• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • 1
  • Tagged with
  • 19
  • 19
  • 14
  • 9
  • 9
  • 9
  • 9
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Moment-Closure Approximations for Contact Processes in Adaptive Networks

Demirel, Güven 14 May 2013 (has links)
Complex networks have been used to represent the fundamental structure of a multitude of complex systems from various fields. In the network representation, the system is reduced to a set of nodes and links that denote the elements of the system and the connections between them respectively. Complex networks are commonly adaptive such that the structure of the network and the states of nodes evolve dynamically in a coupled fashion. Adaptive networks lead to peculiar complex dynamics and network topologies, which can be investigated by moment-closure approximations, a coarse-graining approach that enables the use of the dynamical systems theory. In this thesis, I study several contact processes in adaptive networks that are defined by the transmission of node states. Employing moment-closure approximations, I establish analytical insights into complex phenomena emerging in these systems. I provide a detailed analysis of existing alternative moment-closure approximation schemes and extend them in several directions. Most importantly, I consider developing analytical approaches for models with complex update rules and networks with complex topologies. I discuss four different contact processes in adaptive networks. First, I explore the effect of cyclic dominance in opinion formation. For this, I propose an adaptive network model: the adaptive rock-paper-scissors game. The model displays four different dynamical phases (stationary, oscillatory, consensus, and fragmented) with distinct topological and dynamical properties. I use a simple moment-closure approximation to explain the transitions between these phases. Second, I use the adaptive voter model of opinion formation as a benchmark model to test and compare the performances of major moment-closure approximation schemes in the literature. I provide an in-depth analysis that leads to a heightened understanding of the capabilities of alternative approaches. I demonstrate that, even for the simple adaptive voter model, highly sophisticated approximations can fail due to special dynamic correlations. As a general strategy for targeting such problematic cases, I identify and illustrate the design of new approximation schemes specific to the complex phenomena under investigation. Third, I study the collective motion in mobile animal groups, using the conceptual framework of adaptive networks of opinion formation. I focus on the role of information in consensus decision-making in populations consisting of individuals that have conflicting interests. Employing a moment-closure approximation, I predict that uninformed individuals promote democratic consensus in the population, i.e. the collective decision is made according to plurality. This prediction is confirmed in a fish school experiment, constituting the first example of direct verification for the predictions of adaptive network models. Fourth, I consider a challenging problem for moment-closure approximations: growing adaptive networks with strongly heterogeneous degree distributions. In order to capture the dynamics of such networks, I develop a new approximation scheme, from which analytical results can be obtained by a special coarse-graining procedure. I apply this analytical approach to an epidemics problem, the spreading of a fatal disease on a growing population. I show that, although the degree distribution has a finite variance at any finite infectiousness, the model lacks an epidemic threshold, which is a genuine adaptive network effect. Diseases with very low infectiousness can thus persist and prevail in growing populations.:1. Introduction .................................................................................. 1 2. Moment-closure approximations of complex networks ................. 5 3. Cyclic dominance in adaptive network models of opinion formation .......... 25 4. Performance of moment-closure approximations of adaptive networks .... 35 5. Information and consensus in a fish school ................................. 65 6. Epidemic spreading on growing heterogeneous adaptive networks ......... 83 7. Conclusions ................................................................................. 101 Appendix A: Moment expansion for node update rules ................... 107
12

Nonlinear optical phenomena within the discontinuous Galerkin time-domain method

Huynh, Dan-Nha 06 September 2018 (has links)
Diese Arbeit befasst sich mit der theoretischen Beschreibung nichtlinearer optischer Phänomene in Hinblick auf das (numerische) unstetige Galerkin-Zeitraumverfahren. Insbesondere werden zwei Materialmodelle behandelt: das hydrodynamische Modell für Metalle und das Modell für Raman-aktive Materialien. Im ersten Teil der Arbeit wird das hydordynamische Modell für Metalle unter Verwendung eines störungstheoretischen Ansatzes behandelt. Insbesondere wird dieser Ansatz genutzt, um die nichtlinearen optischen Effekte, Erzeugung zweiter Harmonischer und Summenfrequenzerzeugung, mit Hilfe des unstetigen Galerkin-Verfahrens zu studieren. In diesem Zusammenhang wird demonstriert, wie das optische Signal zweiter Ordnung von Nanoantennen optimiert werden kann. Hierzu wird ein hier erarbeitetes Schema für die Abstimmung des eingestrahten Lichtes angewandt. Zudem führt eine intelligente Wahl des Antennendesigns zu einem optimierten Signal. Im zweiten Teil dieser Arbeit wird das Modell für Raman-aktive Dielektrika behandelt. Genauer wird die nichtlineare Antwort dritter Ordnung für stimulierte Raman-Streuung hergeleitet. Diese wird dazu genutzt, um ein System aus Hilfsdifferentialgleichungen für das unstetige Galerkin-Verfahren zu konstruieren. Die Ergebnisse des erweiterten numerischen Verfahrens werden im Anschluss gezeigt und diskutiert. / This thesis is concerned with the theoretical description of nonlinear optical phenomena with regards to the (numerical) discontinuous Galerkin time-domain (DGTD) method. It deals with two different material models: the hydrodynamic model for metals and the model for Raman-active dielectrics. In the first part, we review the hydrodynamic model for metals, where we apply a perturbative approach to the model. We use this approach to calculate the second-order nonlinear optical effects of second-harmonic generation and sum-frequency generation using the DGTD method. In this context, we will see how to optimize the second-order response of plasmonic nanoantennas by applying a deliberate tuning scheme for the optical excitations as well as by choosing an intelligent nanoantenna design. In the second part, we examine the material model for Raman-active dielectrics. In particular, we see how to derive the third-order nonlinear response by which one can describe the process of stimulated Raman scattering. We show how to incorporate this third-order response into the DGTD scheme yielding a novel set of auxiliary differential equations. Finally, we demonstrate the workings of the modified numerical scheme.
13

Condensation phenomena in interacting Fermi and Bose gases

Männel, Michael 02 December 2011 (has links) (PDF)
In dieser Dissertation werden das Anregungsspektrum und das Phasendiagramm wechselwirkender Fermi- und Bosegase untersucht. Zu diesem Zweck wird eine neuartige renormierte Kadanoff-Martin-Näherung vorgestellt, die Selbstwechselwirkung von Teilchen vermeidet und somit eine einheitliche Beschreibung sowohl der normalen als auch der kondensierten Phase ermöglicht. Für Fermionen findet man den BCS-Zustand, benannt nach Bardeen, Cooper und Schrieffer, welcher entscheidend ist für das Phänomen der Supraleitung. Charakteristisch für diesen Zustand ist eine Energielücke im Anregungsspektrum an der Fermi-Energie. Weiterhin tritt für Bosonen eine Bose-Einstein-Kondensation (BEC) auf, bei der das Anregungsspektrum für kleine Impulse linear ist. Letzteres führt zum Phänomen der Suprafluidität. Über die bereits bekannten Phänomene hinaus findet man eine dem BCS-Zustand ähnliche Kondensation von Zweiteilchenbindungszuständen, sowohl für Fermionen als auch für Bosonen. Für Fermionen tritt ein Übergang zwischen der Kondensation von Bindungszuständen und dem BCS-Zustand auf, der sogenannte BEC-BCS-Übergang. Die Untersuchung der Zustandsgleichung zeigt, dass im Gegensatz zu Fermi-Gasen und Bose-Gasen mit abstoßender Wechselwirkung Bose-Gase mit anziehender Wechselwirkung zu einer Flüssigkeit kondensieren oder sich verfestigen, bevor es zur Kondensation von Bindungszuständen oder zur Bose-Einstein-Kondensation kommt. Daher können diese Phänomene voraussichtlich nicht in der Gasphase beobachtet werden. Zusammenfassend lässt sich sagen, dass das vorgestellte Näherungsverfahren sehr gut geeignet ist, die erwähnten Phänomene im Zusammenhang mit der Bose-Einstein-Kondensation zu beschreiben.
14

Beiträge zur Theorie des Supermagnetwiderstandes in magnetischen Vielfachschichten

Zahn, Peter 11 August 2021 (has links)
Es werden ab-initio Rechnungen des Supermagnetwiderstands-Effektes von Fe/Cr-Multilagen vorgestellt. Die Elektronenstruktur wurde im Rahmen einer LCAO-Superzellen-Rechnung bestimmt. Als Störung der idealen Schichtstruktur wurden Cr-Defekte in Fe angenommen, die durch spinabhängige Relaxationszeiten beschrieben werden. Die elektrischen Transportkoeffizienten wurden durch Lösung der linearisierten Boltzmann-Gleichung in Relaxationszeitnäherung unter Verwendung des Mott-schen Zweistrommodells berechnet. Bei den betrachteten Systemen variierte die Dicke der Fe-Schicht zwischen 3 und 9 Monolagen, die der Cr-Schicht zwischen 1 und 13 Monolagen. In Abhängigkeit von der Fe- bzw. Cr-Schichtdicke ergeben sich in Übereinstimmung mit den Experimenten charakteristische Oszillationen des Supermagnetwiderstandes. Es wird der Einfluß der Spinanisotropie der Streuung auf den Effekt untersucht. Insbesondere kann gezeigt werden, daß der Effekt auch für spinunabhängige Streuung existiert. / Ab-initio calculations of the Giant Magnetoresistance (GMR) for Fe/Cr multilayers are presented. The electronic structure of the Fe/Cr superlattice is calculated within an optimized LCAO scheme using the local spin density approximation. The scattering of the electrons by Cr impurities in an Fe environment is taken into account by spin dependent relaxation times. The transport is described quasiclassically by solving the linearized Boltzmann equation in relaxation time approximation. In agreement with experiments characteristic oscillations of the GMR are obtained in dependence on the Cr and Fe layer thickness. It can be shown, that the GMR can be reduced or increased by the spin anisotropy of the scattering, but the phenomenon still exists for spin-independent scattering.
15

Condensation phenomena in interacting Fermi and Bose gases

Männel, Michael 14 October 2011 (has links)
In dieser Dissertation werden das Anregungsspektrum und das Phasendiagramm wechselwirkender Fermi- und Bosegase untersucht. Zu diesem Zweck wird eine neuartige renormierte Kadanoff-Martin-Näherung vorgestellt, die Selbstwechselwirkung von Teilchen vermeidet und somit eine einheitliche Beschreibung sowohl der normalen als auch der kondensierten Phase ermöglicht. Für Fermionen findet man den BCS-Zustand, benannt nach Bardeen, Cooper und Schrieffer, welcher entscheidend ist für das Phänomen der Supraleitung. Charakteristisch für diesen Zustand ist eine Energielücke im Anregungsspektrum an der Fermi-Energie. Weiterhin tritt für Bosonen eine Bose-Einstein-Kondensation (BEC) auf, bei der das Anregungsspektrum für kleine Impulse linear ist. Letzteres führt zum Phänomen der Suprafluidität. Über die bereits bekannten Phänomene hinaus findet man eine dem BCS-Zustand ähnliche Kondensation von Zweiteilchenbindungszuständen, sowohl für Fermionen als auch für Bosonen. Für Fermionen tritt ein Übergang zwischen der Kondensation von Bindungszuständen und dem BCS-Zustand auf, der sogenannte BEC-BCS-Übergang. Die Untersuchung der Zustandsgleichung zeigt, dass im Gegensatz zu Fermi-Gasen und Bose-Gasen mit abstoßender Wechselwirkung Bose-Gase mit anziehender Wechselwirkung zu einer Flüssigkeit kondensieren oder sich verfestigen, bevor es zur Kondensation von Bindungszuständen oder zur Bose-Einstein-Kondensation kommt. Daher können diese Phänomene voraussichtlich nicht in der Gasphase beobachtet werden. Zusammenfassend lässt sich sagen, dass das vorgestellte Näherungsverfahren sehr gut geeignet ist, die erwähnten Phänomene im Zusammenhang mit der Bose-Einstein-Kondensation zu beschreiben.
16

Simulation of the electron transport through silicon nanowires and across NiSi2-Si interfaces

Fuchs, Florian 25 April 2022 (has links)
Die fortschreitenden Entwicklungen in der Mikro- und Nanotechnologie erfordern eine solide Unterstützung durch Simulationen. Numerische Bauelementesimulationen waren und sind dabei unerlässliche Werkzeuge, die jedoch zunehmend an ihre Grenzen kommen. So basieren sie auf Parametern, die für beliebige Atomanordnungen nicht verfügbar sind, und scheitern für stark verkleinerte Strukturen infolge zunehmender Relevanz von Quanteneffekten. Diese Arbeit behandelt den Transport in Siliziumnanodrähten sowie durch NiSi2-Si-Grenzflächen. Dichtefunktionaltheorie wird dabei verwendet, um die stabile Atomanordnung und alle für den elektronischen Transport relevanten quantenmechanischen Effekte zu beschreiben. Bei der Untersuchung der Nanodrähte liegt das Hauptaugenmerk auf der radialen Abhängigkeit der elektronischen Struktur sowie deren Änderung bei Variation des Durchmessers. Dabei zeigt sich, dass der Kern der Nanodrähte für den Ladungstransport bestimmend ist. Weiterhin kann ein Durchmesser von ungefähr 5 nm identifiziert werden, oberhalb dessen die Zustandsdichte im Nanodraht große Ähnlichkeiten mit jener des Silizium-Volumenkristalls aufweist und der Draht somit zunehmend mit Näherungen für den perfekt periodischen Kristall beschrieben werden kann. Der Fokus bei der Untersuchung der NiSi2-Si-Grenzflächen liegt auf der Symmetrie von Elektron- und Lochströmen im Tunnelregime, welche für die Entwicklung von rekonfigurierbaren Feldeffekttransistoren besondere Relevanz hat. Verschiedene NiSi2-Si-Grenzflächen und Verzerrungszustände werden dabei systematisch untersucht. Je nach Grenzfläche ist die Symmetrie dabei sehr unterschiedlich und zeigt auch ein sehr unterschiedliches Verhalten bei externer Verzerrung. Weiterhin werden grundlegende physikalische Größen mit Bezug zu NiSi2-Si-Grenzflächen betrachtet. So wird beispielsweise die Stabilität anhand von Grenzflächen-Energien ermittelt. Am stabilsten sind {111}-Grenzflächen, was deren bevorzugtes Auftreten in Experimenten erklärt. Weitere wichtige Größen, deren Verzerrungsabhängigkeit untersucht wird, sind die Schottky-Barrierenhöhe, die effektive Masse der Ladungsträger sowie die Austrittsarbeiten von NiSi2- und Si-Oberflächen. Ein Beitrag zur Modellentwicklung numerischer Bauelementesimulationen wird durch einen Vergleich zwischen den Ergebnissen von Dichtefunktionaltheorie-basierten Transportrechnungen und denen eines vereinfachten Models basierend auf der Wentzel-Kramers-Brillouin-Näherung geliefert. Diese Näherung ist Teil vieler numerischer Bauelementesimulatoren und erlaubt die Berechnung des Tunnelstroms basierend auf grundlegenden physikalischen Größen. Der Vergleich ermöglicht eine Evaluierung des vereinfachten Models, welches anschließend genutzt wird, um den Einfluss der grundlegenden physikalischen Größen auf den Tunneltransport zu untersuchen.:Index of Abbreviations 1. Introduction 2. Silicon Based Devices and Silicon Nanowires 2.1. Introduction 2.2. The Reconfigurable Field-effect Transistor 2.2.1. Design and Functionality 2.2.2. Fabrication 2.3. Overview Over Silicon Nanowires 2.3.1. Geometric Structure 2.3.2. Fabrication Techniques 2.3.3. Electronic Properties 3. Simulation Tools 3.1. Introduction 3.2. Electronic Structure Calculations 3.2.1. Introduction and Basis Functions 3.2.2. Density Functional Theory 3.2.3. Description of Exchange and Correlation Effects 3.2.4. Practical Aspects of Density Functional Theory 3.3. Electron Transport 3.3.1. Introduction 3.3.2. Scattering Theory 3.3.3. Wentzel-Kramers-Brillouin Approximation for a Triangular Barrier 3.3.4. Non-equilibrium Green’s Function Formalism A. Radially Resolved Electronic Structure and Charge Carrier Transport in Silicon Nanowires A.1. Introduction A.2. Model System A.3. Results and Discussion A.4. Summary and Conclusions A.5. Appendix A: Computational Details A.6. Appendix B: Supplementary Material A.6.1. Comparison of the Band Gap Between Relaxed and Unrelaxed SiNWs A.6.2. Band Structures for Some of the Calculated SiNWs A.6.3. Radially Resolved Density of States for Some of the Calculated SiNWs B. Electron Transport Through NiSi2-Si Contacts and Their Role in Reconfigurable Field-effect Transistors B.1. Introduction B.2. Model for Reconfigurable Field-effect Transistors B.2.1. Atomistic Quantum Transport Model to Describe Transport Across the Contact Interface B.2.2. Simplified Compact Model to Calculate the Device Characteristics B.3. Results and Discussion B.3.1. Characteristics of a Reconfigurable Field-effect Transistor B.3.2. Variation of the Crystal Orientations and Influence of the Schottky Barrier B.3.3. Comparison to Fabricated Reconfigurable Field-effect Transistors B.4. Summary and Conclusions B.5. Appendix: Supplementary Material B.5.1. Band Structure and Density of States of the Contact Metal B.5.2. Relaxation Procedure B.5.3. Total Transmission Through Multiple Barriers C. Formation and Crystallographic Orientation of NiSi2-Si Interfaces C.1. Introduction C.2. Fabrication and characterization methods C.3. Model System and Simulation Details C.4. Results and discussion C.4.1. Atomic structure of the interface C.4.2. Discussion of ways to modify the interface orientation C.5. Summary C.6. Appendix: Supplementary Material D. NiSi2-Si Interfaces Under Strain: From Bulk and Interface Properties to Tunneling Transport D.1. Introduction D.2. Model System and Simulation Approach D.3. Computational Details D.3.1. Electronic Structure Calculations (Geometry Relaxations) D.3.2. Electronic Structure Calculations (Electronic Structure) D.3.3. Device Calculations D.4. Tunneling Transport From First-principles Calculations D.4.1. Evaluation of the Current D.4.2. Isotropic Strain D.4.3. Anisotropic Strain D.5. Transport Related Properties and Effective Modeling Schemes D.5.1. Schottky Barrier Height D.5.2. Simplified Transport Model D.5.3. Models for the Schottky Barrier Height D.6. Summary and Conclusions D.7. Appendix: Supplementary Material D.7.1. Schottky Barriers of the {110} Interface Under Anisotropic Strain D.7.2. Silicon Band Structure, Electric Field, and Number of Transmission Channels D.7.3. k∥-resolved Material Properties D.7.4. Evaluation of the Work Functions and Electron Affinities D.7.5. Verification of the Work Function Calculation 4. Discussion 5. Ongoing Work and Possible Extensions 6. Summary Bibliography List of Figures List of Tables Acknowledgements Selbstständigkeitserklärung Curriculum Vitae Scientific Contributions / The ongoing developments in micro- and nanotechnologies require a profound support from simulations. Numerical device simulations were and still are essential tools to support the device development. However, they gradually reach their limits as they rely on parameters, which are not always available, and neglect quantum effects for small structures. This work addresses the transport in silicon nanowires and through NiSi2-Si interfaces. By using density functional theory, the atomic structure is considered, and all electron transport related quantum effects are taken into account. Silicon nanowires are investigated with special attention to their radially resolved electronic structure and the corresponding modifications when the silicon diameter is reduced. The charge transport occurs mostly in the nanowire core. A diameter of around 5 nm can be identified, above which the nanowire core exhibits a similar density of states as bulk silicon. Thus, bulk approximations become increasingly valid above this diameter. NiSi2-Si interfaces are studied with focus on the symmetry between electron and hole currents in the tunneling regime. The symmetry is especially relevant for the development of reconfigurable field-effect transistors. Different NiSi2-Si interfaces and strain states are studied systematically. The symmetry is found to be different between the interfaces. Changes of the symmetry upon external strain are also very interface dependent. Furthermore, fundamental physical properties related to NiSi2-Si interfaces are evaluated. The stability of the different interfaces is compared in terms of interface energies. {111} interfaces are most stable, which explains their preferred occurrence in experiments. Other properties, whose strain dependence is studied, include the Schottky barrier height, the effective mass of the carriers, and work functions. A contribution to the development of numerical device simulators will be given by comparing the results from density functional theory based transport calculations and a model based on the Wentzel-Kramers-Brillouin approximation. This approximation, which is often employed in numerical device simulators, offers a relation between interface properties and the tunneling transport. The comparison allows an evaluation of the simplified model, which is then used to investigate the relation between the fundamental physical properties and the tunneling transport.:Index of Abbreviations 1. Introduction 2. Silicon Based Devices and Silicon Nanowires 2.1. Introduction 2.2. The Reconfigurable Field-effect Transistor 2.2.1. Design and Functionality 2.2.2. Fabrication 2.3. Overview Over Silicon Nanowires 2.3.1. Geometric Structure 2.3.2. Fabrication Techniques 2.3.3. Electronic Properties 3. Simulation Tools 3.1. Introduction 3.2. Electronic Structure Calculations 3.2.1. Introduction and Basis Functions 3.2.2. Density Functional Theory 3.2.3. Description of Exchange and Correlation Effects 3.2.4. Practical Aspects of Density Functional Theory 3.3. Electron Transport 3.3.1. Introduction 3.3.2. Scattering Theory 3.3.3. Wentzel-Kramers-Brillouin Approximation for a Triangular Barrier 3.3.4. Non-equilibrium Green’s Function Formalism A. Radially Resolved Electronic Structure and Charge Carrier Transport in Silicon Nanowires A.1. Introduction A.2. Model System A.3. Results and Discussion A.4. Summary and Conclusions A.5. Appendix A: Computational Details A.6. Appendix B: Supplementary Material A.6.1. Comparison of the Band Gap Between Relaxed and Unrelaxed SiNWs A.6.2. Band Structures for Some of the Calculated SiNWs A.6.3. Radially Resolved Density of States for Some of the Calculated SiNWs B. Electron Transport Through NiSi2-Si Contacts and Their Role in Reconfigurable Field-effect Transistors B.1. Introduction B.2. Model for Reconfigurable Field-effect Transistors B.2.1. Atomistic Quantum Transport Model to Describe Transport Across the Contact Interface B.2.2. Simplified Compact Model to Calculate the Device Characteristics B.3. Results and Discussion B.3.1. Characteristics of a Reconfigurable Field-effect Transistor B.3.2. Variation of the Crystal Orientations and Influence of the Schottky Barrier B.3.3. Comparison to Fabricated Reconfigurable Field-effect Transistors B.4. Summary and Conclusions B.5. Appendix: Supplementary Material B.5.1. Band Structure and Density of States of the Contact Metal B.5.2. Relaxation Procedure B.5.3. Total Transmission Through Multiple Barriers C. Formation and Crystallographic Orientation of NiSi2-Si Interfaces C.1. Introduction C.2. Fabrication and characterization methods C.3. Model System and Simulation Details C.4. Results and discussion C.4.1. Atomic structure of the interface C.4.2. Discussion of ways to modify the interface orientation C.5. Summary C.6. Appendix: Supplementary Material D. NiSi2-Si Interfaces Under Strain: From Bulk and Interface Properties to Tunneling Transport D.1. Introduction D.2. Model System and Simulation Approach D.3. Computational Details D.3.1. Electronic Structure Calculations (Geometry Relaxations) D.3.2. Electronic Structure Calculations (Electronic Structure) D.3.3. Device Calculations D.4. Tunneling Transport From First-principles Calculations D.4.1. Evaluation of the Current D.4.2. Isotropic Strain D.4.3. Anisotropic Strain D.5. Transport Related Properties and Effective Modeling Schemes D.5.1. Schottky Barrier Height D.5.2. Simplified Transport Model D.5.3. Models for the Schottky Barrier Height D.6. Summary and Conclusions D.7. Appendix: Supplementary Material D.7.1. Schottky Barriers of the {110} Interface Under Anisotropic Strain D.7.2. Silicon Band Structure, Electric Field, and Number of Transmission Channels D.7.3. k∥-resolved Material Properties D.7.4. Evaluation of the Work Functions and Electron Affinities D.7.5. Verification of the Work Function Calculation 4. Discussion 5. Ongoing Work and Possible Extensions 6. Summary Bibliography List of Figures List of Tables Acknowledgements Selbstständigkeitserklärung Curriculum Vitae Scientific Contributions
17

In-situ study of Ga2O3 thermal expansion and epitaxy by synchrotron based x-ray diffraction and reflection high-energy electron diffraction

Cheng, Zongzhe 26 August 2019 (has links)
Diese Arbeit präsentiert eine umfassende in-situ Studie zur thermischen Ausdehnung von β-Ga2O3 im Temperaturbereich von Raumtemperatur (RT) bis 1200 K sowie zum Wachstum dünner Ga2O3 Schichten durch plasmaunterstützte Molekularstrahlepitaxie (MBE). Hierfür kamen synchrotron-basierte hochauflösende Röntgenbeugung (HRXRD) sowie die Beugung hochenergetischer Elektronen bei Reflexion (RHEED) zum Einsatz. Die dadurch erhaltenen Resultate gestatten detaillierte quantitative Aussagen zu den Ausdehnungskoeffizienten (CTE) von β-Ga2O3 und ein tieferes Verständnis des Wachstumsprozesses von Ga2O3 sowohl im Rahmen der Homo- als auch der Heteroepitaxie. / This thesis presents a comprehensive in-situ study on the thermal expansion of beta-Ga2O3 from room temperature (RT) to 1200 K, and the thin film growth of Ga2O3 as carried out by oxygen plasma assisted molecular beam epitaxy (MBE) using synchrotron-based high-resolution x-ray diffraction (HRXRD) and reflection high-energy electron diffraction (RHEED). The obtained results provide a quantitative analysis on the coefficients of thermal expansion (CTE) of beta-Ga2O3, and a deeper understanding in the growth process of Ga2O3 in both homoepitaxy and heteroepitaxy.
18

Investigation of the biophysical basis for cell organelle morphology

Mayer, Jürgen 09 February 2010 (has links) (PDF)
It is known that fission yeast Schizosaccharomyces pombe maintains its nuclear envelope during mitosis and it undergoes an interesting shape change during cell division - from a spherical via an ellipsoidal and a peanut-like to a dumb-bell shape. However, the biomechanical system behind this amazing transformation is still not understood. What we know is, that the shape must change due to forces acting on the membrane surrounding the nucleus and the microtubule based mitotic spindle is thought to play a key role. To estimate the locations and directions of the forces, the shape of the nucleus was recorded by confocal light microscopy. But such data is often inhomogeneously labeled with gaps in the boundary, making classical segmentation impractical. In order to accurately determine the shape we developed a global parametric shape description method, based on a Fourier coordinate expansion. The method implicitly assumes a closed and smooth surface. We will calculate the geometrical properties of the 2-dimensional shape and extend it to 3-dimensional properties, assuming rotational symmetry. Using a mechanical model for the lipid bilayer and the so called Helfrich-Canham free energy we want to calculate the minimum energy shape while respecting system-specific constraints to the surface and the enclosed volume. Comparing it with the observed shape leads to the forces. This provides the needed research tools to study forces based on images.
19

Investigation of the biophysical basis for cell organelle morphology

Mayer, Jürgen 12 February 2008 (has links)
It is known that fission yeast Schizosaccharomyces pombe maintains its nuclear envelope during mitosis and it undergoes an interesting shape change during cell division - from a spherical via an ellipsoidal and a peanut-like to a dumb-bell shape. However, the biomechanical system behind this amazing transformation is still not understood. What we know is, that the shape must change due to forces acting on the membrane surrounding the nucleus and the microtubule based mitotic spindle is thought to play a key role. To estimate the locations and directions of the forces, the shape of the nucleus was recorded by confocal light microscopy. But such data is often inhomogeneously labeled with gaps in the boundary, making classical segmentation impractical. In order to accurately determine the shape we developed a global parametric shape description method, based on a Fourier coordinate expansion. The method implicitly assumes a closed and smooth surface. We will calculate the geometrical properties of the 2-dimensional shape and extend it to 3-dimensional properties, assuming rotational symmetry. Using a mechanical model for the lipid bilayer and the so called Helfrich-Canham free energy we want to calculate the minimum energy shape while respecting system-specific constraints to the surface and the enclosed volume. Comparing it with the observed shape leads to the forces. This provides the needed research tools to study forces based on images.

Page generated in 0.0707 seconds