• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 60
  • 51
  • 36
  • 11
  • 11
  • 8
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 326
  • 326
  • 99
  • 94
  • 75
  • 69
  • 51
  • 51
  • 50
  • 47
  • 46
  • 45
  • 44
  • 43
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Motor de indução bifásico em rede de alimentação bifásica simétrica com condutor de retorno

Castro Neto, Lindolfo Marra de 27 October 2006 (has links)
The main task of this work is to provide a contribution to help a more deep understanding on the operation of the asymmetrical twophase induction motor with return for applications in places where a possibility of a two-phase network feeding exists. important contributions where obtained with the help of a time domain dynamic model for symmetrical and asymmetrical two-phase machines developed as part of this work. With such contributions it was possible to show that a threephase induction motor can work as a two-phase asymmetrical induction motor with return through a phase or neutral conductor, without the need of some starting devices, such as, centrifugal switch and capacitors. this was proved through load and no-load tests and by way of comparisons between theoretical and experimental results. Hence, with such a work, we are seeking for the revitalization of the asymmetrical two-phase induction motor theory, a machine that presents a non-uniform magnetomotive force and electromagnetic torque. / O objetivo principal deste trabalho é fornecer uma contribuição que ajudará no entendimento com maior profundidade sobre o funcionamento do motor de indução bifásico assimétrico com retorno para aplicações em locais onde exista a possibilidade de uma rede de alimentação bifásica. As contribuições mais importantes foram obtidas com o auxílio do modelo dinâmico no domínio do tempo para máquinas bifásicas simétricas e assimétricas desenvolvido neste trabalho. Através das contribuições obtidas foi possível mostrar que um motor de indução trifásico pode funcionar como motor de indução bifásico assimétrico com retorno pela fase ou pelo neutro, sem que o mesmo necessite de determinados componentes de partida, tais como, chave centrifuga e capacitores. isto ficou provado através dos ensaios a vazio e com carga e também por intermédio das comparações entre os resultados teóricos e experimentais. Com isto procurou-se revitalizar a teoria do motor de indução bifásico assimétrico com retorno, que possui força magnetomotriz e torque eletromagnético não uniforme. / Doutor em Ciências
272

Avaliação de desempenho da estratégia de representação laboratorial de turbinas eólicas utilizando motores de indução controlados

Xavier, Guilherme Leal 28 September 2012 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / Currently, it is observed an increasing energy demand worldwide. Thus, it is great the search for a more sustainable energy model that is able to meet all the need. In this context, there come the renewable energy sources which present with low environmental impact when compared to other options. Among renewable sources, the wind energy stands out as one of the most promising, which implies an increasing interest in studies for the development of this technology that is still coming up with limitations due to the complexity of the strategies employed. In particular, although the recognition of a large number of computational work aimed at the representation of wind complex, there must be pointed that the resources aimed to laboratory studies, which greatly complement the training and research, are not easily found. In light of these facts and seeking the establishment of a strategy focused on the experimental representation of small-scale wind turbines, this work presents a proposal to use the inverter controlled induction motor as an alternative to replace the wind turbine. Under this strategy, this dissertation advances towards performing simulations to obtain information pertinent to mechanical and electrical quantities in various parts of the conceived structure. Finally, a comparative analysis is made with the technique that adopts controlled dc motor for the same goal. / Atualmente, verifica-se um crescente aumento da demanda energética em todo o mundo. Com isso, é grande a busca por um modelo mais sustentável que seja capaz de suprir toda essa necessidade. Nesse contexto, surgem as fontes de energia renovável, que se apresentam com baixo impacto ambiental quando comparadas às demais opções. Entre as fontes renováveis, a energia eólica destaca-se como uma das mais promissoras, o que implica em um crescente interesse em estudos para o desenvolvimento desta tecnologia que se esbarra ainda em limitações devido à complexidade das estratégias empregadas. Neste particular, muito embora o reconhecimento da existência de um grande número de trabalhos computacionais voltados para a representação de complexos eólicos, há de se destacar que os recursos destinados a estudos laboratoriais, que muito complementam a formação e as pesquisas, não são encontrados com facilidade. À luz desses fatos e visando o estabelecimento de uma estratégia voltada para a representação experimental de unidades eólicas em escala reduzida, este trabalho apresenta uma proposta de utilizar o motor de indução controlado via inversor, como uma alternativa para substituir a turbina eólica. De posse desta estratégia, a presente dissertação avança no sentido de realizar simulações para a obtenção de informações pertinentes às grandezas mecânicas e elétricas em vários pontos da estrutura concebida. Por fim, realiza-se uma análise comparativa com a técnica que adota o motor de corrente contínua controlado para o mesmo objetivo. / Mestre em Ciências
273

Uso de realidade virtual e aumentada na visualização do fluxo do campo magnético de um motor de indução monofásico / The use of the Virtual and Augmented Reality in the Visualization of flow of the magnetic field in an induction motor single phase

Araújo, Jucélio Costa de 18 September 2008 (has links)
This dissertation presents an application of Virtual and Augmented Reality, having as main focus the study of the magnetic field created by a single-phase engine of induction during its functioning. Virtual Reality and Augmented Reality potentially emerges every days, due increasing number of its applications in the most varied areas of the knowledge. One of the most benefited is Education. Therefore, these technologies becomes supporting tools for education, for assisting in the perception and interaction of the students in diverses subjects. The visualization of the magnetic field is related to strategies of use of ferromagnetic elements. Such fields, the example of others (Electric Field, Gravitational Field) have threedimensional characteristics. Since great part of the referring images to this physical phenomenon is static what most of the time it finishes making it difficult the learning of this subject. In this work, the Magnetic Field could be visualized, for the user, with use of Virtual Reality or Augmented Reality. The study element will be the Magnetic Field that is generated in an electric engine (of single-phase induction). It is intended, by means of this boarding, to identify the advantages of if using the techniques of Virtual Reality and Augmented Reality in relation the other forms of visualization of the magnetic field. / Esta dissertação apresenta uma aplicação de Realidade Virtual e Aumentada, tendo como foco principal o estudo do campo magnético criado por um motor de indução monofásico durante o seu funcionamento. A Realidade Virtual e a Realidade Aumentada a cada dia vêm se destacando, devido ao surgimento de suas inúmeras aplicações nas mais variadas áreas do conhecimento, e uma das mais beneficiadas é a educação. Portanto estas tecnologias vêm se tornando ferramentas de apoio ao ensino, auxiliando a percepção e interação dos alunos em assuntos diversos. A visualização do campo magnético está relacionada com estratégias de utilização de elementos ferromagnéticos. Tais campos, a exemplo de outros (Campo Elétrico, Campo Gravitacional) têm características tridimensionais. Sendo que grande parte das imagens referentes a este fenômeno físico é estática o que na maioria das vezes acaba dificultando ao aprendizado deste tema. Neste trabalho, o Campo Magnético poderá ser visualizado, pelo usuário, com uso de Realidade Virtual ou Realidade Aumentada. O elemento de estudo será o Campo Magnético que é gerado em um motor elétrico (de indução monofásico). Pretende-se, por meio desta abordagem, identificar as vantagens de se utilizar as técnicas de Realidade Virtual e Realidade Aumentada em relação à outras formas de visualização do campo magnético. / Mestre em Ciências
274

Controle de sistema de mancais magnéticos ativos para um motor de indução linear tubular. / Control system applied to active magnetic bearings for a tubular linear induction motor.

Leandro Henrique Monaco 08 October 2012 (has links)
Para aplicações de extração de petróleo de poços em terra foi desenvolvido pelo Laboratório de Eletromagnetismo Aplicado (LMAG) da Escola Politécnica da Universidade de São Paulo um protótipo de motor de indução linear tubular (MILT), onde o movimento axial do secundário do motor aciona diretamente a bomba de extração situada no fundo do poço. Numa segunda etapa, foi prevista a substituição dos mancais mecânicos por dois mancais magnéticos ativos (AMBs), que permitem melhor movimentação e praticamente nenhum atrito, reduzindo o desgaste causado por impurezas contidas no petróleo extraído, e consequentemente os esforços de manutenção. Todavia, o protótipo atual possui apenas um mancal magnético, e o outro é mecânico. O presente trabalho apresenta a instalação do segundo mancal magnético ao protótipo do MILT, e propõe realizar o controle do sistema de mancais magnéticos para o MILT, tendo em vista um problema multivariável, onde as posições do secundário do motor em relação aos dois mancais são correlacionadas, bem como as ações de controle sobre os mesmos. O trabalho faz uma revisão do sistema atual com um AMB, abordando sua concepção física, modelagem e o controlador, e tal controlador é replicado para o segundo AMB. Um novo modelo é apresentado, considerando o comportamento multivariável dos dois AMBs, e um sistema de controle robusto multivariável é projetado, através da técnica LQG/LTR. Resultados de simulação do novo controlador são analisados e comparados com os resultados experimentais do controlador atual aplicado aos dois AMBs, e apresentam-se as conclusões. / For onshore oil extraction applications, a tubular linear induction motor (TLIM) prototype was developed by Applied Electromagnetism Laboratory (LMAG) of Escola Politécnica da Universidade de São Paulo, on which the axial movement of the motor secondary drives the suction pump, placed in the down hole of the oil well. In a second step, it was planned to replace the mechanical bearings by two Active Magnetic Bearings (AMB), in order to have better movement and practically no friction, reducing damages caused by impurities in the oil, thus reducing maintenance effort. Nevertheless, the actual prototype has only one AMB, being the other one a mechanical bearing. This paper presents the installation of the second AMB onto TLIM prototype, and a proposal to implement the control algorithm for the TLIM magnetic bearing system, considering now a multivariable problem, where the position of the motor secondary for both AMB are related, as well as control efforts. The present work review the actual system with only one AMB, approaching its physical construction, mathematical model and applied control system; and this control system is applied to the second AMB. A new model is presented, considering the AMB system multivariable behavior, and a multivariable robust control system is then designed, using LQG/LTR approach. Simulation results for the new controller are analyzed and compared to experimental results from the actual controller applied to both AMB, and some conclusions are presented.
275

Conception d'une machine asynchrone haute température / Design of induction motor at high-temperature

Cozonac, Dorin 07 October 2015 (has links)
Les bobinages des machines électriques tournantes actuelles sont, pour la plupart, isolés avec des matériaux issus de la chimie organique. La limite en température des bobinages actuels se situe au-dessous de 240°C. L’augmentation significative de la température de fonctionnement d’une machine permettrait d’envisager, indirectement, une augmentation de la densité de courant dans les conducteurs actifs. Dans ces conditions, ces nouvelles machines peuvent présenter une puissance, tant massique que volumétrique, supérieures à celles exploitées actuellement. De plus, les matériaux magnétiques permettent vraisemblablement de fonctionner jusqu’à 800°C. La limite technologique actuelle pour les machines est clairement l’isolant des conducteurs électriques. Ce sujet de thèse propose de définir une approche théorique couplée à des validations expérimentales pour définir les matériaux les mieux adaptés aux machines hautes températures en termes de mise en œuvre et de performances électriques. La conception, repensée autour du bobinage, sera concrétisée par le calcul d’une machine asynchrone à haute température (400°C au cœur du bobinage). Le bobinage devra être placé au cœur de la démarche de conception des machines en adaptant les formes et les propriétés des circuits magnétiques aux caractéristiques des nouvelles bobines. / The windings that are currently used in electrical machines are mostly insulated based on organic insulation. The temperature limit of these windings is up to 240°C. Increasing the working temperature of electrical motors means, indirectly the increasing of current density on the main conductors. Therefore these new motors may provide a higher mass and volume power as classical machines. Furthermore, the magnetic materials can work up to 800 °C. Indeed, in reality technical limit today is the wire insulation. The objective of thesis is to define a theoretical approach combined with experimental validations for identify the appropriate electrical materials used on high-temperature electrical machines. Design is fixed around the winding, that will implemented by calculating a high-temperature asynchronous machine (400°C of windings). The windings are placed as the base of machine design and will determine the geometrical shape and properties of magnetic core.
276

Investigations on Hybrid Multilevel Inverters with a Single DC Supply for Zero and Reduced Common Mode Voltage Operation and Extended Linear Modulation Range Operation for Induction Motor Drives

Arun Rahul, S January 2016 (has links) (PDF)
Multilevel inverters play a major role in the modern day medium and high power energy conversion processes. The classic two level voltage source inverter generates PWM pole voltage output having two levels with strong fundamental component and harmonics centered around the switching frequency and its multiples. With higher switching frequency, its components can be easily filtered and results in better Total harmonic distortion (THD) output voltage and current. But with higher switching frequency, switching loss of power devices increases and electromagnetic interferences also increases. Also in two level inverter, pole voltage switches between zero and DC bus volt-age Vdc. This switching results in high dv=dt and causes EMI and increased stress on the motor winding insulation. The attractive features of multilevel inverters compared to a two level inverter are reduced switching frequency, reduced switching loss, improved volt-age and current THD, reduced dv=dt, etc. Because of these reasons, multilevel invertersultilevelinvertersplayamajorroleinthemoderndaymediumandhighpower find application in electric motor drives, transmission and distribution of power, transportation, traction, distributed generation, renewable energy systems like photo voltaic, hydel power, energy management, power quality, electric vehicle applications, etc. AC motor driven applications are consuming the significant part of the generated electrical energy (more than 60%) around the world. The multilevel inverters are ideal for such applications, since the switching frequency of the devices can be kept low with lower out-put voltage dv=dt. Also by using multilevel inverters, the common mode voltage (CMV) switching can be made zero and associated motor bearing failure can be mitigated. For multilevel inverter topologies, as the number of level increases, the power circuit becomes more complex by the increase in the number of DC power supplies, capacitors, switching devices and associated control circuitry. The main focus of development in multilevel inverter for medium and high power applications is to obtain an optimized number of voltage levels with reduced number of switching devices, capacitors and DC power sources. In this thesis, a new hybrid seven level inverter topology with a single DC supply is proposed with reduced switch count. The inverter is realized by cascading two three level flying capacitor inverters with a half bridge module. Compared to the conventional seven level inverter topologies, the proposed inverter topology uses lesser number of semiconductor devices, capacitors and DC power supplies for its operation. For this topology, capacitor voltage balancing is possible for entire modulation range irrespective of the load power factor. Also capacitor voltage can be controlled over a switching cycle and this result in lowering the capacitor sizing for the proposed topology. A simple hysteresis band based capacitor voltage balancing scheme is implemented for the inverter topology. For a voltage source inverter fed induction motor drive system, the inverter pole voltage is the sum of motor phase voltage and common mode voltage. In induction motors, there exists a parasitic capacitance between stator winding and stator iron, and between stator winding and rotor iron. Common mode voltage with significant magnitude and high frequency switching causes leakage current through these parasitic capacitances and motor bearings. This leakage current can cause ash over of bearing lubricant and corrosion of ball bearings, resulting in an early mechanical failure of the drive system. In this thesis, analysis of extending the linear modulation range of a general n-level inverter by allowing reduced magnitude of common mode voltage (CMV) switching (only Vdc/18) is presented. A new hybrid seven level inverter topology, with a single DC supply and with reduced common mode voltage (CMV) switching is presented in this thesis for the first time. Inverter is operated with zero CMV for modulation index less than 86% and is operated with a CMV magnitude of Vdc/18 to extend the linear modulation range up to 96%. Experimental results are presented for zero CMV operation and for reduced common voltage operation to extend the linear modulation range. A capacitor voltage balancing algorithm is designed utilizing the pole voltage redundancies of the inverter, which works for every sampling instant to correct the capacitor voltage irrespective of load power factor and modulation index. The capacitor voltage balancing algorithm is tested for different modulation indices and for various transient conditions, to validate the proposed topology. In recent years, model predictive control (MPC) using the system model has proved to be a good choice for the control of power converter and motor drive applications. MPC predicts system behavior using a system model and current system state. For cascaded multilevel inverter topologies with a single DC supply, closed loop capacitor voltage control is necessary for proper operation. This thesis presents zero and reduced common mode voltage (CMV) operation of a hybrid cascaded multilevel inverter with predictive capacitor voltage control. For the presented inverter topology, there are redundant switching states for each inverter voltage levels. By using these switching state redundancies, for every sampling instant, a cost function is evaluated based on the predicted capacitor voltages for each phase. The switching state which minimizes cost function is treated as the best and is switched for that sampling instant. The inverter operates with zero CMV for a modulation index upto 86%. For modulation indices from 86% to 96% the inverter can operate with reduced CMV magnitude ( Vdc/18) and reduced CMV switching frequency using the new space-vector PWM (SVPWM) presented herein. As a result, the linear modulation range is increased to 96% as compared to 86% for zero CMV operation. Simulation and experimental results are presented for the inverter topology for various steady state and transient operating conditions by running an induction motor drive with open loop V/f control scheme. The operation of a two level inverter in the over-modulation region (maximum peak phase fundamental output of inverter is greater than 0:577Vdc) results in lower order harmonics in the inverter output voltage. This lower order harmonics (mainly 5th, 7th, 11th, and 13th) causes electromagnetic torque ripple in motor drive applications. Also these harmonics causes extra losses and adversely affects the efficiency of the drive system. Also inverter control becomes non linear and special control algorithms are required for inverter operation in the over modulation region. In conventional schemes, maximum fundamental output voltage possible is 0:637Vdc. In that case inverter is operated in a square wave mode, also called six-step mode. This operation results in high dv=dt for the inverter output voltage. With multilevel inverters also, the inverter operation with peak phase fundamental output voltage above 0:577Vdc results in lower order harmonics in the inverter output voltage and results in electromagnetic torque pulsation. In this thesis, a new space vector PWM (SVPWM) method to extend the linear modulation range of a cascaded five level inverter topology with a single DC supply is presented. Using this method, the inverter can be controlled linearly and the peak phase fundamental output voltage of the inverter can be increased from 0:577Vdc to 0:637Vdc without increasing the DC bus voltage and without exceeding the induction motor voltage rating. This new technique makes use of cascaded inverter pole voltage redundancy and property of the space vector structure for its operation. Using this, the induction motor drive can be operated till the full speed range (0 Hz to 50 Hz) with the elimination of lower order harmonics in the phase voltage and phase current. The ve level topology presented in this thesis is realized by cascading a two level inverter and two full bridge modules with floating capacitors. The inverter topology and its operation for extending the modulation range is analyzed extensively. Simulation and experimental results for both steady state and dynamic operating conditions are presented. Zero common mode voltage (CMV) operation of multilevel inverters results in reduced DC bus utilization and reduced linear modulation range. In this thesis two reduced CMV SVPWM schemes are presented to extend the linear modulation range by allowing reduced CMV switching. But using these SVPWM schemes the peak phase fundamental output voltage possible is only 0:55Vdc in the linear region. In this thesis, a method to extend the linear modulation range of a CMV eliminated hybrid cascaded multilevel inverter with a single DC supply is presented. Using this method peak fundamental voltage can be increased from 0 to 0:637Vdc with zero CMV switching inside the linear modulation range. Also inverter can be controlled linearly for the entire modulation range. Also, various PWM switching sequences are analyzed in this thesis and the PWM sequence which gives minimum current ripple is used for the zero CMV operation of the inverter. The inverter topology with single DC supply is realized by cascading a two level inverter with two floating capacitor fed full bridge modules. Simulation and experimental results for steady state and dynamic operating conditions are presented to validate the proposed method. A three phase, 400 V, 3.7 kW, 50 Hz, two-pole induction motor drive with the open-loop V/f control scheme is implemented in the hardware for testing proposed inverter topology and proposed SVPWM algorithms experimentally. The semiconductor switches that were used to realize the power circuit for the experiment were 75 A, 1200 V IGBT half-bridge modules (SKM-75GB-12T4). Optoisolated gate drivers with de-saturation protection (M57962L) were used to drive the IGBTs. For the speed control and PWM timing computation, TMS320F28335 DSP is used as the main controller and Xilinx SPARTAN-3 XC3S200 FPGA as the PWM signal generator with dead time of 2.5 s. Level shifted carrier-based PWM algorithm is implemented for the normal inverter operation and zero CMV operation. From the PWM algorithm, information about the pole voltage levels to be switched can be obtained for each phase. In the sampling period, for capacitor voltage balancing of each phase, the DSP selects a switching state using the capacitor voltage information, current direction and pole voltage data for each phase. This switching state information along with the PWM timing data is sent to an FPGA module. The FPGA module generates the gating signals with a dead time of 2.5 s for the gate driver module for all the three phases by processing the switching state information and PWM signals for the given sampling period. For fundamental frequencies above 10Hz, synchronous PWM technique was used for testing the inverter topology. For modulation frequencies 10Hz and below, a constant switching frequency of 900 Hz was used. Various steady state and transient operation results are provided to validate the proposed inverter topology and the zero and reduced CMV operation schemes and extending the linear modulation scheme presented in this thesis. With the advantages like reduced switch count, single DC supply requirement, zero and reduced CMV operation, extension of linear modulation range, linear control of induction motor over the entire modulation range with zero CMV, lesser dv=dt stresses on devices and motor phase windings, lower switching frequency, inherent capacitor balancing, the proposed inverter power circuit topologies, and the SVPWM methods can be considered as good choice for medium voltage, high power motor drive applications.
277

Analysis And Development Of Voltage Stability Assessment Methods

Mahesh, S 06 1900 (has links) (PDF)
Voltage stability is the ability of the power system to maintain steady acceptable voltages at all the buses in a system under normal operating conditions and after being subjected to a disturbance. The increased consumption of electricity without the augmentation of the necessary transmission infrastructure has resulted in the overloading of the transmission lines. As a result, the transmission lines operate near the steady state stability limit. The transmission of large amounts of power through the lines results in the large voltage drops in the lines. Sudden disturbances like line or generator outage and fault in the transmission lines may occur because of natural or man made causes. Under the above mentioned conditions, the transmission system may not be able to supply the load demand. This results in drops in the system bus voltages which may be sudden or progressive. If the necessary remedial measures are not taken, then this may lead to blackout or collapse of the whole system. As a result of a number of voltage stability incidents reported from various countries, there is a widespread interest in understanding, characterizing and preventing this phenomena. This thesis is essentially concerned with analyzing the existing methods and the development of new methods for the assessment of voltage stability of power systems. We examine four existing methods for assessing voltage stability with regard to the computational effort involved in their calculation, the useful information we get by using them, their relative effectiveness in assessing the voltage stability and their consistency in predicting the voltage stability of the system. We also study the impact of the system conditions on several of these indices. Further, we propose a set of new indices which provide information similar to the conventional indices but are slightly different. The generalized circle diagram approach proposed earlier to study the variation of the system variables with respect to the independent node parameters is shown to be adoptable for finding the voltage stability limit of a system. It has been shown that the well known continuation power flow method used for voltage stability analysis is identical to the generalized circle diagram approach. A computationally simple approach, based on the Thevenin equivalent of the power system is used to determine the loadability limit of a system. In the continuation power flow method, it is inherently assumed that only one generator responds to the real power load increase of the system. However, an alternate view is presented where all the generators respond to the real power increase in the system and an algorithm is proposed to realize this condition. Using this algorithm, the generation pattern of the system is modified so as to increase the loadability limit of the system considerably. The origin of the voltage instability in power systems can be traced to the load characteristics. Induction motors constitute a significant proportion of the total industrial and residential loads. Two algorithms that are useful to study the voltage stability of systems having induction machines have been presented and validated. These methods are based on the induction machine static equations. The first method is useful in assessing the impact of network disturbances on voltage stability and the second facilitates the computation of the loadability limit. A criterion has been proposed to find the stability limit, stable and unstable operating regions for a system considering various types of induction motor loads on the basis of which, a practical algorithm is proposed and validated to determine the stability of the induction motors driving different types of loads in a large power system. In addition, a method is developed to determine the stability aspects when the constant torque loads and the constant input power loads driven by induction motors operate in a power system, which contains other types of loads like the constant P - Q type of loads. Switching capacitors at the induction motor terminals is one of the ways by which voltage instability occurring due to the induction motor loads can be prevented. A new technique is proposed wherein knowing the capacitance and the slip at the instant of switching, the rotor dynamics following the switching and the existence of a steady state operating point following the switching can be predicted. This approach can be used to choose appropriate capacitances to be switched at the induction motor terminals to prevent its stalling following a sudden load disturbance.
278

Reduced Switch Count Multilevel Inverter Topologies for Open End Induction Motor Drives

Kshirsagar, Abhijit January 2016 (has links) (PDF)
MU LT I L E V E L inverters are becoming the preferred choice for medium voltage high power applications. Multilevel inverters have a number of inherent advantages over conventional two level inverters. The output voltage has multiple steps or levels, resulting in reduced dV/dt, which leads to lower electromagnetic interference, making it easier to meet electromagnetic compatibility (EMC) regulations. Multilevel inverters have a much lower effective switching frequency, which leads to a reduction in switching losses. The output voltage of multilevel inverters has a much lower harmonic content. In applications such as power conversion or grid-connection, filters need to be much smaller, or can be eliminated. In motor drive applications, the low harmonic content results in smoother, ripple-free shaft torque. The neutral-point clamped (NPC), cascaded H-bridge (CHB) and flying capacitor (FC) topologies were among the earliest multilevel topologies. NPC topologies require additional clamping diodes to clamp the output to the DC bus midpoint. CHB topologies use a number of isolated DC suplies to generate multilevel output. FC topologies work with a single DC link but use additional floating capacitors. Since then, a number derivatives and improvements to these topologies have been proposed. Topologies with low switch counts are desirable because of the corresponding reduction in system size and cost. A low total component count is also desirable since it results in better reliability. Induction motors in high power applications are often operated in the open-end configuration. Here, the start terminals of the motor phase windings are connected to one three phase inverter, while the end terminals are connected to a second three-phase inverter. The two inverters are typically powered by isolated supplies to prevent the flow of common mode currents through the motor. The open end configuration has a number of advantages It can be used with nearly all high power motors with no need for electrical or mechanical modification, since all six winding terminal are available externally. The two inverters driving the open-end motor are effectively cascaded. As a result, two inverters of lower voltage and power rating can replace a single inverter with higher voltage and power rating. In addition, if one of the inverter fails, it can be bypassed and the system can be operated at reduced power. In many applications such as heating, ventilation and air conditioning (HVAC), the load power is proportional to the cube of the shaft speed, so a 50% reduction in power translates to only 20% reduction in speed, thereby improving overall system reliability. The cascading of inverters also enables multilevel operation, which is exploited for the topologies proposed in this thesis. In the open-end configuration it is important to ensure that both the DC supplies deliver power to the load. Otherwise, power can circulate through the motor windings. In addition, if the two inverters are powered by rectifier supplies, the DC bus of one inverter can charge uncontrollably, resulting in distortion of phase voltages and currents. If DC bus overcharging continues unchecked the DC bus voltage can even exceed the system rating, resulting in permanent damage. This thesis proposes two novel topologies for open-end induction motor drives with low switch counts. Both topologies are powered by two unequal, isolated DC sources having DC voltages in a 3:1 ratio. Multiple levels in the output voltage are obtained using a number of floating capacitors in each phase. Modulation and control schemes are also proposed for both topologies to ensure that DC bus overcharging never occurs, while all the capacitor voltages are kept balanced at their nominal values. The first of these two topologies is a nine level inverter for open end induction motor drives. It consists of two three-level flying capacitor inverters connected to the induction motor in the open end configuration. The two inverters are powered by DC sources of voltage 6VDC/8 and 2VDC/8, which generates an effective phase voltage having nine levels in steps of VDC/8. This topology has only eight switches and two floating capacitors per phase. The space vector structure for this topology is hexagonal, and has 217 space vector locations. A space-vector based formulation is used to determine the pole voltage of the inverter such that DC bus over charging is prevented. In addition, selection of switching states is used to balance the voltages of all floating capacitors. This scheme allows the floating capacitors to be charged up during system startup, thereby eliminating the need for separate pre-charging circuitry. A level-shifted carrier PWM based modulation scheme has been developed, which can be used with both scalar and vector control schemes. The gating signal for switches turning on must be delayed by a small amount (to allow the complementary switch to turn of), failing which current shoot through can occur. This delay is called dead time, during which gate signals to both complementary devices are turned of. Under certain conditions in the flying capacitor topology, the pole voltage can contain large undesirable transients during the dead time which result in phase current distortion, and electromagnetic noise. A novel scheme to eliminate this problem is proposed using a digital state machine approach. The switching state for each subsequent switching interval is determined based on the present switching state such that the pole voltage does not contain a transient, without affecting the phase voltage of the inverter, and irrespective of the current magnitude or direction. The state machine was implemented using an FPGA, and required an additional computation time of just 20ns, which is much smaller than the inverter dead time duration of typically 2.5µs. The second novel topology proposed in this thesis is a seventeen level inverter for an open end induction motor drive. Here, one three-level inverter and one seven-level inverter are connected to the two ends of the induction machine. The three-level inverter is a flying capacitor inverter. The seven-level inverter is a hybrid topology – it consists of an H-bridge cascaded to each phase of a three level flying capacitor inverter. This scheme is also powered by two isolated DC sources in 3:1 ratio with magnitudes 12VDC/16 and 4VDC/16. The effective phase voltage has seventeen levels in steps of VDC/16. This topology has a total of twelve switches and three floating capacitors per phase. The space vector structure for this topology is hexagonal, and has 817 space-vector locations. Space vector analysis was used to determine the pole voltages, and the switching states such that DC bus overcharging is prevented while also balancing the voltages of the floating capacitors. A non-iterative algorithm was developed for determining the switching states, suitable for implementation in digital logic using an FPGA. The scheme is able to charge the all capacitors at startup as well, eliminating the need for separate pre-charging circuits. Hardware prototypes were built for both the topologies described above for experimental verification, and used to drive a three phase 50Hz, 1.5kW, four pole induction motor in V/f control mode. The inverters topologies were built using 1200V, 75A IGBT half-bridge modules (Semikron SKM75GB12T4) with hybrid opto-isolated gate drivers (Mitsubishi M57962). Three phase rectifiers were used to create the asymmetric DC supplies Hall effect sensors were used to sense the DC link and floating capacitor voltages and phase currents (LEM LV20P voltage sensors and LA55 current sensors). Signal conditioning circuitry was built using discrete components. The PWM signals and V/f controller were implemented using a digital signal processor (Texas Instruments TMS320F28335). Synchronous PWM with was used to eliminate sub-harmonics from the phase voltage, and to ensure three-phase and half-wave symmetry. The internal ADC of the DSP was used for sampling all voltages and currents. The remaining digital logic for switch state selection was implemented on a FPGA (Xilinx Spartan3 XC3S200). Dead time functionality was also implemented within the FPGA, eliminating the need for separate dead time hardware. Both topologies were first tested for steady state operation over the full modulation range, and the pole voltages, phase voltages and phase currents were recorded. System startup, and the ability of the controllers to balance all the capacitors at startup was tested next. The capacitor voltages were also observed during sudden loading, by quickly accelerating the motor. Finally, the phenomenon of DC bus overcharging was also demonstrated. These results demonstrate the suitability of the proposed topology for a number of applications, including industrial drives, alternate energy systems, power conversion and electric traction.
279

Studies on Current Hysteresis Controllers and Low Order Harmonic Suppression Techniques for IM Drives with Dodecagoal Voltage Space Vectors

Azeez, Najath Abdul January 2013 (has links) (PDF)
Multilevel inverters are very popular for medium and high-voltage induction motor (IM) drive applications. They have superior performance compared to 2-level inverters such as reduced harmonic content in output voltage and current, lower common mode voltage and dv/dt, and lesser voltage stress on power switches. To get nearly sinusoidal current waveforms, the switching frequency of the conventional inverters have to be in¬creased. This will lead to higher switching losses and electromagnetic interference. The problem in using lower switching frequency is the introduction of low order harmonics in phase currents and undesirable torque ripple in the motor. The 5th and 7th harmonics are dominant for hexagonal voltage space-vector based low frequency switching. Dodecagonal voltage space-vector based multilevel inverters have been proposed as an improvement over the conventional hexagonal space vector based inverters. They achieve complete elimination of 5th and 7th order harmonics throughout the modulation range. The linear modulation range is also extended by about 6.6%, since the dodecagon is closer to circle than a hexagon. The previous works on dodecagonal voltage space vector based VSI fed drives used voltage controlled PWM (VC-PWM). Although these controllers are more popular, they have inferior dynamic performance when compared to current controlled PWM (CC¬PWM). VSIs using current controlled PWM have excellent dynamic response, inherent short-circuit protection and are simple to implement. The conventional CC-PWM tech¬niques have large switching frequency variation and large current ripple in steady-state. xix As a result, there has been significant research interest to achieve current controlled VSI fed IM drives with constant switching frequency. Two current error space vector (CESV) based hysteresis controllers for dodecagonal voltage space-vector based VSI fed induction motor drives are proposed in this work. The proposed controllers achieve nearly constant switching frequency at steady state operation, similar to VC-SVPWM based VSI fed IM drives. They also have fast dynamic response while at the same time achieving complete elimination of fifth and seventh order harmonics for the entire modulation range, due to dodecagonal voltage vector switching. The first work proposes a nearly constant switching frequency current error space vector (CESV) based hysteresis controller for an IM drive with single dodecagonal voltage space vectors. Parabolic boundaries computed offline are used in the proposed controller. An open-end winding induction motor is fed from two inverters with asymmetrical DC link voltages, to generate the dodecagonal voltage space vectors. The drive scheme is first studied at different frequencies with a space vector based PWM (SVPWM) control, to obtain the current error space vector boundaries. The CESV boundary at each frequency can be approximated with four parabolas. These parabolic boundaries are used in the proposed controller to limit the CESV trajectory. Due to symmetries in the parabolas only two set of parabola parameters, at different frequencies, need to be stored. A generalized next vector selection logic, valid for all sectors and rotation direction, is used in the proposed controller. For this an axis transformation is done in all sectors, to bring the CESV trajectory to the first sector. The sector information is obtained from the estimated fundamental stator phase voltage. The proposed controller is extensively studied using vector control at different frequencies and transient conditions. This controller maintains nearly constant switching frequency at steady state operation, similar to VC-SVPWM inverters, while at the same time achieving better dynamic performance and complete elimination of 5th and 7th order harmonics throughout the modulation range. In the second work the nearly constant switching frequency current hysteresis con¬troller is extended to multilevel dodecagonal voltage space-vector based IM drives, with online computation of CESV boundaries. The multilevel dodecagonal space-vector dia¬gram has different types of triangles, and the previously proposed methods for multilevel hexagonal VSI based current hysteresis controllers cannot be used directly. The CESV trajectory of the VC-SVPWM, obtained for present triangular region, is used as the reference trajectory of the proposed controller. The CESV reference boundaries are com¬puted online, using switching dwell time and voltage error vector of each applied vector. These quantities are calculated from estimated sampled reference phase voltages, which are found out from the stator current error ripple and the parameters of the induction motor. Whenever the actual current error space vector crosses the reference CESV tra¬jectory, an appropriate vector that will force it along the reference trajectory is switched. Extensive study of the proposed controller using vector control is done at different fre¬quencies and transient conditions. This controller has all the advantages of multilevel switching like low dv/dt, lesser electromagnetic interference, lower switch voltage stress and lesser harmonic distortion, in addition to all the dynamic performance advantages of the previous controller. The third work proposes an elegant 5th and 7th order harmonic suppression tech¬nique for open end winding split-phase induction motors, using capacitor fed inverters. Split-phase induction motors have been proposed to reduce the torque and flux ripples of conventional three-phase IM. But these motors have high 5th and 7th order harmonics in the stator windings due to lack of back-emf for these frequencies. A space-vector harmonic analysis of the split-phase IM is conducted and possible 5th and 7th order harmonic sup¬pression techniques studied. A simple harmonic suppression scheme is proposed, which requires the use of only capacitor fed inverters. A PWM scheme that can maintain the capacitor voltage as well as suppress the 5th and 7th order harmonics is also proposed. To test the performance of the proposed scheme, an open-loop v/f control is used on an open-end winding split-phase induction motor under no-load condition. Synchronized PWM with two samples per sector was used, for frequencies above 10 Hz. The har¬monic spectra of the phase voltages and currents were computed and compared with the traditional SVPWM scheme, to highlight the harmonic suppression. The concepts were initially simulated in Matlab/Simulink. Experimental verifica¬tion was done using laboratory prototypes at low power. While these concepts maybe easily extended to higher power levels by using suitably rated devices, the control tech¬niques presented shall still remain applicable. TMS320F2812 DSP platform was used to execute the control code for the proposed drive schemes. For the first work the output pins of the DSP was directly used to drive the inverter switches through a dead-band circuit. For the other two works, DSP outputs the sector information and the PWM signals. The PWM terminals and I/O lines of the DSP is used to output the timings and the triangle number respectively. An FPGA (XC3S200) was used to translate the sector information and the PWM signals to IGBT gate signal logic. A constant dead-time of 1.5 µs was also implemented inside the FPGA. Opto-isolated gate drivers with desaturation protection (M57962L) were used to drive the IGBTs. The phase currents and DC bus voltages were measured using hall-effect sensors. An incremental shaft position encoder was also connected to the motor to measure the angular velocity. The switches were realized using 1200 V, 75 A IGBT half bridge modules.
280

Multiclassificador inteligente de falhas no domínio do tempo em motores de indução trifásicos alimentados por inversores de frequência / Time domain intelligent faults multiclassifier in inverter fed three-phase induction motors

Wagner Fontes Godoy 18 April 2016 (has links)
Os motores de indução desempenham um importante papel na indústria, fato este que destaca a importância do correto diagnóstico e classificação de falhas ainda em fase inicial de sua evolução, possibilitando aumento na produtividade e, principalmente, eliminando graves danos aos processos e às máquinas. Assim, a proposta desta tese consiste em apresentar um multiclassificador inteligente para o diagnóstico de motor sem defeitos, falhas de curto-circuito nos enrolamentos do estator, falhas de rotor e falhas de rolamentos em motores de indução trifásicos acionados por diferentes modelos de inversores de frequência por meio da análise das amplitudes dos sinais de corrente de estator no domínio do tempo. Para avaliar a precisão de classificação frente aos diversos níveis de severidade das falhas, foram comparados os desempenhos de quatro técnicas distintas de aprendizado de máquina; a saber: (i) Rede Fuzzy Artmap, (ii) Rede Perceptron Multicamadas, (iii) Máquina de Vetores de Suporte e (iv) k-Vizinhos-Próximos. Resultados experimentais obtidos a partir de 13.574 ensaios experimentais são apresentados para validar o estudo considerando uma ampla faixa de frequências de operação, bem como regimes de conjugado de carga em 5 motores diferentes. / Induction motors play an important role in the industry, a fact that highlights the importance of correct diagnosis and classification of faults on these machines still in early stages of their evolution, allowing increase in productivity and mainly, eliminating major damage to the processes and machines. Thus, the purpose of this thesis is to present an intelligent multi-classifier for the diagnoses of healthy motor, short-circuit faults in the stator windings, rotor broken bars and bearing faults in induction motors operating with different models of frequency inverters by analyzing the amplitude of the stator current signal in the time domain. To assess the classification accuracy across the various levels of faults severity, the performances of four different learning machine techniques were compared; namely: (i) Fuzzy ARTMAP network, (ii) Multilayer Perceptron Network, (iii) Support Vector Machine and (iv) k-Nearest-Neighbor. Experimental results obtained from 13.574 experimental tests are presented to validate the study considering a wide range of operating frequencies and also load conditions using 5 different motors.

Page generated in 0.0817 seconds