• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 21
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 64
  • 16
  • 16
  • 13
  • 13
  • 10
  • 9
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Contribution à l'étude de nouveaux agents antiamibiens dans un modèle expérimental de kératite à Acanthamoeba chez le rat / Contribution to the study of new antiamoebic agents in an experimental model of Acanthamoeba keratitis in rats

Gueudry, Julie 16 October 2018 (has links)
La kératite à Acanthamoeba (KA) est une kératite infectieuse rare et grave,potentiellement cécitante. L'infection est causée par Acanthamoeba spp., unprotozoaire ubiquitaire présent dans le sol, l'air et l'eau. Jusqu'à 85% des cas de KAsont associés au port de lentilles cornéennes, et plus rarement suite à untraumatisme.Actuellement, aucune molécule n’a d’autorisation de mise sur le marché danscette indication dans l'Union européenne et aux États-Unis. Ces dernières années,des combinaisons d'agents anti-amibiens tels que les biguanides et les diamidinesont été utilisées comme traitement de référence. Cependant, les schémasthérapeutiques et les concentrations d'agents actifs reposent sur des donnéesempiriques. Récemment, le voriconazole, antifongique triazolé, a été utilisé avecsuccès pour traiter des KA humaines. Malgré cela, la communauté ophtalmologiquese heurte le plus souvent dans les formes sévères à de grandes difficultés de prise encharge et se retrouve parfois en situation d’impasse thérapeutique. La pertefonctionnelle et anatomique de l’oeil est encore possible.A partir d’un modèle de KA chez le rat, plusieurs molécules et voiesd’administration ont été testées. Dans une première partie, en lien avec projeteuropéen ODAK (Orphan drug for Acanthamoeba Keratitis), nos travaux ont suggéréqu’une concentration de collyre PHMB supérieure ou égale à 0,04% devait êtrepréférée. Dans une deuxième partie, nous avons pu montrer la supériorité duvoriconazole en collyre par rapport à la voie orale. Enfin, l’étude de lapharmacocinétique du voriconazole et du posaconazole après injections directesintracornéennes, démontre leur faible utilité en clinique humaine du fait de lafréquence nécessaire de réinjection, bien que des analyses complémentairesconcernant le posaconazole en collyre pour confirmer son intérêt soient nécessaires.L'ensemble de ces travaux pourrait permettre d’adapter les protocolesthérapeutiques de la KA. / Acanthamoeba keratitis (AK) is a rare and severe form of infectious keratitis,which is potentially sight-threatening. The infection is caused by Acanthamoeba spp.a common protozoan present in soil, air and water. Up to 85% of AK cases areassociated with contact lens wearing, more rarely after corneal injury.Currently, there are no agents approved for the treatment of AK in theEuropean Union or in the United States of America. In recent years, combinations ofunlicensed anti-amoebic agents such as biguanides and diamidines have been usedas the reference treatment. Treatment regimens and concentrations of active agentsare based on empirical data. Recently, voriconazole, a mono-triazole, wassuccessfully used to treat cases of human AK. Despite this, the ophthalmologicalcommunity is most often faced with severe forms of the disease with severemanagement difficulties and sometimes with a situation of therapeutic impasse. Thefunctional and anatomical loss of an eye can occur.Several agents and routes of administration have been tested in a rat model ofAK. First, as part of the European ODAK project (Orphan drug for AcanthamoebaKeratitis), our work suggested that a concentration of PHMB eye drops greater thanor equal to 0.04% should be preferred. Second, we were able to show the superiorityof voriconazole in eye drops compared to the oral route. Finally, our study on thepharmacokinetics of voriconazole and posaconazole after intrastromal injections,demonstrates their low utility in human because of the need for frequent reinjection.Nevertheless, additional analyses are necessary to confirm the interest ofposaconazole eye drops. All of this work could make it possible to adapt thetherapeutic protocols of AK.
62

Acanthamoeba: hrozba pro lidské oko / Acanthamoeba: A Threat to the Human Eye

Veselá, Kateřina January 2020 (has links)
This thesis examines unicellular microorganism of the genus Acanthamoeba, as well as the disease it causes - acanthamoeba keratitis. It is an eye disease, which occurs mainly in people using contact lenses. Since acanthamoeba attacks visual apparatus, several parts of the thesis are dedicated to the anatomy of said apparatus, especially to the eye ball. The symptoms, diagnostics, treatment as well as prevention of the disease are included as well. The thesis furthemore mentions individual types of contact lenses, their proper hygiene and care and most of all, the danger, that comes with improper handling - acanthamoeba keratitis. A survey, that took place among elementary school and high school students, found out, that almost none of the elementary school students wear contact lenses, whereas contact lenses are worn by approximately 15% of students at high school. Among other issues, the survey concludes, that only a small part of elementary school students prefers contact lenses to glasses, though glasses are needed by a vast majority of them. At high school level, wearing contact lenses becomes more common, for aesthetics or other reasons. Ophtalmologist is regularly visited by 35 % of interviewed students. An analysis of six different natural science and biology textbooks for the 8th grade of...
63

Development of Sensitive In Vitro Assays to Assess the Ocular Toxicity Potential of Chemicals and Ophthalmic Products

McCanna, David January 2009 (has links)
The utilization of in vitro tests with a tiered testing strategy for detection of mild ocular irritants can reduce the use of animals for testing, provide mechanistic data on toxic effects, and reduce the uncertainty associated with dose selection for clinical trials. The first section of this thesis describes how in vitro methods can be used to improve the prediction of the toxicity of chemicals and ophthalmic products. The proper utilization of in vitro methods can accurately predict toxic threshold levels and reduce animal use in product development. Sections two, three and four describe the development of new sensitive in vitro methods for predicting ocular toxicity. Maintaining the barrier function of the cornea is critical for the prevention of the penetration of infections microorganisms and irritating chemicals into the eye. Chapter 2 describes the development of a method for assessing the effects of chemicals on tight junctions using a human corneal epithelial and canine kidney epithelial cell line. In Chapter 3 a method that uses a primary organ culture for assessing single instillation and multiple instillation toxic effects is described. The ScanTox system was shown to be an ideal system to monitor the toxic effects over time as multiple readings can be taken of treated bovine lenses using the nondestructive method of assessing for the lens optical quality. Confirmations of toxic effects were made with the utilization of the viability dye alamarBlue. Chapter 4 describes the development of sensitive in vitro assays for detecting ocular toxicity by measuring the effects of chemicals on the mitochondrial integrity of bovine cornea, bovine lens epithelium and corneal epithelial cells, using fluorescent dyes. The goal of this research was to develop an in vitro test battery that can be used to accurately predict the ocular toxicity of new chemicals and ophthalmic formulations. By comparing the toxicity seen in vivo animals and humans with the toxicity response in these new in vitro methods, it was demonstrated that these in vitro methods can be utilized in a tiered testing strategy in the development of new chemicals and ophthalmic formulations.
64

Development of Sensitive In Vitro Assays to Assess the Ocular Toxicity Potential of Chemicals and Ophthalmic Products

McCanna, David January 2009 (has links)
The utilization of in vitro tests with a tiered testing strategy for detection of mild ocular irritants can reduce the use of animals for testing, provide mechanistic data on toxic effects, and reduce the uncertainty associated with dose selection for clinical trials. The first section of this thesis describes how in vitro methods can be used to improve the prediction of the toxicity of chemicals and ophthalmic products. The proper utilization of in vitro methods can accurately predict toxic threshold levels and reduce animal use in product development. Sections two, three and four describe the development of new sensitive in vitro methods for predicting ocular toxicity. Maintaining the barrier function of the cornea is critical for the prevention of the penetration of infections microorganisms and irritating chemicals into the eye. Chapter 2 describes the development of a method for assessing the effects of chemicals on tight junctions using a human corneal epithelial and canine kidney epithelial cell line. In Chapter 3 a method that uses a primary organ culture for assessing single instillation and multiple instillation toxic effects is described. The ScanTox system was shown to be an ideal system to monitor the toxic effects over time as multiple readings can be taken of treated bovine lenses using the nondestructive method of assessing for the lens optical quality. Confirmations of toxic effects were made with the utilization of the viability dye alamarBlue. Chapter 4 describes the development of sensitive in vitro assays for detecting ocular toxicity by measuring the effects of chemicals on the mitochondrial integrity of bovine cornea, bovine lens epithelium and corneal epithelial cells, using fluorescent dyes. The goal of this research was to develop an in vitro test battery that can be used to accurately predict the ocular toxicity of new chemicals and ophthalmic formulations. By comparing the toxicity seen in vivo animals and humans with the toxicity response in these new in vitro methods, it was demonstrated that these in vitro methods can be utilized in a tiered testing strategy in the development of new chemicals and ophthalmic formulations.

Page generated in 0.054 seconds