391 |
Regulation of Skeletal Muscle Development And Differentiation by <i>Ski</i>Zhang, Hong January 2009 (has links)
No description available.
|
392 |
TRANSCRIPTIOME ANALYSIS AND EPIGENETIC REGULATION OF OCULAR LENS DEVELOPMENTHoang, Thanh V. 11 November 2016 (has links)
No description available.
|
393 |
Neural Wiskott-Aldrich syndrome protein modulates Wnt signaling and is required for hair follicle cycling in miceLyubimova, A., Garber, J.J., Upadhyay, G., Sharov, A.A., Anastasoaie, F., Yajnik, V., Cotsarelis, G., Dotto, G.P., Botchkarev, Vladimir A., Snapper, S.B. January 2010 (has links)
No / The Rho family GTPases Cdc42 and Rac1 are critical regulators of the actin cytoskeleton and are essential for skin and hair function. Wiskott-Aldrich syndrome family proteins act downstream of these GTPases, controlling actin assembly and cytoskeletal reorganization, but their role in epithelial cells has not been characterized in vivo. Here, we used a conditional knockout approach to assess the role of neural Wiskott-Aldrich syndrome protein (N-WASP), the ubiquitously expressed Wiskott-Aldrich syndrome-like (WASL) protein, in mouse skin. We found that N-WASP deficiency in mouse skin led to severe alopecia, epidermal hyperproliferation, and ulceration, without obvious effects on epidermal differentiation and wound healing. Further analysis revealed that the observed alopecia was likely the result of a progressive and ultimately nearly complete block in hair follicle (HF) cycling by 5 months of age. N-WASP deficiency also led to abnormal proliferation of skin progenitor cells, resulting in their depletion over time. Furthermore, N-WASP deficiency in vitro and in vivo correlated with decreased GSK-3beta phosphorylation, decreased nuclear localization of beta-catenin in follicular keratinocytes, and decreased Wnt-dependent transcription. Our results indicate a critical role for N-WASP in skin function and HF cycling and identify a link between N-WASP and Wnt signaling. We therefore propose that N-WASP acts as a positive regulator of beta-catenin-dependent transcription, modulating differentiation of HF progenitor cells.
|
394 |
Evidence that glycogen synthase kinase-3 isoforms have distinct substrate preference in the brainSoutar, M.P., Kim, W.Y., Williamson, Ritchie, Peggie, M., Hastie, C.J., McLauchlan, H., Snider, W.D., Gordon-Weeks, P.R., Sutherland, C. January 2010 (has links)
No / Mammalian glycogen synthase kinase-3 (GSK3) is generated from two genes, GSK3alpha and GSK3beta, while a splice variant of GSK3beta (GSK3beta2), containing a 13 amino acid insert, is enriched in neurons. GSK3alpha and GSK3beta deletions generate distinct phenotypes. Here, we show that phosphorylation of CRMP2, CRMP4, beta-catenin, c-Myc, c-Jun and some residues on tau associated with Alzheimer's disease, is altered in cortical tissue lacking both isoforms of GSK3. This confirms that they are physiological targets for GSK3. However, deletion of each GSK3 isoform produces distinct substrate phosphorylation, indicating that each has a different spectrum of substrates (e.g. phosphorylation of Thr509, Thr514 and Ser518 of CRMP is not detectable in cortex lacking GSK3beta, yet normal in cortex lacking GSK3alpha). Furthermore, the neuron-enriched GSK3beta2 variant phosphorylates phospho-glycogen synthase 2 peptide, CRMP2 (Thr509/514), CRMP4 (Thr509), Inhibitor-2 (Thr72) and tau (Ser396), at a lower rate than GSK3beta1. In contrast phosphorylation of c-Myc and c-Jun is equivalent for each GSK3beta isoform, providing evidence that differential substrate phosphorylation is achieved through alterations in expression and splicing of the GSK3 gene. Finally, each GSK3beta splice variant is phosphorylated to a similar extent at the regulatory sites, Ser9 and Tyr216, and exhibit identical sensitivities to the ATP competitive inhibitor CT99021, suggesting upstream regulation and ATP binding properties of GSK3beta1 and GSK3beta2 are similar.
|
395 |
The Role of Maternal Gestational Diabetes in Inducing Fetal Endothelial DysfunctionSultan, S.A., Liu, Wanting, Peng, Yonghong, Roberts, Wayne, Whitelaw, D.C., Graham, Anne M January 2015 (has links)
No / Gestational diabetes mellitus (GDM) is known to be associated with fetal endothelial dysfunction, however, the mechanisms are not fully understood. This study examines the effect of maternal diabetes on fetal endothelial function and gene expression under physiological glucose conditions (5 mM). Human umbilical vein endothelial cell (HUVEC) isolated from diabetic mothers (d.HUVEC) grew more slowly than HUVEC isolated from healthy mothers (c.HUVEC) and had delayed doubling time despite increased levels of total vascular endothelial growth factor (VEGF) expression and protein production as determined by real-time PCR and ELISA respectively. Using western blot, the levels of antiproliferative VEGF165b isoform were increased in d.HUVEC relative to c.HUVEC. Successful VEGF165b knockdown by small interfering RNA (siRNA) resulted in increased proliferation of d.HUVEC measured by MTT, compared with negative siRNA control, to similar levels measured in c.HUVEC. In addition, d.HUVEC generated excess levels of ROS as revealed by 2',7' Dichlorodihydrofluorescein Diacetate (DCFH-DA) and Nitrotetrazolium blue (NBT). Using microarray, 102 genes were differentially overexpressed between d.HUVEC versus c.HUVEC (>1.5-fold change; P < 0.05). Functional clustering analysis of these differentially expressed genes revealed participation in inflammatory responses (including adhesion) which may be related to pathological outcomes. Of these genes, ICAM-1 was validated as upregulated, confirming microarray results. Additional confirmatory immunofluorescence staining revealed increased protein expression of ICAM-1 compared with c.HUVEC which was reduced by vitamin C treatment (100 muM). Thus, maternal diabetes induces persistent alterations in fetal endothelial function and gene expression following glucose normalization and antioxidant treatment could help reverse endothelium dysfunction.
|
396 |
The effects of exercise training on placental glucose transport in a mouse model of intrauterine growth restrictionChemtov, Jessica 08 1900 (has links)
cotutelle: Dre Cathy Vaillancourt / Le retard de croissance intra-utérin (RCIU) est un état gestationnel dans lequel le fœtus est empêché de grandir et qui se caractérise par un poids fœtal inférieur au 10e percentile. En ce moment, aucun traitement n'est disponible, ce qui offre peu de possibilités aux personnes à risque. Il a été démontré que l'entraînement physique (ExT) améliore la santé de la mère, du placenta et du fœtus. En outre, le RCIU présent dans un modèle murin de pré-éclampsie a été prévenu par l'ExT. En tant que tel, nous devons nous intéresser uniquement au RCIU, car il n'existe actuellement aucun traitement pour cette pathologie. Le transporteur de glucose, à savoir GLUT4, est régulé à la hausse par l'ExT dans le muscle squelettique. Comme le RCIU est causé par une insuffisance placentaire et une diminution du transport des nutriments, l'objectif de cette ce mémoire est d'évaluer les bénéfices de l'ExT sur le transport placentaire du glucose.
Les souris ont été assignées soit au régime japonais, soit au régime nord-américain (NA) à l'âge de 3 semaines, après le sevrage. Comme l'ont étudié précédemment Falcao et ses collègues (2009), nous avons voulu étudier l'effet du régime alimentaire sur le transport du glucose chez les souris WT et KO en raison des différences observées dans l'altération du placenta, le poids de l'organe et la fonction endothéliale. Nous avons donné aux souris l'accès à une roue d'exercice à usage libre 4 semaines avant et pendant la gestation. Les souris ont été sacrifiées à la fin de la gestation et le placenta a été prélevé. Les placentas ont été fixés dans de la cire de paraffine et l'immunohistochimie a été réalisée en utilisant les anticorps pour GLUT1, GLUT3, GLUT4, Pan Cytokératine, un marqueur de la prolifération du trophoblaste et CD31, un marqueur des cellules endothéliales. Nous voulions étudier la colocalisation de ces deux types de cellules dominantes avec les transporteurs de glucose.
Nous avons constaté que le marquage de GLUT4 et GLUT1 dans le labyrinthe placentaire était accru chez les souris entraînées des deux génotypes et chez les souris RCIU entraînées, respectivement. En outre, nous avons constaté une colocalisation accrue de GLUT4 avec les cellules endothéliales et trophoblastes chez les souris entraînées dans l'ensemble du placenta. La colocalisation de GLUT3 avec la cytokératine Pan Cytokératine était plus faible chez les souris normales et RCIU entraînées, tandis que la colocalisation GLUT3-CD31 était significativement plus faible uniquement chez les souris ExT KO. Un effet du régime alimentaire a été observé sur GLUT4. La présence de GLUT4-Pan Cytokératine dans la caduque maternelle et le sac vitellin était significativement plus élevée chez les souris WT et KO nourries avec le régime nord- américain (NA). La colocalisation GLUT4-Pan Cytokératine et GLUT4-CD31 dans la plaque choriale était significativement plus élevée chez les souris WT nourries au régime NA que chez les souris nourries au régime japonais. Notre étude suggère que l'ExT améliore le transport placentaire du glucose par la modulation des transporteurs de glucose. À notre connaissance, nous sommes le premier groupe à rapporter ces résultats. L'ExT est donc une voie prometteuse pour la prévention du RCIU, mais d'autres études doivent être menées pour confirmer nos résultats. / Intrauterine Growth Restriction (IUGR) is a gestational condition in which the fetus is
prevented from growing and characterized by a fetal weight below the 10th percentile. At
present no treatments are available, proposing few avenues for those at risk. Exercise training
(ExT) has been shown to improve maternal, placental, and fetal health. In addition, IUGR
present in a mouse model of preeclampsia was prevented with Ext. As such, we need to look at
IUGR alone as there are no current treatments for this condition. Glucose transporter, namely
GLUT4, is upregulated due to ExT in the skeletal muscle. As IUGR is caused by placental
insufficiency and diminished nutrient transport, the aim of this thesis is to evaluate the benefits
of ExT on placental glucose transport.
The mice were either assigned to the Japanese diet or the North American (NA) diet
group at 3 weeks of age, after weaning. As previously studied by Falcao and colleagues (2009),
we wanted to look at the effect of diet on WT and KO mice on glucose transport due to the
differences in placental alteration, organ weight and endothelial function that was observed.
We gave the mice access to a free-use exercise wheel 4 weeks prior to and during gestation. The
mice were sacrificed at the end of gestation, and the placenta was collected. The placentas
were fixed in paraffin wax, and immunohistochemistry was performed using the antibodies for
GLUT1, GLUT3, GLUT4, Pan Cytokeratin, a marker of trophoblast proliferation and CD31, a
marker of endothelial cells. We wanted to look at the colocalization of these two dominant cell
types in conjunction with the glucose transporters.
We found that GLUT4 and GLUT1 labelling in the placental labyrinth was increased in
trained mice of both genotypes and trained IUGR mice, respectively. Additionally, we found
increased GLUT4 colocalization with endothelial and trophoblast cells in trained mice in the
overall placenta. GLUT3 colocalization with Pan Cytokeratin was significantly lower in trained
normal and IUGR mice while GLUT3-CD31 co-localization was significantly lower in ExT KO mice
only. An effect of diet was observed in GLUT4. GLUT4-Pan Cytokeratin in the maternal decidua
and the yolk sac was significantly higher in both WT and KO mice fed the North American (NA)
diet. GLUT4-Pan Cytokeratin and GLUT4-CD31 colocalization in the chorionic plate was significantly higher in NA diet-fed WT mice compared to the Japanese diet-fed WT mice. Our
study suggests that ExT improves placental glucose transport through the modulation of the
glucose transporters. To our knowledge, we are the first group to report these findings. As
such, ExT is a promising avenue for the prevention of IUGR, however more studies need to be
done to confirm our results.
|
397 |
Einfluss des zellulären Prion-Proteins auf die LDH-Expression unter oxidativen Stressbedingungen / Influence of the cellular prion protein to the LDH expression under oxidative stress conditionsSchenkel, Sara 23 November 2015 (has links)
Die genaue physiologische Funktion des zellulären Prion-Proteins (PrPC) ist noch immer nicht vollständig verstanden. Eine mögliche Funktion des PrPC auf das neuronale Überleben nach einem hypoxischen oder ischämischen Insult wird diskutiert. In einem Vorversuch zeigten sich nach zerebraler Ischämie deutlich größere Infarktvolumina in den Gehirnen von Prion-Knock-Out-Mäusen im Vergleich zu denen der Wild-Typ-Mäuse. Das Identifizieren der molekularen Mechanismen der PrPC-vermittelten Neuroprotektion ist daher von großem Interesse und machte die Etablierung eines Zell-Modells erforderlich.
Neuere Studien konnten einen Einfluss des zellulären Prion-Proteins auf die Glykolyse nachweisen. Unter Sauerstoffmangelbedingungen kommt es zu einer vermehrten Bildung von Laktat durch das Enzym Laktat-Dehydrogenase (LDH). Neurone benötigen unter hypoxischen oder ischämischen Bedingungen dieses Laktat als Energiesubstrat. Je mehr Laktat den Neuronen zur Verfügung steht, umso höher ist das neuronale Überleben.
In dieser Arbeit konnte die Beteiligung der Laktat-Dehydrogenase an der durch das zelluläre Prion-Protein vermittelten Neuroprotektion nach Hypoxie nachgewiesen werden. Das Ziel dieser Arbeit bestand darin, mögliche Unterschiede der LDH-Expression in WT-Zellen, Prnp0/0-Zellen und HEK-293-Zellen unter normalen und hypoxischen Bedingungen in vitro zu untersuchen. Die Expression der LDH war unter hypoxischen Bedingungen in den WT-Zellen im Vergleich zu den Prnp0/0-Zellen deutlich höher. Dies konnte auch in PrPC-überexprimierenden HEK-293-Zellen nach Hypoxie gezeigt werden. Ebenso konnte nachgewiesen werden, dass Hypoxie zu einem größeren Schaden des Tubulinzytoskelettes in Prnp0/0-Zellen führt als in WT-Zellen, was eine neuroprotektive Wirkung von PrPC vermuten lässt.
Eine direkte oder indirekte Interaktion von LDH-A und PrPC konnte durch eine Co-Immunpräzipitation in HEK-293-Zellen nachgewiesen werden. Die genauen Mechanismen über die PrPC möglicherweise zu einer vermehrten Laktat-Produktion führt, sind noch nicht eindeutig identifiziert und müssen noch näher untersucht werden.
Zusammengefasst kann gesagt werden, dass die erhobenen Daten die Vermutung verstärken, dass das Enzym LDH und sein Produkt Laktat in die durch das zelluläre Prion-Protein vermittelte Neuroprotektion nach Hypoxie involviert sind. Es ist das erste Mal, dass gezeigt wurde, durch welchen Mechanismus PrPC zur Neuroprotektion beiträgt.
|
398 |
DSTYK Enhances Chemoresistance in Triple-Negative Breast Cancer CellsOgbu, Stella C., Rojas, Samuel, Weaver, John, Musich, Phillip R., Zhang, Jinyu, Yao, Zhi Q., Jiang, Yong 29 December 2021 (has links)
Breast cancer, as the most prevalent cancer in women, is responsible for more than 15% of new cancer cases and about 6.9% of all cancer-related death in the US. A major cause of therapeutic failure in breast cancer is the development of resistance to chemotherapy, especially for triple-negative breast cancer (TNBC). Therefore, how to overcome chemoresistance is the major challenge to improve the life expectancy of breast cancer patients. Our studies demonstrate that TNBC cells surviving the chronic treatment of chemotherapeutic drugs show significantly higher expression of the dual serine/threonine and tyrosine protein kinase (DSTYK) than non-treated parental cells. In our in vitro cellular models, DSTYK knockout via the CRISPR/Cas9-mediated technique results in apoptotic cell death of chemoresistant cells upon drug treatment. Moreover, DSTYK knockout promotes chemotherapeutic drug-induced tumor cell death in an orthotopic mouse model. These findings suggest that DSTYK exerts an important and previously unknown role in promoting chemoresistance. Our studies provide fundamental insight into the role of DSTYK in chemoresistance in TNBC cells and lay the foundation for the development of new strategies targeting DSTYK for improving TNBC therapy.
|
399 |
Lactate Suppresses Macrophage Pro-inflammatory Response to Lps Stimulation by Inhibition of YAP and Nf-κB Activation via GPR81-Mediated SignalingYang, Kun, Xu, Jingjing, Fan, Min, Tu, Fei, Wang, Xiaohui, Ha, Tuanzhu, Williams, David L, Li, Chuanfu 06 October 2020 (has links)
Recent evidence from cancer research indicates that lactate exerts a suppressive effect on innate immune responses in cancer. This study investigated the mechanisms by which lactate suppresses macrophage pro-inflammatory responses. Macrophages [Raw 264.7 and bone marrow derived macrophages (BMDMs)] were treated with LPS in the presence or absence of lactate. Pro-inflammatory cytokines, NF-κB and YAP activation and nuclear translocation were examined. Our results show that lactate significantly attenuates LPS stimulated macrophage TNF-α and IL-6 production. Lactate also suppresses LPS stimulated macrophage NF-κB and YAP activation and nuclear translocation in macrophages. Interestingly, YAP activation and nuclear translocation are required for LPS stimulated macrophage NF-κB activation and TNFα production. Importantly, lactate suppressed YAP activation and nuclear translocation is mediated by GPR81 dependent AMKP and LATS activation which phosphorylates YAP, resulting in YAP inactivation. Finally, we demonstrated that LPS stimulation induces an interaction between YAP and NF-κB subunit p65, while lactate decreases the interaction of YAP and NF-κB, thus suppressing LPS induced pro-inflammatory cytokine production. Our study demonstrates that lactate exerts a previously unknown role in the suppression of macrophage pro-inflammatory cytokine production via GPR81 mediated YAP inactivation, resulting in disruption of YAP and NF-κB interaction and nuclear translocation in macrophages.
|
400 |
Funktionelle Charakterisierung des Ferredoxin Redoxsystems von Toxoplasma gondiiFrohnecke, Nora 05 April 2018 (has links)
Toxoplasmose ist weltweit eine der am häufigsten auftretenden parasitären Zoonosen mit einer geschätzten Infektionsrate von über 30%. Toxoplasma gondii (Phylum: Apicomplexa) besitzt ein Plastid ähnliches Organell, den Apicoplasten. In diesem befindet sich das einzig bekannte Redoxsystem, welches aus der Ferredoxin-NADP+-Reduktase und Ferredoxin (Fd) besteht. Fd als Elektonendonator liefert Elektronen an verschiedene essentielle Stoffwechselwege, wie der Isoprenoidvorstufen- und Liponsäuresynthese. Um die bei einem Elektronentransfer benötigte direkte Protein-Protein-Interaktion eingehend zu analysieren, wurde ein bakterielles Reverse Two Hybrid System verwendet, womit die Interaktion von TgFd und TgLipA gezeigt werden konnte. Da angenommen wird, dass Fd eine zentrale Rolle in verschiedenen Stoffwechselwegen übernimmt, ist für einen Fd Knockout ein komplexer biochemischer Phänotyp zu erwarten, der möglicherweise zum Absterben der Parasiten führt. Zur Untersuchung dessen wurden zwei komplementäre Wege verfolgt. Eine der Strategien basierte auf dem grundsätzlichen Nachweis, dass Fd unerlässlich für das Überleben von T. gondii ist. Mit Hilfe des DiCre Systems sollte ein definierter genetischer Fd Knockout hergestellt werden, welcher jedoch nicht zweifelsfrei generiert werden konnte. Bei der zweiten Strategie kam ein konditionales Knockdown System zur Anwendung, bei welchem die Expression des Fd Gens nach Induktion herabreguliert wird. Mit Hilfe dessen konnten weitreichende Auswirkungen der Fd Defizienz auf T. gondii gezeigt werden: die Fettsäuresynthese der im Apicoplasten synthetisierten Fettsäuren ist reduziert sowie die Motilität durch eine beeinträchtigte Isoprenoidsynthese verringert, wodurch insgesamt drastische Auswirkungen auf das Parasitenwachstum gezeigt werden konnten. Beide Stoffwechsel sind vom Elektronendonator Fd abhängig und durch die Fd Herabregulation betroffen. Die Ergebnisse unterstreichen die essentielle Rolle des Fd-Redoxsystems von T. gondii. / Toxoplasmosis is one of the most common parasitic zoonoses world-wide, around 30% of human beings are infected. Toxoplasma gondii (phylum: Apicomplexa) contains a unique intracellular organelle derived from plastids, called apicoplast. The only known redox system in the apicoplast consists of the ferredoxin NADP+-reductase and its redox partner, ferredoxin (Fd). The latter donates electrons to different essential metabolic pathways in the apicoplast like the last two enzymes of the isoprenoid precursor biosynthesis and the lipoic acid synthesis. To dissect protein protein interactions for an electron transfer a bacterial reverse two hybrid system was used. The physical interaction of both proteins TgFd and TgLipA could be shown.
Fd is supposed to play an important role in diverse metabolic pathways, hence a knock-out of the Fd gene is expected to generate a complex biochemical phenotype and be lethal to the parasite. Therefore two complementary approaches were used to analyze the role of TgFd in this context. The first strategy shall verify the essentiality of TgFd for the survival of T. gondii. It is based on the DiCre system whereby a defined genetic knock out of TgFd is produced. Respectives parasites have been generated, but at the end no genetic Fd knock out could be produced. In the second approach a conditional knock-down was generated, where the expression of the TgFd gene is repressed after induction. The Fd deficiency has wide ranging effects on T. gondii: The fatty acid synthesis of the apicoplast-synthesized fatty acids is reduced as well as the motility is decreased due to an affected isoprenoid synthesis. In total this leads to a dramatic inhibition of parasite growth. Both metabolic pathways depend upon the electron carrier Fd and thus are affected by Fd deficiency. The results underline the essential role of the ferredoxin redoxsystem of T. gondii.
|
Page generated in 0.0386 seconds