Bemmann legte auf vier Teilflächen 88 Befunde frei. Besonders interessant waren ein Gebäude mit Sodenwänden und ein Haus mit Steinfundamenten. Durch die Auswertung der Funde und Befunde wurden Siedlungsphasen chronologisch eingegrenzt, Strukturen der Siedlung näher untersucht und wirtschaftliche sowie soziale Fragen diskutiert. Ferner ging es darum, den Namen der „Fundstelle 1“ (unbekannt oder bekannt?) und die Ursachen des Wüstungsprozesses zu ermitteln. / Remains of a medieval rural village have been found between Großzöberitz and Zörbig (County Bitterfeld) in the spring 1999 during the building of the gas pipeline JAGAL. The excavation team run by Dr. K. Bemmann had excavated 88 features on four areas. Two buildings, one with grass packing walls and one with stone basements, were especially interesting. Through the analysis of finds and features were settlement phases chronologically fixed, structures of the settlement looked at in more detail, and social questions discussed. Furthermore, the name of ‘site 1’ (known or unknown?) and the reasons for deserting were a matter of concern.
46

Entwicklung optimierter Regelverfahren für Raumlufttechnische Anlagen mit Hilfe des Simulationssystems TRNSYS

Rathey, Axel 07 July 2000 (has links) (PDF)
Die Dissertation beschäftigt sich mit der gekoppelten Simulation von Klimaanlage, Regelung und Gebäude mit Hilfe des Simulationssystems TRNSYS. Während für das Gebäude ein vorhandenes TRNSYS Modul verwendet wird, wurden für Klimaanlage und Regelung neue Simulationsmodule entwickelt. Der Klimaanlagensimulator ist seinerseits modular aufgebaut enthält sowohl geometrisch physikalische und empirische als auch kombinierte Modelle für die Simulation von Ventilatoren, Lufterhitzern, Feuchtluftkühlern, Befeuchtern, Regeneratoren, Plattenwärmeüberträgern, Kreislaufwärmerückgewinnern, Ventilen, hydraulischen Schaltungen usw., die für die Simulation sehr variabel miteinander verschaltet werden können. Es wurden optimierte Regelstrategien für konventionelle und DEC-Anlagen entwickelt und entsprechende TRNSYS-Module zur Umsetzung in die Simulation programmiert. Für die Sequenzregelung mehrerer Größen (z.B. Temperatur, Feuchte) wurde ein frei programmierbarer Mehrsequenzregler entwickelt, der den scheinbaren Reglerstillstand über Verknüpfungen blockierter Stellglieder einer Regelsequenz verhindert. Die Qualität der Regelsequenzen wurde mit Hilfe eines über das Rosenbrockverfahren und der dynamischen Optimierung ermittelten optimalen Vergleichsprozesses bewertet.
47

Auswertungen zum Gebäudebestand in Deutschland auf Grundlage digitaler Geobasisdaten

Behnisch, Martin, Meinel, Gotthard, Burckhardt, Manuel, Hecht, Robert 02 February 2015 (has links) (PDF)
Das Leibniz-Institut für ökologische Raumentwicklung (IÖR) verfolgt u. a. das Ziel, präzise Kenntnisse über das Mengengerüst des deutschen Gebäudebestandes und seiner Eigenschaften zu gewinnen und räumlich hochauflösende Indikatoren als Grundlage einer nachhaltigen Raumentwicklung für Planer und Entscheidungsträger zu erarbeiten. Dieser Beitrag fokussiert auf Ansätze der räumlichen Analyse, die eine Quantifizierung und Charakterisierung des Gesamtbestandes von Wohn- und Nichtwohngebäuden unterstützen. Vorgestellt werden erste Ergebnisse einer deutschlandweiten Auswertung amtlicher Hauskoordinaten und Hausumringe. Der Gebäudebestand wird nach Bundesländern und nach Raumstrukturtypen des Bundesinstituts für Bau-, Stadt- und Raumforschung (BBSR) gegliedert. Es besteht Bedarf, nicht nur Datenmodelle zu entwickeln, sondern daraus auch Erklärungs- und Messmodelle abzuleiten, die einen expliziten Raumbezug aufweisen und sich zur bestandsorientierten Wissensgewinnung sowie zur Strategieentwicklung eignen – auch im europäischen Kontext.
48

Flächennutzungsmonitoring - aktuelle Ergebnisse und Entwicklungen im IÖR-Monitor

Meinel, Gotthard, Krüger, Tobias, Schumacher, Ulrich, Hennersdorf, Jörg, Förster, Jochen, Köhler, Christiane, Walz, Ulrich, Stein, Christian 10 February 2015 (has links) (PDF)
Nach Darstellung der Anforderungen an ein zeitgemäßes Flächennutzungsmonitoring werden aktuelle Ergebnisse des Monitors der Siedlungs- und Freiraumentwicklung (IÖR-Monitor) vorgestellt. Diese beruhen insbesondere auf der Analyse topographischen Geobasisdaten von 2012 (mittlere Grundaktualität 2010). Die Siedlungs- und Verkehrsfläche steigt danach weiter ungemindert, sodass keine Entwarnung bzgl. des Erreichens der Flächensparziele gegeben werden kann. Da sich der IÖR-Monitor insbesondere auf die Auswertung des ATKIS Basis-DLM stützt, werden dessen jüngste Entwicklungen mit den Aspekten Aktualität und AAA-Migration vorgestellt. Erstmals werden die Ergebnisse des IÖR-Monitors durch Migrationseffekte geringfügig beeinflusst, die im Detail dargestellt werden. Anschließend werden neue Indikatoren der Kategorie Siedlung (Bodenversiegelungsgrad), Gebäude (Gebäudedichte und -überbauungsgrad) sowie Landschaftsqualität (Anteil naturbetonter Flächen und Hemerobieindex) erläutert. Inzwischen ist auch die kleinräumige Indikatordarstellung in Form von Rasterkarten bis 100-m-Rasterweite in einem integrierten Detailviewer mit GIS-Funktionalität möglich. Die technische Realisierung und die verfügbaren Indikatorkarten werden kurz vorgestellt. Der Beitrag schließt mit einem Ausblick auf die nächsten Arbeiten im IÖR-Monitor ab.
49

Automatisierte Baublockabgrenzung in Topographischen Karten

Muhs, Sebastian, Meinel, Gotthard, Burghardt, Dirk, Herold, Hendrik 13 February 2015 (has links) (PDF)
Der Bestand an analysierbaren, digitalen Daten vergangener Zeitstände zur Siedungsflächenausdehnung, die für eine kleinräumige Analyse der Siedlungsdynamik notwendig sind, steht in einem klaren Widerspruch zu seiner Nachfrage. Topographische Karten im Maßstab 1:25 000 enthalten implizit Grundrissinformationen zu den Elementarobjekten der Siedlungsstruktur – Baublock, Straße und Gebäude – und stellen dafür eine geeignete Datenquelle dar. Das hier vorgestellte automatisierte Verfahren zeigt, wie diese Information für Baublöcke mittels Methoden der digitalen Bildanalyse explizit verfügbar gemacht werden kann.
50

Stofflich-energetische Gebäudesteckbriefe - Gebäudevergleiche und Hochrechnungen für Bebauungsstrukturen

Gruhler, Karin, Böhm, Ruth, Deilmann, Clemens, Schiller, Georg 23 September 2014 (has links)
Durch die Nachhaltigkeitsdiskussion unterstützt, gewinnt in der Stadt- und Raumforschung die Betrachtung der ökologischen Effekte des Bauens und Wohnens zunehmend an Bedeutung. In diesem Zusammenhang sind Kenntnisse über stofflich-energetische Aufwendungen im Rahmen der Bewirtschaftung von Wohnungsbeständen von großer Bedeutung. Ziel einer am IÖR durchgeführten Forschungsarbeit war es, stofflich-energetische Kennwerte für Gebäudetypen und Bebauungsstrukturen als Grundlage für ein vorausschauendes Stoffstrommanagement zu erarbeiten. Zur Ermittlung der entsprechenden Kennwerte wurde ein EXCEL-gestütztes Baustoff-Berechnungs-Programm (BBP) erarbeitet. Mithilfe dieses Programms ist es möglich, Baustoffmengen von Gebäuden als Gesamtgröße oder z. B. nach Materialgruppen differenziert zu berechnen sowie damit verbundene Energie- und Emissionskennwerte zu bestimmen. Für 18 repräsentative Gebäudetypen der Wohnbebauung wurden stofflich-energetische Kennwerte ermittelt und in einer Gebäudetypen-Dokumentation zusammengefasst. Neben dem Vergleich unterschiedlicher Gebäuderepräsentanten wurden Analysen und Hochrechnungen auf der Ebene von Bebauungsstrukturen durchgeführt. Diese basierten auf einer Unterteilung in neun verschiedene, voneinander abgrenzbare Stadtstrukturtypen der Wohnbebauung. Es wurde deutlich, dass Stadtstrukturen charakteristische Stoffintensitätswerte aufweisen und Orientierungswerte für die Planung abgeleitet werden können.:Einleitung.................................................................................................1 1 Umweltorientiertes Berechnungsverfahren für Gebäudetypen............ 3 1.1 Baustoff-Berechnungs-Programm......................................................4 1.1.1 Teil I – Stoffberechnungen für Bauteile...........................................5 1.1.2 Teil II – Stoffberechnungen für Baustoffgruppen............................9 1.1.3 Ableitung von Umweltkennwerten................................................12 1.1.4 Rahmenbedingungen zum Baustoff-Berechnungs-Programm.......13 1.2. Gebäudetypologie..........................................................................16 1.2.1 Sinn und Zweck von Gebäudetypologien......................................16 1.2.2 Geeignete Gebäudetypologien.....................................................17 1.2.3 Auswahl konkreter Gebäudetypen...............................................20 2 Stofflich-energetische Kennwerte unterschiedlicher Gebäudetypen – Dokumentation...........................................................25 2.1 Mehrfamilienhäuser.........................................................................28 2.1.1 Viergeschossiges Mehrfamilienhaus vor 1918 in Fachwerkbauweise – Typenvertreter IMF 1.......................................28 2.1.2 Dreigeschossiges Mehrfamilienhaus von 1870 bis 1918 in Ziegelbauweise – Typenvertreter IMZ 2............................................38 2.1.3 Viergeschossiges Mehrfamilienhaus von 1870 bis 1918 in Ziegelbauweise – Typenvertreter IMZ 3............................................48 2.1.4 Viergeschossiges Mehrfamilienhaus von 1919 bis 1945 in Ziegelbauweise – Typenvertreter IMZ 4............................................58 2.1.5 Viergeschossiges Mehrfamilienhaus nach 1945 in Ziegelbauweise – Typenvertreter IMZ 5............................................68 2.1.6 Viergeschossiges Mehrfamilienhaus von 1961 bis 1970 in Block- und Streifenbauweise – Typenvertreter IMI 1.........................78 2.1.7 Fünfgeschossiges Mehrfamilienhaus nach 1970 in Plattenbauweise – Typenvertreter IMI 2...........................................88 2.1.8 Elfgeschossiges Mehrfamilienhaus nach 1970 in Plattenbauweise – Typenvertreter IMI 3...........................................97 2.1.9 Achtzehngeschossiges Mehrfamilienhaus nach 1970 in Plattenbauweise – Typenvertreter IMI 4.........................................106 2.1.10 Dreigeschossiges Mehrfamilienhaus nach 1990 in Ziegelbauweise – Typenvertreter GWB............................................116 2.2 Einfamilienhäuser..........................................................................126 2.2.1 Eingeschossiges Einzelhaus nach 1960 mit ausgebautem Dachgeschoss – Typenvertreter E-EH 1...............................................126 2.2.2 Eingeschossiges Einzelhaus nach 1960 mit nicht nutzbarem Dachgeschoss – Typenvertreter E-EH 2...............................................135 2.2.3 Eingeschossiges Einzelhaus nach 1990 mit nicht ausgebautem Dachgeschoss – Typenvertreter E-EH 3...............................................145 2.2.4 Eingeschossiges Doppelhaus nach 1960 mit ausgebautem Dachgeschoss – Typenvertreter E-DH 1..............................................154 2.2.5 Eingeschossiges Doppelhaus nach 1960 mit ausgebautem Dachgeschoss – Typenvertreter E-DH 2..............................................164 2.2.6 Zweigeschossiges Reihenhaus nach 1960 mit nicht ausgebautem Dachgeschoss – Typenvertreter E-RH 1...............................................174 2.2.7 Zweigeschossiges Reihenhaus nach 1960 mit nicht nutzbarem Dachgeschoss – Typenvertreter E-RH 2...............................................184 2.2.8 Zweigeschossiges Reihenhaus nach 1990 mit nicht ausgebautem Dachgeschoss – Typenvertreter E-RH 3...............................................194 3 Vergleich unterschiedlicher Gebäudetypen.......................................203 3.1 Mehrfamilienhäuser.......................................................................203 3.1.1 Grundflächen und Volumen.........................................................203 3.1.2 Baustoffmengen – Stofflager und Stoffintensität........................208 3.1.3 Heizenergiebedarf......................................................................212 3.1.4 Umweltkennwerte......................................................................213 3.2 Einfamilienhäuser..........................................................................216 3.2.1 Grundflächen und Volumen.........................................................216 3.2.2 Baustoffmengen – Stofflager und Stoffintensität........................220 3.2.3 Heizenergiebedarf......................................................................224 3.2.4 Umweltkennwerte......................................................................226 3.3 Orientierungswerte und Kernaussagen.........................................228 4 Anwendung stofflich-energetischer Kennwerte auf Ebene von Bebauungsstrukturen...................................................................236 4.1 Verbindungselement Gebäudemix.................................................236 4.2 Stofflich-energetische Kennwerte für Stadtstrukturtypen der Wohnbebauung...................................................................................238 4.2.1 Stadtstrukturtypen und Gebäudemix..........................................238 4.2.2 Stoffkennwerte für Stadtstrukturtypen – Stoffintensität............242 4.2.3 Energiekennwerte für Stadtstrukturtypen – Kumulierter Energieaufwand..................................................................................249 4.2.4 Kernaussagen............................................................................254 Zusammenfassung..............................................................................259 Anhang A.............................................................................................263 Baustofftabelle....................................................................................264 Umweltkennwerte...............................................................................267 Anhang B.............................................................................................271 Rahmenbedingungen zum Baustoff-Berechnungs-Programm..............272 Literaturverzeichnis.............................................................................285 Tabellenverzeichnis.............................................................................289 Abbildungsverzeichnis.........................................................................296 Abkürzungsverzeichnis........................................................................305

Page generated in 0.0226 seconds