• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • Tagged with
  • 14
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inverkan av mängden flygaska och masugnsslagg i betong : Hur påverkas den tidiga hållfasthetesutvecklingen i betong med tillsatsmaterial / Impact of the amount of fly ash and blast furnace slag in concrete : How is the early strength affected the development in concrete with additives

Hosseini, Naser January 2022 (has links)
Cementindustrin står för ungefär sju procent av världens totala koldioxidutsläpp. Att minska koldioxidutsläpp har varit hög prioritet för cementindustrin. Mellan 1990–2013 har det skett en minskning på 100 kg  /ton cement, men det är fortfarande en stor mängd utsläpp när man tillsätter flygaska och masugnsslagg för att minska betongens   avtryck. Syftet med detta examensarbete är att undersöka tryckhållfasthetsutveckling hos betong vid olika procentsatser tillsatsmaterial. Ersättningsmaterialen som har använts i denna rapport är flygaska och masugnsslagg. Hållfasthetsutvecklingen har genomförts för betong utan tillsatsmaterial, 15 respektive 25 procent masugnsslagg samt 15 respektive 25 procent flygaska. Målet med rapporten är att undersöka skillnaderna i hållfasthetsutvecklingen i olika betong som innehåller olika procentsatser av flygaska samt masugnsslagg. Standarder har studerats i arbetet för att få fram den tillåtna mängden tillsatsmaterial som får tillsättas i betong. I arbete har gjutits 15 provkroppar med olika procentsatser flygaska samt masugnsslagg och tryckhållfastheten har bestämts efter 2 dygn, 7 dygn samt 28 dygn. Resultat av sättmåtten visade att arbetbarheten förändras betydligt och sättmåttet ökade ju mer flygaska användes. Tillsatsmaterial förbättrade arbetbarheten i tre av de fyra försök som har genomfört. Alla betongkuber har jämförts sedan med referensbetongen och även litteraturstudier. Resultatet som har erhållit från provtester är följande: inblandning av 15% flygaska samt slagg ger en reduktion med 14–15% av hållfastheten under 2 dygn. Blandning av 25% flygaska och slagg ger en reduktion med 31–37% av hållfastheten. Resultaten av tryckhållfastheten efter 2 dygn visar att betong utan tillsatsmaterial hade bästa hållfasthet. Efter 7 dygn hade betong med 15% flygaska hade bästa hållfastheten och betong med endast cement näst bäst hållfasthet. Betong med 15% flygaska hade bästa tryckhållfastheten efter 28 dagar vilket blev 52,3 MPa.
2

Samverkan mellan nya cementtyper och tillsatsmedel för betongtillverkning

Häglund, Johan January 2013 (has links)
Cement manufacture accounts for 3-5 percent of total global carbon emissions. There is a growing interest in reducing the environmental impact and conserve limited natural resources. In cement production, clinker productions consume 87.5 percent of the total energy consumed in the cement manufacture.Cementa has since many years, focused on reducing the environmental impact of cement production. The work has involved the entire production process from selection of alternative fuels to the development of cement with less clinker content. During 2013/2014, two new types of cement (Bascement and CEM II / B) will be introduced to the Swedish market. Cementa is also working to reduce cement use in concrete and this thesis is a part in this work. By developing better concrete proportioning tool based on a better understanding of the influence of the concrete constituents on the fresh concrete properties, cement consumption is reduced. The following report deals with new types of cement with less clinker content, where the clinker partially is replaced by fly ash, slag and limestone. As a reference, the study takes today's construction cement from Slite and Skövde. The study aims to find out how today´s construction cement and the new cement types differ in their rheological properties. Experiments have been conducted on mortar and concrete with different plasticizers and air-entraining agents. The study also addresses air-entrainment demand and open time of fresh concrete with new cement types. The results show that the new cement types, Bascement and CEM II/B, have better rheological properties than their references Slite and Skövde cement. Regarding the demand for air-entraining agent’s, Bascement show significantly greater demand than Slite cement, while the difference in air-entraining demand between Slite cement, Skövde cement and CEM II / B is very small.Furthermore, the results show that concrete with Bascement constitutes larger 28-day strength than the concrete with Slite cement, while the concrete strength with CEM II/B is similar to its reference cement Skövde. Since the strength development properties are dealt with in previous studies, these test series are limited to 28-days strength testing only.
3

En studie av termisk behandling för klimatreducerande betong : Experimental studie om hållfasthetsutveckling / A study on thermal treatment for climate-reducing concrete

Mohamadi, Abbas, Mohammadi, Hanie January 2024 (has links)
Globala klimatförändringar har lett till ökat intresse inom byggsektorn för att minska dess klimatpåverkan genom klimatsmarta lösningar. Vidare, har Sverige ett klimatmål där alla branscher inklusive byggbranschen förväntas vara klimatneutrala år 2045. En av mest använda samt viktigt byggmaterial är betong och dess klimatpåverkan varierar beroende på sammansättningen. Betongens klimatpåverkan är främst kopplad till cementproduktion vilket över 90 procent av koldioxidutsläppen kommer från cementtillverkning. För att minska klimatavtrycket på betong, används olika metoder, där en av metoderna är att minska andelen cement i betongblandningen genom att använda sig av alternativa bindemedel såsom masugnsslagg som en biprodukt från järnproduktion. Det används som ett bindemedel och kan ersätta en del av Portlandcementet. Medan användning av slagg påverkar betongens hållfasthetsutveckling under tidig härdningsstadier genom att utvecklas långsammare och detta beror på att slagg har en lägre värmeutveckling jämfört med portlandcement. Betongföretag står inför en utmaning där de vill minska betongens klimatpåverkan genom att använda sig av slagg i sin betongblandning samtidigt som de vill öka produktionen på grund av ekonomiska och effektivitetsmässiga skäl. Dessutom en av de vanligaste metoder som används för att påskynda den tidiga härdning stadiet för betong är värmebehandling. Denna metod kan också används för att producera snabbare och effektivare klimatreducerande betong. Syftet med detta arbete är att undersöka värmebehandlings påverkan hos slaggbetong beroende på varierande temperaturer samt värmebehandlingstider.    Metoden som tillämpas i detta arbete är baserad på kvantitativa analyser. Den innefattar gjutning av betong med olika sammansättningar samt värmebehandling med varierande härdningstemperaturer respektive värmebehandlingstider. Vidare, jämförs värmebehandlings effekt och hållfasthetsutvecklingens effekt hos slaggbetong i förhållande till rent portlandcement. I detta arbete ersätts portlandcement med 50% samt 70% GGBS i blandningsförhållande. För att möjliggöra en jämförelse av de mekaniska egenskaperna, används referensbetong där ingen ersättning sker. Ytligare, i arbetet används tre olika värmehärdnings temperatur som 20°C, 50°C samt 65°C under 2h, 4h och 8h härdningstid.    Resultaten visade slaggbetong har ett långsammare hållfasthetsutveckling jämfört med portlandcement vid rumstemperatur. När både slagg-och referensbetong utsätts för värme under olika härdningstider visade sig att värmehärdningstemperatur har en försumbar effekt på den tidig hållfasthet hos referensbetong medan ett negative effekt på senare ålderns hållfasthet. Men när slaggbetong utsätts för värme påverkas den tidigt hållfasthet positivt och hade lite positive inverkan på den normhållfastheten vid 28 dagar.     Dessutom resultaten visade att det fanns ett samband mellan härdningstemperatur samt slaggersätning och sambandet innebär att ökad slagg-andel och högre härdningstemperatur medför en ökad tryckhållfastheten i tidigt och senare åldern hos den betong som har större slagg-andel jämfört med portlandcement. Ytterligare, indikerar resultatet att längre exponering och höga temperaturer medför en ökad tidig tryckhållfasthet hos slaggbetong medan längre exponering vid högre temperaturer minskar hållfastheten hos referensbetong / Global climate change has led to increased interest in the building sector to reduce its climate impact through climate smart solution. Furthermore, Sweden has a climate goal where all industries, including the building sector, are expected to be climate neutral by 2045. One of the most used and important construction materials is concrete, and its climate impact varies depending on the cement production, with over 90 percent of CO2 emissions coming from cement manufacturing. To reduce the carbon footprint of concrete, various methods are used, one of which is to reduce the proportion of cement in the concrete mix by using alternative binders such as ground granulated blast furnace slag (GGBS), a by Product from steel production, it is used as a binder and can replace a portion of Portland cement. While the use of slag affects the early-stage strength development of concrete by developing slower due to its lower heat development of compared to Portland cement. Concrete companies face a challenge where they aim to reduce the climate impact of concrete by using GGBS in their concrete mix while also increasing production due to economic and efficiency reasons. Additionally, one of the most common methods used to accelerate the early curing stage for climate-improved concrete is heat treatment. This method is used to produce faster and more efficient climate reducing concrete. The purpose of this study is to investigate the impact of heat treatment on GGBS concrete depending on different temperatures and curing times. The method applied in this study is based on quantitative analyses. It involves molding concrete with different composition and heat treatment with different curing temperatures and curing times. Furthermore, the effect of heat treatment and strength development of GGBS concrete is compared to pure Portland cement. In this study, Portland cement is replacing with 50% and 70% GGBS in the mix ratio, to enable a comparison of the mechanical properties, reference concrete is used where no substitution occurs. Additionally, three different heat curing temperatures of 20°C, 50°C and 65°C are used during 2 h, 4 h and 8 h of curing time. The results showed that slag concrete has slower strength development compared to Portland cement at room temperature. When both slag and reference concrete are subjected to heat for different curing times, it was found that the heat curing temperature has a negligible effect on the early strength of reference concrete while having a negative effect on the late-age strength. However, when slag concrete is subjected to heat, early strength is positively affected and had a slight positive impact on the standard strength at 28 days. Additionally, the results showed that there is a relationship between curing temperature and slag substitution, where increased slag content and higher curing temperature results in increased compressive strength in the early and later ages of concrete with higher slag content compared to Portland cement. Additionally, the results indicate that longer exposure and high temperatures result in increased early compressive strength in slag concrete, while longer exposure at higher temperatures decreases the strength of reference concrete.
4

Masugnsslaggens potential som filtermaterial för metaller i vägdagvatten

Skogsfjord, Michael, Blom, Minna January 2008 (has links)
<p>Dagvatten från vägar innehåller ofta tungmetaller. De vanligaste metallerna i vägdagvatten är bly, koppar, kadmium, nickel och zink. Dessa föroreningar utgör en belastning i recipienter som tar emot dagvattnet. I denna rapport har bly, koppar och zink reducerats från vägdagvatten genom filtrering i kolonner med amorf, granulerad masugnsslagg och sand. Masugnsslagg, som är en biprodukt från framställningen av järn, är en alkalisk produkt med goda sorptionsegenskaper vilket gör den lämplig att använda som filtermaterial för vatten förorenade med metaller. Sanden användes i studien som referensmaterial. Masugnsslaggen som användes i denna studie är hyttsand från Merox, Oxelösund. Reningshalten för hyttsanden i denna studie uppgick till 79 % för bly, 82 % för koppar samt 92 % för zink. Hyttsandens reducerande förmåga har även undersökts i batchförsök.</p> / <p>Stormwater from roads often contain heavy metals. The most common metals in storm water from roads are lead, copper, cadmium, nickel, and zinc. These pollutants constitute a stress for organisms in recipients that receive the stormwater. In this report lead, copper and zinc have been reduced from road storm water through filtration in columns with granulated iron slag and sand. Iron slag is a by-product from the iron making process, with a high sorption capacity, which makes it suitable as a filter material for water polluted with metals. The sand in this study has been used as reference material. The reducing capacity in the stormwater for the iron slag used in this study, “hyttsand”, was 79 % for lead, 82 % for copper and 92 % for zinc. The reducing capacity of the iron slag was also investigated in batch studies.</p>
5

Masugnsslaggens potential som filtermaterial för metaller i vägdagvatten

Skogsfjord, Michael, Blom, Minna January 2008 (has links)
Dagvatten från vägar innehåller ofta tungmetaller. De vanligaste metallerna i vägdagvatten är bly, koppar, kadmium, nickel och zink. Dessa föroreningar utgör en belastning i recipienter som tar emot dagvattnet. I denna rapport har bly, koppar och zink reducerats från vägdagvatten genom filtrering i kolonner med amorf, granulerad masugnsslagg och sand. Masugnsslagg, som är en biprodukt från framställningen av järn, är en alkalisk produkt med goda sorptionsegenskaper vilket gör den lämplig att använda som filtermaterial för vatten förorenade med metaller. Sanden användes i studien som referensmaterial. Masugnsslaggen som användes i denna studie är hyttsand från Merox, Oxelösund. Reningshalten för hyttsanden i denna studie uppgick till 79 % för bly, 82 % för koppar samt 92 % för zink. Hyttsandens reducerande förmåga har även undersökts i batchförsök. / Stormwater from roads often contain heavy metals. The most common metals in storm water from roads are lead, copper, cadmium, nickel, and zinc. These pollutants constitute a stress for organisms in recipients that receive the stormwater. In this report lead, copper and zinc have been reduced from road storm water through filtration in columns with granulated iron slag and sand. Iron slag is a by-product from the iron making process, with a high sorption capacity, which makes it suitable as a filter material for water polluted with metals. The sand in this study has been used as reference material. The reducing capacity in the stormwater for the iron slag used in this study, “hyttsand”, was 79 % for lead, 82 % for copper and 92 % for zinc. The reducing capacity of the iron slag was also investigated in batch studies.
6

Acceleratorers inverkan på betong avseende bearbetbarhet, pumpbarhet och hållfasthetstillväxt / Accelerators effect on concrete regarding processability, pumpability and strength development

Valden, Roger, Nehemiah, Temesgen January 2020 (has links)
The following thesis is a comparison study which was performed in cooperation with Sika Sverige AB. The project was to examine concrete’s behaviour while being subjected to different accelerators which is used to speed up the hardening process in young concrete. Sika provided the materials and the instructions for the tests that were made. The tests used where almost like the tests being performed at Sika’s laboratories but with some adjustments to the testing equipment. According to the results of the tests a clear difference between the different accelerators were found. The conclusion that the efficiency of the different accelerators were affected on several variables such as cement type, hardening age and hardening temperature were drawn. Because of the corona outbreak (2020) the tests could not be performed in Sikas laboratories. The tests were therefore carried out at a temporary laboratory without any direct supervision and some professional equipment could not be obtained which resulted in replacements with creative solutions. These changes affected the individual test results with high certainty but should not interfere with the conclusions on account that all test samples were subjected to the same circumstances.
7

Betongens hållfasthetsutveckling vid användning av olika ersättare för portlandklinker : En laborativ studie / Concrete strength development in the use of different replacement for clinker : An experimental study

Nilsson, Daniel, Lundgren, Dennis January 2012 (has links)
Tillverkning av portlandklinker står för ungefär fem procent av världens totala koldioxidutsläpp. Det finns därför ett allmänt intresse att minska användandet av portlandklinker. Klinkern kan antingen ersättas av andra cementerande material, eller så kan nya cementsnåla recept utformas. I den här rapporten har två cement med inmald flygaska respektive slagg från Cementa AB undersökts. För att undersöka klinkerersättnings-materialens potential har tester för tryckhållfasthet, uttorkningskrympning, bindetid, värmeutveckling och arbetbarhet utförts. Resultaten visar att skillnaderna mellan försökscementen och byggcementet är så pass små att båda bör kunna användas som byggcement. Ytterligare har ultrafiller av kalksten använts som ersättare för att minska cementhalten i betongen. Det går lika bra att delvis ersätta försökscementen med ultrafiller som det gör för byggcementet. Med cementsnåla recept och större del ersättningsmaterial finns det stora möjligheter att spara på energi och miljö. Detta borde i framtiden kunna leda till ett bättre och mer miljövänligt byggmaterial. / Manufacture of clinker is responsible for about five percent of the total global carbon dioxide emissions. Therefore, there is a general interest in reducing the use of clinker. Clinker can either be replaced by other cementitious materials, or reduced by using lean-cement recipes. This report examines two experimental cements, one with fly ash and one with slag, developed by Cementa AB. To examine the potential of clinker replacement materials, tests for compressive strength, drying shrinkage, initial setting, heat generation and workability, were performed. The results show that the differences between the experimental cements and the reference are so small that both are useable as building cements. In addition, an ultrafine filler of limestone is used as a replacement material for further reduction of the clinker content in concrete. It was also found, that it is just as efficient to partly replace the experimental cements with ultrafine filler as in the reference cement. There are great opportunities to save energy and the environment impact with both clinker-saving cement recipes and with cement replacement materials. This should lead to a better, more environmentally friendly, building material in the future.
8

Environmental and technical evaluation of cement reduction and test methods for fibre reinforced shotcrete in tunnels

Brodd, Elin, Östlund, Lina January 2022 (has links)
The dominating support method for hard rock tunnels today is use of fibre reinforced shotcrete in combination with rock bolts. The fibre reinforced shotcrete secures smaller blocks, while rock bolts are used to support larger blocks in the rock. Application of shotcrete is done by spraying against the rock surface using compressed air. The use of accelerators result in fast strength development and adhesive properties, which are two characteristics of great importance when constructing tunnels. This thesis aims at increasing the understanding of climate impact from fibre reinforced shotcrete in tunnel construction. The focus is on reducing the climate impact with two methods: reducing the share of cement in the shotcrete mixture through substitution with addition materials and using better test methods for fibres. Cement is one of the most important ingredients in concrete, however also the largest contributor to CO2 emissions. Reducing the cement amount is therefore a way of reducing the emissions of concrete. In addition, when testing the performance of fibres, different methods can lead to a spread in the results, causing an overuse of fibres in the shotcrete. First, the thesis investigated the use of alternative binder materials, especially Ground Granulated Blast Furnace Slag (GGBS), as a substitute for cement. Experimental testing was performed in a laboratory to evaluate the compressive strength for shotcrete with different amounts of GGBS. Testing was performed after one and seven days in order to evaluate the early strength. Second, the thesis investigated the use of fibre reinforcement and the possibilities of reducing the fibre dosage when changing fibre type and test method. Numerical modelling was performed for two test methods, beam and panel testing, based on experimental data. The thesis evaluated the environmental performance in terms of Global Warming Potential for both fibres and binder. The results show that substituting cement with GGBS has the largest potential to lower the CO2 emissions from fibre reinforced shotcrete. In addition, the fibre dosage can be lowered by changing fibre type, but also test method. Also this lowers the emissions, however the main emissions origins from the binder part. / Den dominerande förstärkningsmetoden för tunnlar i hårt berg idag är fiberarmerad sprutbetong i kombination med bergbultar. Den fiberarmerade sprutbetongen säkrar mindre block, medan bergbultar säkrar större block från att falla ner. Sprutbetongen appliceras genom sprutning direkt mot bergytan men hjälp av tryckluft. Användning av acceleratorer medför snabb hållfasthetsutveckling och vidhäftande egenskaper, vilka är av stor vikt vid tunnelkonstruktion. Syftet med examensarbetet är att öka förståelsen för klimatpåverkan från fiberarmerad sprutbetong i tunnelkonstruktion. Fokus är att undersöka minskningar i klimatpåverkan med två metoder: minska andelen cement i betongblandningen genom ersättning med alternativa material och använda bättre testmetoder för fibrer. Cement är en av de viktigaste ingredienserna i betong, men också den största bidragande faktorn till koldioxidutsläpp. Minskning av andelen cement är därför ett sätt att reducera utsläppen från betong. Dessutom kan valet av testmetod ha stor påverkan på vilken dosering av fibrer som krävs. Examensarbetet undersökte först användningen av alternativa bindemedelsmaterial, speciellt granulerad masugnsslagg, i sprutbetong som ett ersättningsmaterial till cement. Experiment i labb utfördes för att utvärdera tryckhållfastheten för gjuten sprutbetong med olika andelar granulerad masugnsslagg. Testning genomfördes efter en respektive sju dagar för att utvärdera hur slagg påverkar den tidiga hållfastheten. Användningen av fiberarmering och möjligheten att reducera fiberinnehållet vid byte av fibersort och testmetod undersöktes sedan. Numerisk modellering genomfördes för två testmetoder, balk- och plattest, baserat på experimentell data. Examensarbetet utvärderade klimatpåverkan i termer av Global Warming Potential, GWP, för både fibrer och bindemedel i sprutbetong. Resultaten visar att ersättning av cement med granulerad masugnsslagg har den största potentialen att minska koldioxidutsläppen från fiberarmerad sprutbetong. Dessutom kan fiberdoseringen minskas genom ändrad fibertyp samt ändrad testmetod, vilket också minskar utsläppen. Emellertid härstammar de största utsläppen från bindemedlet.
9

Hur kan man ersätta traditionellt portlandcement som bindemedel i betong? / How to replace traditional portland cement as a binder in concrete?

Bjerhag, Otto, Kassab, Abdulatif January 2022 (has links)
Concrete manufacturers claim that using substitute like blast furnace slag, fly ash and silica reduces the climate impact when used as a substitute for cement. Reducing climate emissions is an important topic for companies that currently produce concrete to achieve a sustainable society. The results have been collected by conducting interviews withexperts and sending out a questionnaire survey to concrete companies as well as some assessment through possible calculations that are linked to the survey results. The purpose of the survey is to find out the different substitutes used in Sweden and which substitutes may be conceivable for the future and to assess the development work for these different substitutes. The study shall provide relevant information about these different substitutes and show what effects are brought to the climate when the substitutes are used. The aim of the study is to increase understanding of current and future concrete and how these various substitutes can be useful in the future in the manufacture of concrete. Blast furnace slag, fly ash and silica are three different substitutes used as substitutes for cement. The most common substitute that is available and useful in Sweden is blast furnace slag, which means less climate impact. Conclusions drawn by the study are that these various substitutes contribute to reduced climate impact when used with cement and that substitutes are a temporary solution, meanwhile the real problem is to find new products as alternatives to limestone in cement production.
10

Jämförelser av tryckhållfasthet och uttorkning av betong med lägre klimatpåverkan

Gustavsson, Elias, Dahlberg, Axel January 2024 (has links)
Betong är ett av de vanligaste byggnadsmaterialen och har goda egenskaper som hög beständighet, god formbarhet och lång livslängd. Huvudbeståndsdelen cement orsakar däremot en negativ klimatpåverkan där tillverkningen av bindemedlet cement står för cirka 8 procent av världens koldioxidutsläpp. För att minska de stora koldioxidutsläppen finns det alternativa bindemedel där de vanligaste är flygaska och masugnsslagg, vilket är restprodukter från kolkraft- och stålindustrin. Alternativa bindemedel är det mest effektiva sättet på kort sikt att minska klimatpåverkan. Däremot kan inte de alternativa bindemedlen ersätta cement helt utan att tryckhållfastheten försämras, vilket gör att upp till 20 procent vanligtvis ersätts. För att byggbranschen i en större utsträckning ska tillämpa betong med lägre klimatpåverkan är det viktigt att egenskaperna är minst lika bra som hos traditionell betong. Uttorkningsegenskaperna är av stor vikt då uttorkningstiden är styrande för applicering av golvmaterial. När det kommer till hållfasthet tillverkas idag komponenter med överkvalité, vilket gör att en onödigt stor mängd cement används. Ett klimatsmart alternativ skulle vara att ändra nuvarande norm på klassificeringen av hållfastheten. Dagens norm klassificerar hållfastheten vid 28 dygn efter gjutning. Betong fortsätter dock att öka i hållfasthet efter 28 dygn, men ökningen är inte stor hos traditionell betong, medan betong med alternativa bindemedel fortsätter att härda i en högre grad efter 28 dygn. Skulle en klassificering av hållfastheten hos betong med lägre klimatpåverkan bestämmas i ett senare skede som 56 eller 91 dygn, skulle konstruktionens krav fortfarande uppfyllas samtidigt som mängden cement kan reduceras. Idag behöver byggprojekt vänta på uttorkningstiden, vilket medför att ett projekt sällan är färdigt redan vid 28 dygn. Det gör att byggnaden inte belastar betongplattan fullt ut vid 28 dygn och den potentiella hållfastheten behöver inte uppfyllas förrän i ett senare skede. Om hållfasthetsklassen sänks tillkommer dock ett högre vattencementtal, vilket gör att krav på uttorkningsegenskaperna ökar. Tillsammans med Skanska jämfördes i föreliggande arbete betongrecept med lägre klimatpåverkan i tryckhållfasthet och uttorkning. Det var två Portlandkompositcement av typen CEM II/B-M, med cirka 20 procent slagg eller flygaska. De jämfördes även mot en referensbetong av typen CEM II/A-LL. Provkropparna gjöts vid Skanskas betonglabb i Farsta och testades sedan för uttorkning och hållfasthet av auktoriserade företag. Studien tyder på att det inte finns någon anledning att välja bort slagg eller flygaska när det kommer tilltryckhållfasthet och uttorkning. Det går att argumentera för att betong med alternativa bindemedel har högre hållfasthet vid 7 och 28 dygn i jämförelse med traditionell betong i föreliggande arbete, där slaggbaserad betong är cirka 16 procent högre och betong med flygaska är cirka 5 procent högre. Hållfasthetsutvecklingen från 28 till 91 dygn tyder på att betong med alternativa bindemedel ökar med cirka 12 procent medan traditionell betong nästan stannar av, där hållfasthetsutvecklingen är cirka 4 procent. Det går att argumentera för att slaggbaserad betong har cirka 2 och 5 procent snabbare uttorkning vid 35 och 85 dygn i jämförelse med traditionell betong, medan betong med flygaska tenderar att torka ut minst lika bra vid 35 dygn och cirka 3 procent snabbare vid 85 dygn. Resultaten tyder på att vid en minskad hållfasthetsklass skulle betong med lägre klimatpåverkan inte medföra samma förlängda uttorkningstid som en traditionell betong. En klassificering i ett senare skede som 56 eller 91 dygn för betong med lägre klimatpåverkan indikerar på att konstruktionens krav fortfarande skulle uppfyllas, cementanvändningen reduceras och klimatpåverkan minskas. / Concrete is one of the most common building materials and possesses favorable properties such as high durability, good workability, and long lifespan. However, its main component, cement, has a negative climate impact, with cement production accounting for approximately 8 percent of the world's carbon dioxide emissions. To reduce these CO2 emissions alternative binders can be used. The most common being fly ash and blast furnace slag, which are by-products of the coal power and steel industries. Alternative binders are the most effective way to reduce climate impact. Alternative binders cannot completely replace cement without lose strength, which means that up to 20 precent is usually replaced. For the construction industry to more widely adopt concrete with lower climate impact, it is important that the properties are at least as good as those of traditional concrete. Drying properties are crucial since drying time dictates the application of flooring materials. In terms of strength, components are currently manufactured with high qualities, leading to unnecessary large amounts of cement being used. A climate-smart alternative would be to change the current norm for strength classification. Today strength classifies at 28 days after casting. Concrete continues to gain strength beyond 28 days, but the increase is not significant in traditional concrete, whereas concrete with alternative binders continues to cure to a greater extent after 28 days. If the strength classification were determined at a later stage, such as 56 or 91 days, the construction's requirements would still be met while reducing the amount of cement used. Today construction projects need to wait for the drying time, meaning a project is rarely completed at 28 days. This means the building does not fully load the concrete slab at 28 days, and the potential strength does not need to be achieved until a later stage. However, if the strength class is lowered the demands on drying increases. In collaboration with Skanska, concrete with lower climate impact was compered in terms of strength and drying. Two Portland composite cements of the type CEM II/B-M, around 20 percent of slag or fly ash, were compared to a reference concrete of the type CEM II/A-LL. The test specimens were cast at Skanska's concrete lab in Farsta and tested for strength and drying by authorized companies. The study suggests that there is no reason to avoid slag or fly ash concerning compressive strength and drying. It can be argued that concrete with alternative binders has higher strength at 7 and 28 days compared to traditional concrete, with slag-based concrete being approximately 16 percent stronger and fly ash concrete about 5 percent stronger. The strength development from 28 to 91 days indicates that concrete with alternative binders increases by about 12 percent, while traditional concrete almost levels off, with a strength development of about 4 percent. It can also be argued that slag-based concrete has about 2 and 5 percent faster drying at 35 and 85 days compared to traditional concrete, while fly ash concrete tends to dry at least as well at 35 days and about 3 percent faster at 85 days compared to traditional concrete. The results indicate that with a reduced strength class, concrete with lower climate impact would not entail the same extended drying time as traditional concrete. Classification at a later stage, such as 56 or 91 days, for concrete with lower climate impact indicates that the construction's requirements would still be met, cement usage would be reduced, and climate impact minimized.

Page generated in 0.0422 seconds