• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 273
  • 129
  • 99
  • 33
  • 21
  • 18
  • 16
  • 15
  • 9
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 712
  • 125
  • 80
  • 75
  • 72
  • 54
  • 54
  • 53
  • 52
  • 50
  • 47
  • 46
  • 43
  • 41
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
611

Inte en glödlampa LED-armatur 35000 timmar till, Not a lightbulb LED luminaire 35000 hours more

Tell, Erik January 2014 (has links)
Uppsatsen behandlar belysningsarmaturer inom LED-segmentet. Uppsatsen behandlar isynnerhet varför ljuskällan i LED-belysningsarmaturer oftast konstrueras så att ljuskällorna inteär utbytbara.Metoder som har använts i förstudien har varit; informationssökning, kvalitativa intervjuer,teknisk LED-modulsinventering samt konstruktionsundersökningar. Metoder som använts iproduktutvecklingsfasen har varit; tekniska informationsstudier, Idéinventering genom visuellidégenerering, imageboards och skissprocess (att tänka med en penna).Syftet med projektet har varit att utveckla en LED-armatur med utbytbar ljuskälla. Projektetsresultat blev en LED-golvarmatur med utbytbar ljuskälla. Ljuskällan som används i armaturenär enligt den unga branschfrivilliga standarden för LED-moduler, Zhaga. / The essay deals with luminaries in the LED segment. The essay deals in particular with why thelight sources in LED lighting fixtures usually is designed so that the light sources are notreplaceble.Methods used in this work has been; information searching, qualitative interviews, technicalLED module inventory and construction surveys. Methods used in the product developmentphase have been; technical information studies, Idea inventory by visual idea generation, imageboards and sketching process (thinking with a pen).The aim of the project was to develop an LED fixture with a replaceable light source. The resultof the project became an LED floor fixture with replaceable light source. The light source usedin the luminarie is of the young voluntary industry standard for LED modules, Zhaga.
612

SYSTEM-LEVEL SEISMIC PERFORMANCE OF CONCENTRICALLY BRACED FRAMES WITH REPLACEABLE BRACE MODULES

Mohsenzadeh, Vahid January 2020 (has links)
Concentrically braced frames with replaceable brace modules (RBMs) have the potential of improving the constructability of braced frames, mitigating the structural damage during earthquakes, and minimizing the time of post-earthquake repairs. To fill the gaps between the component-level performance of RBMs and system-level behaviour of SCBFs with RBMs, this thesis focused on the overall system-level seismic performance of SCBFs with RBMs in three steps. Firstly, the effects of beam-column connection fixity on the behaviour of three SCBFs were investigated to determine what level of fixity, if any, is required to ensure adequate collapse capacity of an SCBF. Secondly, the effects of column design parameters on braced frame seismic performance were investigated, where two different brace-to-frame connections were considered: 1) conventional gusset plate connection and 2) the newly proposed connection detail with RBMs. Detailed numerical modelling was undertaken to develop improved provisions for designing columns in SCBFs. Finally, a large-scale experimental program was conducted to evaluate the seismic performance of braced frames with initial and replaced RBMs where realistic boundary conditions were provided. Three different beam-column connections that can be used in SCBFs with RBMs were designed and tested. Based on the current work, the recently proposed concept of replaceable brace modules, accompanied by the recommended methods for designing columns and detailing beam-column connections, appears to be a promising approach. The fabrication and installation are simpler, the seismic performance is similar to that of SCBFs with currently accepted connection detailing, and the approach can increase the post-earthquake reparability of steel concentrically braced frames. / Dissertation / Doctor of Philosophy (PhD)
613

Module design in a changing era of Higher Education: academic identity, cognitive dissonance and institutional barriers

Binns, Carole L. January 2017 (has links)
No / This book explores the module design experiences and practices of academics employed within one UK university, and during a period of social and economic change in which university staff are designing and delivering curricula for changing student populations, with different profiles and expectations than previous generations. The book raises issues such as why, in a climate of reduced resources, staff increase their own workloads by re-writing lectures to accommodate changing student needs, and how institutional practices that are used to encourage curriculum innovation are often having a perceived opposite effect. It will appeal to academic staff, students of higher education studies, and policy-makers within the education sector.
614

Electric Field Grading and Electrical Insulation Design for High Voltage,  High Power Density Wide Bandgap Power Modules

Mesgarpour Tousi, Maryam 19 October 2020 (has links)
The trend towards more and all-electric apparatuses and more electrification will lead to higher electrical demand. Increases in electrical power demand can be provided by either higher currents or higher voltages. Due to "weight" and "voltage" drop, a raise in the current is not preferred; so, "higher voltages" are being considered. Another trend is to reduce the size and weight of apparatuses. Combined, these two trends result in the high voltage, high power density concept. It is expected that by 2030, 80% of all electric power will flow through "power electronics systems". In regards to the high voltage, high power density concept described above, "wide bandgap (WBG) power modules" made from materials such as "SiC and GaN (and, soon, Ga2O3 and diamond)", which can endure "higher voltages" and "currents" rather than "Si-based modules", are considered to be the most promising solution to reducing the size and weight of "power conversion systems". In addition to the trend towards higher "blocking voltage", volume reduction has been targeted for WBG devices. The blocking voltage is the breakdown voltage capability of the device, and volume reduction translates into power density increase. This leads to extremely high electric field stress, E, of extremely nonuniform type within the module, leading to a higher possibility of "partial discharge (PD)" and, in turn, insulation degradation and, eventually, breakdown of the module. Unless the discussed high E issue is satisfactorily addressed and solved, realizing next-generation high power density WBG power modules that can properly operate will not be possible. Contributions and innovations of this Ph.D. work are as follows. i) Novel electric field grading techniques including (a) various geometrical techniques, (b) applying "nonlinear field-dependent conductivity (FDC) materials" to high E regions, and (c) combination of (a) and (b), are developed; ii) A criterion for the electric stress intensity based upon accurate dimensions of a power device package and its "PD measurement" is presented; iii) Guidelines for the electrical insulation design of next-generation high voltage (up to 30 kV), high power density "WBG power modules" as both the "one-minute insulation" and PD tests according to the standard IEC 61287-1 are introduced; iv) Influence of temperature up to 250°C and frequency up to 1 MHz on E distribution and electric field grading methods mentioned in i) is studied; and v) A coupled thermal and electrical (electrothermal) model is developed to obtain thermal distribution within the module precisely. All models and simulations are developed and carried out in COMSOL Multiphysics. / Doctor of Philosophy / In power engineering, power conversion term means converting electric energy from one form to another such as converting between AC and DC, changing the magnitude or frequency of AC or DC voltage or current, or some combination of these. The main components of a power electronic conversion system are power semiconductor devices acted as switches. A power module provides the physical containment and package for several power semiconductor devices. There is a trend towards the manufacturing of electrification apparatuses with higher power density, which means handling higher power per unit volume, leading to less weight and size of apparatuses for a given power. This is the case for power modules as well. Conventional "silicon (Si)-based semiconductor technology" cannot handle the power levels and switching frequencies required by "next-generation" utility applications. In this regard, "wide bandgap (WBG) semiconductor materials", such as "silicon carbide (SiC)"," gallium nitride (GaN)", and, soon, "gallium oxide" and "diamond" are capable of higher switching frequencies and higher voltages, while providing for lower switching losses, better thermal conductivities, and the ability to withstand higher operating temperatures. Regarding the high power density concept mentioned above, the challenge here, now and in the future, is to design compact WBG-based modules. To this end, the extremely nonuniform high electric field stress within the power module caused by the aforementioned trend and emerging WBG semiconductor switches should be graded and mitigated to prevent partial discharges that can eventually lead to breakdown of the module. In this Ph.D. work, new electric field grading methods including various geometrical techniques combined with applying nonlinear field-dependent conductivity (FDC) materials to high field regions are introduced and developed through simulation results obtained from the models developed in this thesis.
615

Planar metallization failure modes in integrated power electtonics modules

Zhu, Ning 10 May 2006 (has links)
Miniaturizing circuit size and increasing power density are the latest trends in modern power electronics development. In order to meet the requirements of higher frequency and higher power density in power electronics applications, planar interconnections are utilized to achieve a higher integration level. Power switching devices, passive power components, and EMI (Electromagnetic Interference) filters can all be integrated into planar power modules by using planar metallization, which is a technology involving electrical, mechanical, material, and thermal issues. By processing high dielectric materials, magnetic materials, or silicon chips using compatible manufacturing procedures, and by carefully designing structures and interconnections, we can realize the conventional discrete inductors, capacitors, and switch circuits with planar modules. Compared with conventional discrete components, the integrated planar modules have several advantages including lower profiles, better form factors, and less labor-intensive processing steps. In addition, planar interconnections reduce the wire bond inductive and resistive parasitic parameters, especially for high frequency applications. However, planar integration technology is a packaging approach with a large contact area between different materials. This may result in unknown failure mechanisms in power applications. Extensive research has already been done to study the performance, processing, and reliability of the planar interconnects in thin film structures. The thickness of the thin films used in integrated circuits (IC) or microelectronics applications ranges from the magnitude of nanometers to that of micrometers. In this work, we are interested in adopting planar interconnections to Integrated Power Electronics Modules (IPEM). In Integrated Power Electronics Modules (IPEMs), copper traces, especially bus traces, need to conduct current ranging from a few amps to tens of amps. One of the major differences between IC and IPEM is that the metal layer in IPEMs (normally >75µm) is much thicker than that of the thin films in IC (normally <1µm). The other major difference, which is also a feature of IPEM, is that the planar metallization is deposited on different brittle substrates. In active IPEM, switching devices are in a bare die form with no encapsulation. The copper deposition is on top of the silicon chips and the insulation polyimide layer. One of the key elements for passive IPEM and the EMI IPEM is the integrated inductor-capacitor (LC) module, which realizes equivalent inductors and capacitors in one single module. The deposition processes for silicon substrates and ceramic substrates are compatible and both the silicon and ceramic materials are brittle. Under high current and high temperature conditions, these copper depositions on brittle materials will cause detrimental failure spots. Over the last few years, the design, manufacture, optimization, and testing of the IPEMs has been developed and well documented. Up to this time , the research on failure mechanisms of conventional integrated power modules has led to the understanding of failures centered on wire bond or solder layer. However, investigation on the reliability and failure modes of IPEM is lacking, particularly that which uses metallization on brittle substrates for high current operations. In this study, we conduct experiments to measure and calculate the residual stresses induced during the process. We also, theoretically model and simulate the thermo-mechanical stresses caused by the mismatch of thermal expansion coefficients between different materials in the integrated power modules. In order to verify the simulation results, the integrated power modules are manufactured and subjected to the lifetime tests, in which both power cycling and temperature cycling tests are carried out. The failure mode analysis indicates that there are different failure modes for copper films under tensile or compressive stresses. The failure detection process verifies that delamination and silicon cracks happen to copper films due to compressive and tensile stresses respectively. This study confirms that the high stresses between the metallization and the silicon are the failure drivers in integrated power electronics modules.. We also discuss the driving forces behind several different failure modes. Further understanding of thesefailure mechanisms enables the failure modes to be engineered for safer electrical operation of IPEM modules and helps to enhance the reliability of system-level operation. It is also the basis to improve the design and to optimize the process parameters so that IPEM modules can have a high resistance to recognized failures. / Ph. D.
616

Evaluation of Active Capacitor Banks for Floating H-bridge Power Modules

Nguyen, Tam Khanh Tu 07 February 2020 (has links)
The DC-side floating capacitors in the floating power modules of power converters are subject to high voltage fluctuation, due to the presence of reactive harmonic components. Utilizing passive capacitors, as done in traditional methods, helps reduce the DC-bus voltage ripple but makes the system bulky. An active capacitor can be integrated with the floating H-bridge power modules to remove the effect of the ripple powers on the DC bus. The auxiliary circuit, which is much smaller in size compared to an equivalent passive capacitor, helps increase the power density of the system. This work focuses on the analysis of power components, and the extension of the active capacitor to the Perturbation Injection Unit (PIU), in which the DC side is highly distorted by multiple harmonic components. A control scheme is proposed to compensate for these multiple harmonics and balance the DC-link voltage in the active capacitor. Also, an equivalent DC-bus impedance model is introduced, which is more accurate than that in existing works. Simulation studies and evaluation of the design have verified the effectiveness of the active capacitor solution. / Single-phase power converters have been widely used in many applications such as electric vehicles, photovoltaic (PV) systems, and grid integration. Due to their popular application, there is a need to reduce the sizes and volumes while still maintaining good performances of the systems. One of the most effective methods, which is a subject in many research works, is to replace the bulky passive capacitor bank in a system by an active capacitor. The active capacitor is designed to absorb the ripple components in the DC side of the converters, which results in a constant DC-link voltage. In comparison to the passive capacitor solution, the active capacitor is much smaller in size but can give a better DC-bus ripple performance. Therefore, the active capacitor has become an attractive solution for the single-phase converters. The active capacitor for the traditional rectifier, where the DC side is directly connected to a load, has been intensively investigated in the past decade. However, there is limited research regarding the active capacitor for rectifiers with floating H-bridge power modules. This work extends the application of the active capacitor to the Perturbation Injection Unit (PIU), which is a grid-connected single-phase rectifier with floating H-bridge power modules. The selection of a suitable active capacitor for the PIU is based on the evaluation of various active capacitor banks. Limits in existing control schemes, which prevent the extension of the active capacitor to the PIU, are thoroughly studied. An effective voltage-mode control scheme is then proposed for the selected active capacitor, which makes it an attractive solution for the PIU. Moreover, limits of the DC-bus impedance analysis using traditional assumptions in existing works are investigated, and an improved DC-bus impedance model is proposed. Based on the operation conditions of the PIU and the proposed impedance model, the active capacitor's components can be properly designed, and improved configurations in terms of the equivalent impedance can be analyzed. Simulation results, as well as the design and evaluation of the active capacitor, demonstrate great improvements in terms of volume and weight over the traditional passive capacitor bank.
617

The role of inter-domain linkers in the stability of modular Glycoside Hydrolases / Inter-domän länkares roll i stabiliteten hos modulära Glykosidhydrolaser

Estreen, Erik January 2024 (has links)
Glykosidhydrolaser (GHs) är enzymer som katalyserar hydrolys av glykosidbindningar i polysackarider och fungerar på endo- eller exo-sätt, beroende på om de riktar sig mot mitten eller änden av en glykan-kedja. De är viktiga i kolcykeln och i olika industrier som använder biomassa som substrat. GHs är fördelaktiga i många industriella processer på grund av deras höga specificitet, omsättningsgrad och biologiska nedbrytbarhet, men de kan vara instabila och är ofta dyra att producera. De varierar i specificitet och har ibland flera katalytiska domäner eller icke-katalytiska tillbehörsdomäner, vilket hjälper till att bryta ner polysackarider och/eller främjar enzymets livslängd. Många GHs kan ha kolhydratbindande moduler (CBMs) som ökar deras termostabilitet och/eller katalytiska aktivitet. CBMs är kopplade till andra domäner i multimodulära domäner av inter-domän länkar (IDLs), vilket är polypeptidkedjor som ger strukturell flexibilitet och låter CBMs nå önskade mål på ett substrat, men den fulla funktionen av IDLs i enzymstabilisering har inte dokumenterats. Kitinaser är en grupp av GHs som riktar sig mot det motsträviga polysackaridet kitin, vilket finns i både marina och markbundna miljöer. De finns i organismer såsom insekter med kitinhaltiga exoskelett och i svampar eller andra mikrober med kitininnehållande cellväggar, men de finns även i organismer som inte syntetiserar eller ens metaboliserar kitin, på grund av deras andra relevanta funktioner inom patogenicitet, immunförsvar, etc. Kitin och dess oligosackarid-derivat har flera funktioner i biomass-industrier och kan användas för medicinska ändamål. Många GHs innehåller icke-katalytiska CBMs, varav många är kitinbindande, och spelar därför en roll i att främja kitinbindning och hydrolys av deras enzympartners. Detta projekt fokuserar på ett modulärt GH18-kitinas kodat av genen Cpin_2580. Kitinasdomänen är flankerad av två CBMs. Tidigare forskning har visat att dessa inte är kitinbindande men föreslog att de påverkar enzymets termostabilitet. Däremot undersöktes inte IDL:ernas påverkan i den tidigare studien. För att bestämma rollen av IDLs designades primers för att klona nya genvarianter av Cpin_2580 för att producera nya proteiner med varierande längder av länkar för att bestämma vad för effekt längden har på enzymets termostabilitet. Dessa primers användes till PCR för att skapa gensekvenser med den befintliga Cpin_2580-18s-plasmiden som mall, följt av kloning, proteinproduktion, rening och analys med hjälp av fluoroforbindningsanalys. Nya proteinvarianter kunde genereras och produceras i liten skala, men produktionen upplevde problem, vilket ledde till att IDLs roll inte kunde fastställas fullt ut. / Glycoside hydrolases (GHs) are enzymes that catalyse the hydrolysis of glycosidic bonds in polysaccharides, functioning in endo- or exo-manners, depending on whether they target the middle or the end of a glycan chain. They are crucial in the carbon cycle and various industries that utilise biomass as substrate. GHs are advantageous in many industrial processes due to their high specificity, turnover rates, and biodegradability, but they can be unstable and are often costly to produce. They vary in specificity and sometimes carry multiple catalytic domains or non-catalytic accessory domains, aiding in polysaccharide breakdown and/or promoting the longevity of the enzyme. Many GHs can have carbohydrate binding modules (CBMs) attached that can be considered accessory domains, which increases their thermostability and/or catalytic activity in many cases. CBMs are attached to other domains in multi-modular enzymes by inter-domain linkers (IDLs), which are polypeptide chains that give structural flexibility and allow the CBMs to reach desired targets on a substrate, but the full function of IDLs in enzyme stabilisation has not been documented. Chitinases are a group of GHs that targets the recalcitrant polysaccharide chitin, which exists in both marine and terrestrial environments. They exist in organisms such as insects that have chitinous exoskeletons and in fungi or other microbes with chitin-containing cell walls, but they are also found in organisms that do not synthesise or even metabolise chitin, due to their other functions of relevance in pathogenicity, immune defence, etc. Chitin and its oligosaccharide derivatives have multiple functions in biomass industries, and can be used for medical purposes. Many chitinases contain non-catalytic CBMs, many of which are often chitin-binding, and therefore have a role in promoting chitin attachment and hydrolysis by their enzyme partners. This project focuses on a modular GH18 chitinase encoded by the gene Cpin_2580. The chitinase domain is flanked by two CBMs. Previous research has shown that these are not chitin-binding but suggested they do influence the thermostability of the enzyme. However, the impact of the IDLs was not explored in that previous study. To determine the role of the IDLs, primers were designed with the purpose of cloning new gene variants of the gene Cpin_2580 to produce novel proteins with varying lengths of linkers to determine the effect the length has on the thermostability of the enzyme. These primers were used for PCR to create novel gene sequences using the pre-existing Cpin_2580-18s plasmid as a template, followed by cloning, protein production, purification, and analysis using fluorophore binding assay. Novel protein variants could be generated and produced at small scale, but scaled-up protein production experienced problems, which led to the role of IDLs not being fully determined.
618

Stipriai pirminiai moduliai virš žiedų / Strongly prime modules over rings

Bandalevičiūtė, Marijana 23 June 2005 (has links)
The purpose of this work is to analyse the analogue of prime modules in commutative case – strongly prime modules over rings in non-commutative case. Strongly prime modules over rings, two-sided and one-sided strongly prime ideals in the rings are examined in the work. Concepts and theorems related to this topic are analysed in the paper. These problems are solved: • Taking the homomorphism of the ring R into ring of endomorphisms of the Abelian group we get all the modules over the ring R. • Annihilators of the nonzero elements of the module over commutative ring coincide and are the prime ideal. • In non-commutative case module is strongly prime only in the case when annihilators its nonzero elements are equivalent. • Finite Cartesian product of strongly prime modules, in which annihilators of the nonzero elements are equivalent, is a strongly prime module.
619

L'innéité des facultés de l'esprit : Repenser l'innéité comme condition du développement / The innateness of the faculties of the mind : Rethinking innateness as a developmental condition

Reynaud, Valentine 08 December 2011 (has links)
Dans ce travail, nous proposons d’interroger la notion d’innéité des facultés de l’esprit, dans l’histoire de la philosophie et dans le débat contemporain. Nous commençons par montrer que toute hypothèse concernant l’innéité des facultés de l’esprit – qu’elle soit innéiste ou empiriste – pose un problème explicatif que nous nommons le « problème de la tautologie ». C’est en dévoilant les présupposés épistémologiques de chaque hypothèse que nous révélons la présence de ce problème au sein du débat classique sur les idées innées, mais aussi au cœur du débat contemporain amorcé par les travaux en linguistique de Noam Chomsky. L’identification d’une faculté innée spécifique ou d’une capacité générale semble toujours découler de choix métaphysiques ou épistémologiques a priori. En ce sens elle n’est jamais justifiée de façon satisfaisante. C’est pourquoi, une position intermédiaire (constructiviste) apparaît plus convaincante. En outre, l’analyse des différentes définitions de l’innéité souligne la nécessité de renoncer non pas à la notion même d’innéité certains philosophes contemporains le pensent, mais à l’attribution d’un contenu a priori à l’innéité. Nous pensons que l’innéité est un terme épistémique auquel il est seulement possible d’attribuer de façon a priori un statut formel. L’innéité doit donc être redéfinie comme une condition du développement. Le terme condition permet en effet, d’une part, de souligner le statut épistémique de l’innéité qui est un terme relatif à une explication, celle du développement ; d’autre part, d’insister sur le fait que l’innéité n’est pas dénuée de consistance ontologique. Le développement cognitif n’aurait tout simplement pas lieu sans elle. Nous défendons ainsi l’idée qu’il est possible de minimiser le « problème de la tautologie » par une redéfinition de la notion d’innéité et par l’élaboration d’une méthodologie propre à établir l’innéité de certaines facultés de l’esprit sans la présupposer et qui prend en compte le développement cognitif. Pour finir, nous appliquons la méthodologie proposée à l’exemple de la faculté de langage et nous essayons de défendre une hypothèse précise concernant son innéité. / In this work, we examine the notion of innateness of faculties of mind, in the history of philosophy as well as in the contemporary debate. Firstly, we show that any hypothesis on innateness of faculties of mind – whether innatist or empiricist – raises an explanatory problem that we called “the tautology problem”. Identifying epistemological presuppositions of each hypothesis leads us to reveal the presence of this problem within both the classical debate on innate ideas and the contemporary debate on innate mind structure initiated by Chomsky’s linguistic work. Assumptions on domain-specific innate faculty or general capacity always seem to follow from a priori metaphysical or epistemological options. If so, they are not satisfactory justified. The constructivist position appears to be an intermediary relevant way, with conditions to be defined. Furthermore, analysis of different definitions of innateness reveals the necessity to renounce to attribute an a priori content to innateness (and not to renounce to the concept of innateness as some contemporary philosophers argue). We think that innateness is an epistemic term to which it is only possible to attribute a priori a formal status. We claim then that innateness must be redefined as condition of development because the term condition underlines on the one side the epistemic status of innateness, which is an explanatory-dependent term; on the other side its propensity to have an ontological plausibility: cognitive development does not occur without something innate. Thus, we advance that it is possible to minimize “the tautology problem” by redefining innateness and by elaborating a methodology capable of establishing innateness of some faculties of mind without presupposing, taking into account cognitive development. To conclude, we apply the advanced methodology to the example of the faculty of language and try to defend an assumption about its innateness.
620

La structure des représentations des algèbres de Temperley-Lieb affines sur la chaîne de spins XXZ

Pinet, Théo 08 1900 (has links)
Ce mémoire révèle la structure des représentations des algèbres de Temperley-Lieb affines aTLN(β) sur les espaces propres CN(q,v,d) (du spin total Sz) des chaînes de spins XXZ périodiques. En particulier, on y démontre que ces représentations, introduites dans Martin/Saleur et Morin-Duchesne/Saint-Aubin, admettent toujours une structure similaire à celle des représentations de Feigin-Fuchs de l’algèbre de Virasoro Vir et que les différentes possibilités, pour la structure d’un Vir-module de Feigin-Fuchs, sont toutes réalisées par un espace propre donné. On introduit aussi une pléthore d’applications aTLN(β)-linéaires entre différents espaces propres en considérant une action naturelle de l’extension de Lusztig LUqsl2 sur les chaînes XXZ périodiques et on caractérise entièrement le noyau ainsi que l’image de ces applications à l’aide de longues suites exactes et d’une décomposition de Clebsch-Gordan généralisée. Finalement, on identifie l’image du morphisme iNd(q,v) défini par Morin-Duchesne/Saint-Aubin et on donne également une nouvelle réalisation explicite pour les couvertures projectives de la catégorie modLUqsl2. / This master’s thesis reveals the structure of the representations of the affine Temperley-Lieb algebras aTLN(β) on the eigenspaces CN(q,v,d) (of the total spin Sz) of the periodic XXZ spin chains. In particular, we show that these representations, introduced by Martin/Saleur and Morin-Duchesne/Saint-Aubin, always admit a structure akin that of the Feigin-Fuchs representations of the Virasoro Vir algebra and that the different possibilities, for the structure of a Feigin-Fuchs Vir-module, are all realized by a given eigenspace. We also give a plethora of aTLN(β)-linear maps between different eigenspaces by considering a natural action of the Lusztig extension LUqsl2 on the periodic XXZ chains and we then fully characterize the kernel and image of these morphisms by means of long exact sequences and a generalized Clebsch-Gordan decomposition. Finally, we explicitly give the image of the intertwiner iNd(q,v) defined by Morin-Duchesne/Saint-Aubin and we also introduce a new explicit realization for the projective covers in the category modLUqsl2.

Page generated in 0.0471 seconds