• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • Tagged with
  • 15
  • 12
  • 9
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Pyrolytic Esterification Derivatization Chemistry for the Qualitative Determination of Sulfonate Surfactants and Indirect Detection of Sulfate Surfactants through On-Line Degradation Products for Gas Chromatography-Mass Spectrometry

Igwebuike, Alexander 11 July 2023 (has links)
No description available.
12

Quantitative analysis of surfactant deposits on human skin by liquid chromatography electrospray ionisation tandem mass spectrometry.

Massey, Karen A., Snelling, Anna M., Nicolaou, Anna January 2010 (has links)
No / Surfactants are commonly used as cleansing agents and yet there are concerns they may also have a role in skin irritation. Presently, the lack of suitable methods for quantitative and qualitative analysis of surfactant deposition on skin has hindered the in-depth investigation of such effects. Here, we report the application of reverse phase liquid chromatography electrospray ionisation mass spectrometry (LC/ESI-MS/MS) assays for two surfactants commonly used in consumer products, namely sodium lauryl ether sulphate (SLES) and laurylamidopropyl betaine (LAPB), to a baseline study aiming to assess deposition levels on human skin. The linearity of the assays was established at 3-20 ng, with coefficient of variation below 5%. Detection limits were 100 pg for LAPB and 1 ng for SLES; quantitation limits were 500 pg for LAPB and 2.5 ng for SLES. The baseline study was conducted using a panel of 40 healthy volunteers. Skin extract samples were taken in triplicate from forearms, using ethanol. SLES was detected on most volunteers, with 75% of them having SLES deposits in the range of 100-600 ng/cm2. LAPB was detected on the skin of all volunteers with 85% of them having deposit levels within the concentration range of 1-100 ng/cm2. These results demonstrate the extent to which commonly used surfactants remain on the skin during the day. The analytical methods reported here can be applied to the investigation of surfactants in relation to general skin condition and the development and optimisation of new consumer wash products. / EPSRC
13

Quantitative analysis of surfactant deposits on human skin by liquid chromatography/electrospray ionisation tandem mass spectrometry.

Massey, Karen A., Snelling, Anna M., Nicolaou, Anna January 2010 (has links)
No / Surfactants are commonly used as cleansing agents and yet there are concerns that they may also have a role in skin irritation. The lack of suitable methods for the quantitative and qualitative analysis of surfactant deposition on skin has hindered the in-depth investigation of such effects. Here, we report the application of reversed-phase liquid chromatography/electrospray ionisation tandem mass spectrometry (LC/ESI-MS/MS) assays for two surfactants commonly used in consumer products, namely sodium lauryl ether sulfate (SLES) and laurylamidopropyl betaine (LAPB), to a baseline study aiming to assess deposition levels on human skin. The linearity of the assays was established at 3-20 ng, with coefficient of variation below 5%. The detection limits were 100 pg for LAPB and 1 ng for SLES; quantitation limits were 500 pg for LAPB and 2.5 ng for SLES. The baseline study was conducted using a panel of 40 healthy volunteers. Skin extract samples were taken in triplicate from forearms, using ethanol. SLES was detected on most volunteers, with 75% of them having SLES deposits in the range of 100-600 ng/cm(2). LAPB was detected on the skin of all volunteers with 85% of them having deposit levels within the concentration range of 1-100 ng/cm(2). These results demonstrate the extent to which commonly used surfactants remain on the skin during the day. The analytical methods reported here can be applied to the investigation of surfactants in relation to general skin condition and to the development and optimisation of new consumer wash products. / EPSRC-DTA award / School Life Sciences
14

Development of Sensitive In Vitro Assays to Assess the Ocular Toxicity Potential of Chemicals and Ophthalmic Products

McCanna, David January 2009 (has links)
The utilization of in vitro tests with a tiered testing strategy for detection of mild ocular irritants can reduce the use of animals for testing, provide mechanistic data on toxic effects, and reduce the uncertainty associated with dose selection for clinical trials. The first section of this thesis describes how in vitro methods can be used to improve the prediction of the toxicity of chemicals and ophthalmic products. The proper utilization of in vitro methods can accurately predict toxic threshold levels and reduce animal use in product development. Sections two, three and four describe the development of new sensitive in vitro methods for predicting ocular toxicity. Maintaining the barrier function of the cornea is critical for the prevention of the penetration of infections microorganisms and irritating chemicals into the eye. Chapter 2 describes the development of a method for assessing the effects of chemicals on tight junctions using a human corneal epithelial and canine kidney epithelial cell line. In Chapter 3 a method that uses a primary organ culture for assessing single instillation and multiple instillation toxic effects is described. The ScanTox system was shown to be an ideal system to monitor the toxic effects over time as multiple readings can be taken of treated bovine lenses using the nondestructive method of assessing for the lens optical quality. Confirmations of toxic effects were made with the utilization of the viability dye alamarBlue. Chapter 4 describes the development of sensitive in vitro assays for detecting ocular toxicity by measuring the effects of chemicals on the mitochondrial integrity of bovine cornea, bovine lens epithelium and corneal epithelial cells, using fluorescent dyes. The goal of this research was to develop an in vitro test battery that can be used to accurately predict the ocular toxicity of new chemicals and ophthalmic formulations. By comparing the toxicity seen in vivo animals and humans with the toxicity response in these new in vitro methods, it was demonstrated that these in vitro methods can be utilized in a tiered testing strategy in the development of new chemicals and ophthalmic formulations.
15

Development of Sensitive In Vitro Assays to Assess the Ocular Toxicity Potential of Chemicals and Ophthalmic Products

McCanna, David January 2009 (has links)
The utilization of in vitro tests with a tiered testing strategy for detection of mild ocular irritants can reduce the use of animals for testing, provide mechanistic data on toxic effects, and reduce the uncertainty associated with dose selection for clinical trials. The first section of this thesis describes how in vitro methods can be used to improve the prediction of the toxicity of chemicals and ophthalmic products. The proper utilization of in vitro methods can accurately predict toxic threshold levels and reduce animal use in product development. Sections two, three and four describe the development of new sensitive in vitro methods for predicting ocular toxicity. Maintaining the barrier function of the cornea is critical for the prevention of the penetration of infections microorganisms and irritating chemicals into the eye. Chapter 2 describes the development of a method for assessing the effects of chemicals on tight junctions using a human corneal epithelial and canine kidney epithelial cell line. In Chapter 3 a method that uses a primary organ culture for assessing single instillation and multiple instillation toxic effects is described. The ScanTox system was shown to be an ideal system to monitor the toxic effects over time as multiple readings can be taken of treated bovine lenses using the nondestructive method of assessing for the lens optical quality. Confirmations of toxic effects were made with the utilization of the viability dye alamarBlue. Chapter 4 describes the development of sensitive in vitro assays for detecting ocular toxicity by measuring the effects of chemicals on the mitochondrial integrity of bovine cornea, bovine lens epithelium and corneal epithelial cells, using fluorescent dyes. The goal of this research was to develop an in vitro test battery that can be used to accurately predict the ocular toxicity of new chemicals and ophthalmic formulations. By comparing the toxicity seen in vivo animals and humans with the toxicity response in these new in vitro methods, it was demonstrated that these in vitro methods can be utilized in a tiered testing strategy in the development of new chemicals and ophthalmic formulations.

Page generated in 0.0341 seconds