• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 213
  • 3
  • Tagged with
  • 216
  • 212
  • 212
  • 194
  • 169
  • 168
  • 29
  • 29
  • 22
  • 22
  • 21
  • 21
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Optical coupling effects between plasmon resonances in disordered metal nanostructures and a nanocavity

Öqvist, Elin January 2024 (has links)
Ultra-thin solar cells that incorporate earth-abundant and non-toxic materials are promising candidates in the endeavor toward sustainable energy harvesting. Methods to counteract the inevitable low absorption of thinner semiconductor layers are of high interest and have raised considerable attention in the research society. In an attempt to increase the absorption of these types of assemblies, optical coupling effects between the localized surface plasmon resonances (LSPR) of disordered Au nanostructures and a Fabry-Pérot cavity were studied using a previously established absorber/spacer/reflector stack. The disordered Au array was fabricated by evaporating a thin Au film on a substrate with a 55 nm SiO2 dielectric spacer and a 100 nm Al reflecting film, followed by thermal annealing. Nominal Au film thicknesses in the range of 5-25 Å and annealing temperatures of 200-500 oC were investigated. In situ spectroscopic ellipsometry measurements during the subsequent atomic layer deposition (ALD) of tin monosulfide (SnS) allowed analysis of how the optical properties of the SnS/Au absorber layer changed as a function of the growing SnS layer thickness. By employing the Transfer Matrix Method with the estimated optical properties from the in situ analysis, the absorptance of the absorber/spacer/reflector stacks was simulated as a function of the spacer thickness, revealing any signs of the characteristic anti-crossing behavior. It was discovered that a nominal Au film thickness of 25 Å, annealed at 450 oC, and coated with a SnS film of ∼13 nm primed toward the π-phase, resulted in strong optical coupling between the cavity mode and the LSPR. The energy difference at the avoided crossing in the specular reflectance measurement gave an estimated Rabi-splitting energy of 537 meV. This corresponded to about 40% of the original LSPR energy, placing itself within the ultra-strong coupling regime. To evaluate the relevance of the thin-layered structure in photovoltaic applications, more advanced computational methods are required to estimate the useful absorption that occurs in the SnS layer. Nevertheless, these results elucidate the realization of strong optical coupling effects between disordered Au nanostructures and a Fabry-Pérot cavity, and further the possibility of using scalable fabrication methods for this type of ultra-thin absorber/spacer/reflector stack.
202

Fabrication and Optimization of a Nanoplasmonic Chip for Diagnostics

Segervald, Jonas January 2019 (has links)
To increase the survival rate from infectious- and noncommunicable diseases, reliable diagnostic during the preliminary stages of a disease onset is of vital importance. This is not trivial to achieve, a highly sensitive and selective detection system is needed for measuring the low concentrations of biomarkers available. One possible route to achieve this is through biosensing based on plasmonic nanostructures, which during the last decade have demonstrated impressive diagnostic capabilities. These nanoplasmonic surfaces have the ability to significantly enhance fluorescence- and Raman signals through localized hotspots, where a stronger then normal electric field is present. By further utilizing a periodic sub-wavelength nanohole array the extraordinary optical transmission phenomena is supported, which open up new ways for miniaturization. In this study a nanoplasmonic chip (NPC) composed of a nanohole array —with lateral size on the order of hundreds of nanometer— covered in a thin layer of gold is created. The nanohole array is fabricated using soft nanoimprint lithography on two resists, hydroxypropyl cellulose (HPC) and polymethyl methacrylate (PMMA). An in depth analysis of the effect of thickness is done, where the transmittance and Raman scattering (using rhodamine 6G) are measured for varying gold layers from 5 to 21 nm. The thickness was proved to be of great importance for optimizing the Raman enhancement, where a maximum was found at 13 nm. The nanohole array were also in general found beneficial for additionally enhancing the Raman signal. A transmittance minima and maxima were found in the region 200-1000 nm for the NPCs, where the minima redshifted as the thickness increased. The extraordinary transmission phenomena was however not observed at these thin gold layers. Oxygen plasma treatment further proved an effective treatment method to reduce the hydrophobic properties of the NPCs. Care needs be taken when using thin layers of gold with a PMMA base, as the PMMA structure could get severely damaged by the plasma. HPC also proved inadequate for this projects purpose, as water-based fluids easily damaged the surface despite a deposited gold layer on top.
203

Photoelectron Spectroscopy on Atoms, Molecules and Clusters : The Geometric and Electronic Structure Studied by Synchrotron Radiation and Lasers

Rander, Torbjörn January 2007 (has links)
<p>Atoms, molecules and clusters all constitute building blocks of macroscopic matter. Therefore, understanding the electronic and geometrical properties of such systems is the key to understanding the properties of solid state objects.</p><p>In this thesis, some atomic, molecular and cluster systems (clusters of O<sub>2</sub>, CH<sub>3</sub>Br, Ar/O<sub>2</sub>, Ar/Xe and Ar/Kr; dimers of Na; Na and K atoms) have been investigated using synchrotron radiation, and in the two last instances, laser light. We have performed x-ray photoelectron spectroscopy (XPS) on all of these systems. We have also applied ultraviolet photoelectron spectroscopy (UPS), resonant Auger spectroscopy (RAS) and near-edge x-ray absorption spectroscopy (NEXAFS) to study many of the systems. Calculations using <i>ab initio</i> methods, namely density functional theory (DFT) and Møller-Plesset perturbation theory (MP), were employed for electronic structure calculations. The geometrical structure was studied using a combination of <i>ab initio</i> and molecular dynamics (MD) methods.</p><p>Results on the dissociation behavior of CH<sub>3</sub>Br and O<sub>2</sub> molecules in clusters are presented. The dissociation of the Na<sub>2</sub> molecule has been characterized and the molecular field splitting of the Na 2<i>p</i> level in the dimer has been measured. The molecular field splitting of the CH<sub>3</sub>Br 3<i>d</i> level has been measured and the structure of CH<sub>3</sub>Br clusters has been determined to be similar to the structure of the bulk solid. The diffusion behavior of O<sub>2</sub>, Kr and Xe on large Ar clusters, as a function of doping rate, has been investigated. The shake-down process has been observed from excited states of Na and K. Laser excited Na atoms have been shown to be magnetically aligned. The shake-down process was used to characterize the origin of various final states that can be observed in the spectrum of ground-state K.</p>
204

Photoelectron Spectroscopy on Atoms, Molecules and Clusters : The Geometric and Electronic Structure Studied by Synchrotron Radiation and Lasers

Rander, Torbjörn January 2007 (has links)
Atoms, molecules and clusters all constitute building blocks of macroscopic matter. Therefore, understanding the electronic and geometrical properties of such systems is the key to understanding the properties of solid state objects. In this thesis, some atomic, molecular and cluster systems (clusters of O2, CH3Br, Ar/O2, Ar/Xe and Ar/Kr; dimers of Na; Na and K atoms) have been investigated using synchrotron radiation, and in the two last instances, laser light. We have performed x-ray photoelectron spectroscopy (XPS) on all of these systems. We have also applied ultraviolet photoelectron spectroscopy (UPS), resonant Auger spectroscopy (RAS) and near-edge x-ray absorption spectroscopy (NEXAFS) to study many of the systems. Calculations using ab initio methods, namely density functional theory (DFT) and Møller-Plesset perturbation theory (MP), were employed for electronic structure calculations. The geometrical structure was studied using a combination of ab initio and molecular dynamics (MD) methods. Results on the dissociation behavior of CH3Br and O2 molecules in clusters are presented. The dissociation of the Na2 molecule has been characterized and the molecular field splitting of the Na 2p level in the dimer has been measured. The molecular field splitting of the CH3Br 3d level has been measured and the structure of CH3Br clusters has been determined to be similar to the structure of the bulk solid. The diffusion behavior of O2, Kr and Xe on large Ar clusters, as a function of doping rate, has been investigated. The shake-down process has been observed from excited states of Na and K. Laser excited Na atoms have been shown to be magnetically aligned. The shake-down process was used to characterize the origin of various final states that can be observed in the spectrum of ground-state K.
205

Phthalocyanines on Surfaces : Monolayers, Films and Alkali Modified Structures

Nilson, Katharina January 2007 (has links)
The Phthalocyanines (Pc’s) are a group of macro-cyclic molecules, widely investigated due to the possibility to use them in a variety of applications. Electronic and geometrical structure investigations of molecular model systems of Pc’s adsorbed on surfaces are important for a deeper understanding of the functionality of different Pc-based devices. Here, Pc’s monolayers and films, deposited on different surfaces, were investigated by X-ray Photoelectron Spectroscopy (XPS), X-ray Absorption Spectroscopy (XAS) and Scanning Tunneling Microscopy (STM). In addition Density Functional Theory (DFT) simulations were performed. For molecular films of Metal-free (H2Pc) and Iron (FePc) Pc’s, on surfaces, it is found that the intermolecular interaction is weak and the molecules arrange with their molecular plane mainly perpendicular to the surface. Several monolayer systems were characterized, namely H2Pc and FePc adsorbed on Graphite, ZnPc on InSb(001)-c(8x2), H2Pc on Al(110) and on Au(111). For all the studied monolayers it was found that the molecules are oriented with their molecular plane parallel to the surface. The electronic structure of the molecules is differently influenced by interaction with the surfaces. For H2Pc adsorbed on Graphite the nearly negligible effect of the surface on the molecular electronic structure allowed STM characterization of different molecular orbitals. A strong interaction is instead found in the case of H2Pc on Al(110) resulting in molecules strongly adsorbed, and partly dissociated. Modifications of the electronic and geometrical structure induced by alkali doping of H2Pc films and monolayers were characterized. It is found both for the H2Pc film on Al(110) and monolayer adsorbed on Au(111), that the molecular arrangement is changed upon doping by Potassium and Rubidium, respectively. Potassium doping of the H2Pc films results in a filling of previously empty molecular orbitals by a charge transfer from the alkali to the molecule, with significant modification of the molecular electronic structure.
206

Implementing the circularly polarized light method for determining wall thickness of cellulosic fibres

Edvinsson, Marcus January 2012 (has links)
The wall thickness of pulp fibers plays a major role in the paper industry, but it is currently not possible to measure this property without manual laboratory work. In 2007, researcher Ho Fan Jang patented a technique to automatically measure fiber wall thickness, combining the unique optical properties of pulp fibers with image analysis. In short, the method creates images through the use of an optical system resulting in color values which demonstrate the retardation of a particular wave length instead of the intensity. A device based on this patent has since been developed by Eurocon Analyzer. This thesis investigates the software aspects of this technique, using sample images generated by the Eurocon Analyzer prototype. The software developed in this thesis has been subdivided into three groups for independent consideration. First being the problem of solving wall thickness for colors in the images. Secondly, the image analysis process of identifying fibers and good points for measuring them. Lastly, it is investigated how statistical analysis can be applied to improve results and derive other useful properties such as fiber coarseness. With the use of this technique there are several problems which need to be overcome. One such problem is that it may be difficult to disambiguate the colors produced by fibers of different thickness. This complication may be reduced by using image analysis and statistical analysis. Another challenge can be that theoretical values often differ greatly from the observed values which makes the computational aspect of the method problematic. The results of this thesis show that the effects of these problems can be greatly reduced and that the method offers promising results. The results clearly distinguish between and show the expected characteristics of different pulp samples, but more qualitative reference measurements are needed in order to draw conclusions on the correctness of the results.
207

Development of Next-Generation Optical Tweezers : The New Swiss Army Knife of Biophysical and Biomechanical Research

Nilsson, Daniel January 2020 (has links)
In a time when microorganisms are controlling the world, research in biology is more relevant than ever and this requires some powerful instruments. Optical tweezers use a focused laser beam to manipulate and probe objects on the nano- and microscale. This allows for the exploration of a miniature world at the border between biology, chemistry and physics. New methods for biophysical and physicochemical measurements are continuously being developed and at Umeå University there is a need for a new system that combines several of these methods. This would truly be the new Swiss army knife of biophysical and biomechanical research, extending their reach in the world of optical tweezing. My ambition with this project is to design and construct a robust system that incorporates optical trapping with high-precision force measurements and Raman spectroscopy, as well as introducing the possibility of generating multiple traps by using a spatial light modulator (SLM). The proposed design incorporates four different lasers and a novel combination of signal detection techniques. To allow for precise control of the systems components and laser beams, I designed and constructed motorized opto-mechanical components. These are controlled by an in-house developed software that handles data processing and signal analysis, while also providing a user interface for the system. The components include, motorized beam blockers and optical attenuators, which were developed using commonly available 3D printing techniques and electronic controllers. By designing the system from scratch, I could eliminate the known weaknesses of conventional systems and allow for a modular design where components can be added easily. The system is divided into two parts, a laser breadboard and a main breadboard. The former contains all the equipment needed to generate and control the laser beams, which are then coupled through optical fibers to the latter. This contains the components needed to move the optical trap inside the sample chamber, while performing measurements and providing user feedback. Construction and testing was done for one sub-system at a time, while the lack of time required a postponement for the implementation of Raman and SLM. The system performance was verified through Allan variance stability tests and the results were compared with other optical tweezers setups. The results show that the system follows the thermal limit for averaging times (τ) up to ~1 s when disturbances had been eliminated, which is similar to other systems. However, we could also show a decrease in variance all the way to τ = 2000 s, which is exceptionally good and not found in conventional systems. The force-resolution was determined to be on the order of femtonewtons, which is also exceptionally good. Thus, I conclude that this optical tweezers setup could lie as a solid foundation for future development and research in biological science at Umeå University for years to come.
208

Atomic wear mechanisms of hard chrome against Al2O3 / Atomistisk nötnings mekanism av hård krom mot Al2O3

Fierro Tobar, Raul, Yuku, Marius January 2021 (has links)
Hard chrome exhibit hardness of about 70 HRC and lubricity that prevents seizing and galling and is therefore the common first choice for engineers to reduce friction and minimize wear. These properties enable engineering applications such as cutting and drilling, especially in manufacturing, production and consumer good industries. Hard chrome has a wide set of functions as being decorative, corrosion resistant and ease cleaning procedures. Hence, electroplating is a common process to synthesize hard chrome butthis process is banned by EU due to the rise of hazardous components. However, the need for alternative material is at rise but, fundamental issues for hard chrome are yet to be solved. The purpose of the work is to develop atomic structures for two systems using different programs such as OpenMX, VESTA and Ovito. The goal is to identify atomic wear mechanisms of hard chrome in an ideal system (Al2O3- Cr) and a real system (Al2O3 - Cr2O3) using density functional theory (DFT). These two systems are analyzed since every surface oxidises in air (real system) and under increased mechanical loads the pristine surface of hard chrome (ideal system) can be exposed to the counter body (Al2O3). DFT based molecular dynamics simulations are carried out at a temperature of 300 K and a sliding speed of 10 ms−1. The simulation interval is 0-15000 fs and radial distribution function (RDF) is employed to analyse the atomic wear mechanisms. Both systems start to show adhesive wear due to amorphization, mixed with signs of abrasive wear on the atomic scale. The systems are further analyzed using electron density distribution (EDD), that plots electronic structures enhancing the analyse of different type of bondstaking place. The bulk structures mainly show covalent bonds with ionic and metallic bonds less represented. Furthermore, same observations have been made for the interfaces of the ideal and real system. / Hårdkrom uppvisar hårdhet på ungefär 70 HRC och en smörjförmåga som förhindrar nötning och är därför det vanliga första valet för ingenjörer att minska friktionen och minimera slitaget. Dessa egenskaper möjliggör tekniska tillämpningar, såsom skärning och borrning, särskilt inom tillverknings, produktions och konsumentvaruindustrin. Hårdkrom har ett brett användningsområde och flera egenskaper såsom att vara dekorativ, korrosionsbeständig och underlätta rengöringsprocedurer. Därav är galvanisering en vanlig process för att syntetisera hårdkrom, men denna process är förbjuden av EU på grund av utsläpp av farliga komponenter. Behovet av alternativt material är vid uppgång men, de grundläggande problemen för hård krom är ännu inte lösta. Syftet med arbetet är att ta fram atom strukturer för två system med hjälp av olika program, såsom OpenMX, VESTA och Ovito. Målet är att identifiera vilken typ av nötning som sker på hårdkrom i ett idealt system (Al2O3- Cr) och i ett verkligt system (Al2O3- Cr2O3) genom att använda täthetsfunktionalteorin (DFT). Dessa två system analyseras eftersom varje yta oxiderar i luften (verkligt system) och under ökade mekaniska belastningar kan den orörda ytan av hårtkrom (idealiskt system) exponeras för motkroppen (Al2O3). DFT simuleringar är skapade med en temperatur på 300 K och en glidningshastighet på 10 ms−1. Simulerings intervallet är från 0-15000 fs och med hjälp av radiell fördelningsfunktion (RDF) analyseras de atomiska nötnings mekanismerna. Båda systemen börjar visa adhesiv nötning på grund av amorfisering, samt ett tecken på abrasiv nötning på en atomisk skala. Systemen analyseras vidare med användning av elektrondensitetsfördelning (EDD) som plottar elektroniska strukturer vilket förbättrar analysen av olika typer av bindningar som äger rum. Bulkstrukturerna visar huvudsaklig en kovalent bindning med joniska och metalliska bindningar mindre representerade. Samma observationer har gjorts för gränssnitten mellan det ideala och verkliga systemet.
209

Everything you wanted to know about the TPA molecule adsorbed on Au(111)

Svensson, Pamela H.W. January 2020 (has links)
The electronic properties of Triphenylamine (TPA) in gas phase and adsorbed on gold(111) have been simulated with Quantum Espresso using Density Functional Theory (DFT). To better understand how the presence of a gold surface affects sunlight absorption in the system, partial Density Of States (pDOS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) of the system have been calculated. To describe the electronic excitation, three different methods have been used, No Core Hole (NCH), Full Core Hole (FCH) and Half Core Hole (HCH) approximation. The excitation of the TPA molecule was made in the nitrogen (N) atom and in the four different carbon (C) atoms with different electronic environments, C-ipso, C-ortho, C-meta and C-para. When using the HCH method, the absorbing atom must be described by a pseudopotential (PP) which includes half of a hole in the 1s orbital. This PP has been generated and a detailed summary of the process is described. The TPA/gold system relaxes to a position with the central N atom of TPA above an gold (Au) atom in the second layer of the surface and at a distance of 3.66 Angstrom, to the first layer. TPA keeps its symmetry with only small differences in the length of atomic bonds when adsorbed. The most striking result of this study is how the band gap of TPA is affected by the gold layer. From the pDOS we can observe that TPA in gas phase has a clear band gap of 2.2 eV with C-ortho dominating in the valence region and the four carbons dominating in the first unoccupied states. When depositing the molecule on the surface of Au(111), the band gap is essentially gone and a number of states appear between the previous highest occupied and lowest unoccupied molecular orbital in TPA. These new states align in energy with three clusters of states of the gold suggesting an interaction between the molecule and the surface. In the generated NEXAFS of nitrogen and carbon in TPA gas phase, one can observe a small pre-peak before the first unoccupied state. This is reinforced when adsorbing the molecule, which generates a pre-peak of approximately 3 eV in width. The pre-peak is connected to the new peaks seen in pDOS, correlating with experimental results on the same system.
210

Creating Artificial Quantum Chiral States : Time Evolving Open Spin Chains

Beiersdorf, Emil January 2023 (has links)
The discoveries in applications of chirality in various areas of science seem to never cease to emerge. Chirality, being the property that some objects are geometrically distinguishable from their mirror image, is a tiny difference of vast importance. The fact that multiple biological structures are chiral is what permits life on Earth and its discovery had a severe impact on medical development. When the concept of quantum chirality was introduced, the connection between the chiral symmetry and the quantum states and operators that characterize quantum chirality was not particularly clear. It was shown that closed spin chains of an odd number of spins naturally had chiral states as eigenstates of a Hamiltonian describing Heisenberg and Dzyaloshinsky-Moriya (DM) interactions, and the symmetry of the system in direct relation to the chiral symmetry of the eigenstates quickly became of interest. The aim of this thesis is therefore to explore how quantum chirality is a chiral symmetry and to develop a scheme to create chiral states from systems that lack the required symmetry. The investigation showed that discretized probability current gives a good explanation to why the chiral states follow a chiral nature, but further examination is required in order to generalize a deeper connection between the probability current and the chiral states of spin chains. The results also indicated that it was possible to force open spin chains into purely chiral states, and into superpositions thereof, by time evolution. The scheme is still in its early stage and physical implementation and applications are yet to be explored. / Upptäckterna av tillämpningar av kiralitet inom ett flertal områden verkar ständigt öka i omfattning. Kiralitet är fenomenet att vissa objekt geometriskt kan särskiljas från sin spegelbild, vilket är en ringa skillnad men med väsentlig innebörd. Det faktum att flertalet biologiska strukturer är kirala är en förutsättning för liv på jorden och upptäckten av detta har haft en omfattande betydelse för medicinsk utveckling. När konceptet kvantkiralitet introducerades, var kopplingen mellan den kirala symmetrin och de kvantmekaniska tillstånden och operatorerna som utgör kvantkiralitet, inte trivial. Tidigare studier har visat att stängda spinnkedjor av ett udda antal spinn naturligt har kirala tillstånd som egentillstånd till en Hamiltonian beskrivande Heisenberg- och Dzyaloshinsky-Moriyainteraktioner. Att systemets symmetri stod i direkt relation till den kirala symmetrin av egentillstånden blev tidigt av intresse att undersöka. Syftet med denna kandidatuppsats är således att utforska en djupare förståelse till hur kvantkiralitet är en kiral symmetri samt utveckla en metod för hur kirala tillstånd kan drivas till att uppstå ur system som saknar den nödvändiga symmetrin. Resultaten visade att den diskretiserade sannolikhetsströmmen ger en god förklaring till varför de kirala tillstånden följer en kiral natur, men vidare efterforskning behövs för att kunna generalisera en djupare koppling mellan sannolikhetsströmmen och de kirala tillstånden hos spinnkedjor. Undersökningen indikerade också att det var möjligt att forcera en öppen spinnkedja till ett kiralt tillstånd, och till superpositioner därav, genom tidsutveckling. Metoden är fortfarande i sin tidiga utveckling och fysisk implementering samt tillämpningar väntar ännu på att upptäckas.

Page generated in 1.1079 seconds