• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 57
  • 17
  • 4
  • 1
  • Tagged with
  • 161
  • 78
  • 37
  • 34
  • 34
  • 34
  • 32
  • 24
  • 22
  • 18
  • 16
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Abscheidung von (Kohlenstoff)Nanostrukturen mittels PE-HF-CVD

Pacal, Frantisek 11 July 2006 (has links)
Kohlenstoffnanoröhren besitzen eine Reihe von einzigartigen strukturellen, mechanischen und elektronischen Eigenschaften. Sie können in Abhängigkeit von der Chiralität metallisches oder halbleitendes Verhalten zeigen, hohe mechanische, thermische und chemische Stabilität aufweisen, können chemisch funktionalisiert werden und sind hervorragende Elektronenemitter. Vor dem Hintergrund dieser vielversprechenden Eigenschaften wurde schnell die Frage von möglichen technischen Anwendungen von Kohlenstoffnanoröhren gestellt. Vor einer umfassenden kommerziellen Umsetzung sind allerdings noch grundlegende Untersuchungen, sowohl zu den Eigenschaften als auch zu einer gezielten Herstellung und Manipulation, erforderlich. Der Mechanismus des gerichteten Wachstums der Kohlenstoffnanoröhren ist äußerst komplex, weshalb er bis heute nicht völlig aufgeklärt werden konnte. Der Grund liegt in der Vielfalt der möglichen Reaktionen zwischen den Molekülen in der Gasphase, der Wechselwirkung zwischen Gasphase und verwendeten Unterlagen und den Reaktionsmechanismen auf diesen Substratoberflächen. Bislang fehlt es an einem einheitlichen Verständnis des Entstehungsprozesses von Kohlenstoffnanoröhren bzw. –nanostrukturen. Der Schwerpunkt dieser Arbeit liegt in der Abscheidung von Kohlenstoffnanostrukturen mittels plasmaaktivierter und hitzdrahtgestützter chemischen Gasphasenabscheidung -„Plasma enhanced hot filament chemical vapor deposition“ (PE-HF-CVD). Es sollen Abscheidungsbedingungen für die Synthese von unterschiedlichen Kohlenstoffnanostrukturen gefunden und optimiert werden. Die Darstellung und Charakterisierung von „phasenreinen“, mehrwandigen, tubularen Röhren auf unterschiedlichen metallbeschichteten Substraten steht im Vordergrund der Arbeit. Das Interesse besteht in einer Abscheidung bei niedrigen Substrattemperaturen, damit temperaturempfindliche Werkstoffe wie z.B. Glas, als Substratmaterialien eingesetzt werden können. Mittels der PE-HF-CVD Methode, die als vielversprechende Technologie zur Darstellung gerichteter Kohlenstoffnanoröhren gilt, sollen Erkenntnisse zum Einfluss einzelner Abscheidungsparameter auf den Wachstumsprozess von Nanoröhren gewonnen werden, wozu auch die plasmadiagnostische Langmuirsondentechnik und die optische Emissionsspektroskopie (OES) eingesetzt werden. Dadurch soll der Zusammenhang zwischen inneren Plasmaparametern und Wachstumsprozessen der Kohlenstoffnanoröhren oder –fasern definiert werden, um eine Prozesskontrolle während der Abscheidungsphase zu ermöglichen.
122

Herstellung und Charakterisierung von irregulären Kohlenstoff-Nanostrukturen

Hentsche, Melanie 18 December 2006 (has links)
Die vorliegende Promotion beinhaltet die Untersuchung von irregulären Kohlenstoff-Nanostrukturen, die mittels Hochenergie-Kugelmahlen hergestellt wurden. Die wissenschaftliche Herausforderung besteht darin, die strukturelle Vielfalt dieser Nanostrukturen experimentell zu erfassen, zu klassifizieren und bezüglich ausgewählter Eigenschaften zu bewerten, sowie mit den Herstellungsparametern in Zusammenhang zu bringen. Die Pulver konnten nach den Mahlungen hinsichtlich ihrer Struktur in zwei grundsätzliche Typen eingeteilt werden: (I) ein Nanopulver, das aus graphitischen Stapelpaketen besteht, welche in eine amorphe Matrix eingebettet sind, (II) ein vollständig amorphisiertes Pulver. Die Strukturanalyse in Bezug auf die Mahlbedingungen (Mahlatmosphäre, Mahltemperatur) zeigt, dass die Dauer der Nanostrukturierung sowie die Anzahl und Größe von graphitischen Stapelpaketen gezielt beeinflusst werden kann. Außerdem konnten Hinweise gefunden werden, die darauf hindeuten, dass Mahlen bei tiefen Temperaturen oder unter Wasserstoffatmosphäre die Agglomeration der Nanopartikel verringern kann. Das Kugelmahlen ermöglicht es ebenfalls, die spezifische Oberfläche des Graphitpulvers von 5,5 m2/g auf 725 m2/g innerhalb von fünf Mahlstunden zu erhöhen. Der Anteil der Verunreinigungen (Fe) liegt dabei nicht höher als 0,05 wt%. Es ist jedoch zu beachten, dass sämtliche Eigenschaften stark von den verschiedenen Mahlparametern (Mahltemperatur, Mahlmaterial) abhängen. Die für Adsorptionsuntersuchungen optimalen Eigenschaften (große spezifische Oberfläche, erhöhte Reaktivität, geringe Verunreinigungen) werden schon nach kurzer Mahldauer erreicht. Wiederholungsmahlungen und Wiederholungsmessungen verschiedener Eigenschaften (spezifische Oberfläche, Verbrennungstemperatur) machen deutlich, dass die Ergebnisse reproduzierbar sind, und dass keine Alterungserscheinungen während der Lagerung unter Argonatmosphäre im Zeitraum von einem Jahr auftreten. Die Wasserstoffspeicherung an nanostrukturierten Kohlenstoffpulvern konnte nachgewiesen werden. Die maximalen Speicherkapazitäten für Temperaturen nahe 77 K lagen bei 1,5 wt%. Für niedrigere Temperaturen Tist = 35 K zeigten sich höhere Speicherkapazitäten von bis zu 5 wt%. Die Korrelation der ermittelten Speicherkapazitäten mit den theoretisch erreichbaren Werten in Bezug auf die Oberfläche der Proben zeigt, dass im Experiment deutlich höhere Werte erhalten werden. Dies lässt den Schluss zu, dass neben der Speicherung an der Oberfläche der Pulver ein weiterer Speichermechanismus innerhalb der Mikroporen der Proben stattfindet.
123

Contrast varied small-angle scattering on disordered materials using X-ray, neutron, and anomalous scattering

Gericke, Eike 28 January 2022 (has links)
Schwerpunkt dieser Arbeit ist die Untersuchung der Struktur von Materialien und ihrer Entwicklung unter in situ Bedingungen. Dabei werden nanoskopische Strukturmotive in amorphen, ungeordneten und porösen Festkörpern mit Hilfe von Kleinwinkelstreuungstechniken identifiziert und quantifiziert. Es werden drei verschiedene wissenschaftliche Fragestellungen bezüglich drei unterschiedlicher Materialsystemen diskutiert. Erstens wird die Nanostruktur von Dichtefluktuationen in hydriertem amorphen Silizium (a-Si:H) charakterisiert. In den untersuchten a-Si:H Materialien wurden zwei unterschiedliche in die a-Si:H-Matrix eingebettete Phasen identifiziert und anhand ihrer Streuquerschnitte quantifiziert. Diese neuen Ergebnisse beantworten eine seit 20 Jahren ungelöste Fragestellung über das a Si:H Material. Zweitens wird die Adsorption, Kondensation und Desorption von Xenon (Xe) in den Poren einer mesoporösen Silizium (Si) Membran untersucht. Dabei werden Xe-spezifischen Charakterisierungsmethoden eingesetzt. Die neuen Ergebnisse führen zu einem detaillierten Verständnis der Physisorption von Xe in porösem Silizium und zeigen deutliche Unterschiede zwischen Porenfüllungs- und Porenentleerungsmechanismen auf. Zuletzt wird die natürliche Alterung (NA) einer Aluminium-Magnesium-Silizium-Modelllegierung diskutiert. Die Streuexperimente weisen auf das Vorhandensein von Segregationszonen hin und unterstützen die Interpretation dieser Zonen als MgSi-Nanophasen in der Al-Matrix. / The investigation of material structures and their evolution under in situ conditions is the main focus of this work. Thereby, nanostructural motives in amorphous, disordered, and porous solids are identified and quantified using small-angle scattering techniques. Three different scientific questions concerning three different material systems are discussed. First, the nanostructure of density fluctuations in hydrogenated amorphous silicon (a-Si:H) is evaluated and quantified. Second, the adsorption, condensation, and desorption of xenon (Xe) confined in the pores of a mesoporous silicon (Si) membrane is studied in situ using Xe-specific characterization methods. Finally, the natural aging (NA) of an aluminum-magnesium-silicon model alloy (Al-0.6Mg-0.8Si) is discussed.
124

Shape Evolution of Nanostructures by Thermal and Ion Beam Processing: Modeling & Atomistic Simulations

Röntzsch, Lars 17 December 2007 (has links)
Single-crystalline nanostructures often exhibit gradients of surface (and/or interface) curvature that emerge from fabrication and growth processes or from thermal fluctuations. Thus, the system-inherent capillary force can initiate morphological transformations during further processing steps or during operation at elevated temperature. Therefore and because of the ongoing miniaturization of functional structures which causes a general rise in surface-to-volume ratios, solid-state capillary phenomena will become increasingly important: On the one hand diffusion-mediated capillary processes can be of practical use in view of non-conventional nanostructure fabrication methods based on self-organization mechanisms, on the other hand they can destroy the integrity of nanostructures which can go along with the failure of functionality. Additionally, capillarity-induced shape transformations are effected and can thereby be controlled by applied fields and forces (guided or driven evolution). With these prospects and challenges at hand, formation and shape transformation of single-crystalline nanostructures due to the system-inherent capillary force in combination with external fields or forces are investigated in the frame of this dissertation by means of atomistic computer simulations. For the exploration (search, description, and prediction) of reaction pathways of nanostructure shape transformations, kinetic Monte Carlo (KMC) simulations are the method of choice. Since the employed KMC code is founded on a cellular automaton principle, the spatio-temporal development of lattice-based N-particle systems (N up to several million) can be followed for time spans of several orders of magnitude, while considering local phenomena due to atomic-scale effects like diffusion, nucleation, dissociation, or ballistic displacements. In this work, the main emphasis is put on nanostructures which have a cylindrical geometry, for example, nanowires (NWs), nanorods, nanotubes etc.
125

Growth of Platinum Clusters in Solution and on Biopolymers: The Microscopic Mechanisms

Colombi Ciacchi, Lucio 05 July 2002 (has links)
Thema der vorgelegten Dissertation ist der Mechanismus der Keimbildung und des Wachstums von Platinclustern in Lösung und auf Biopolymeren nach der Reduktion von Platin-Salzen. Die Untersuchung wird auf atomarer Skala durch ab-initio Molekulardynamik mit der Methode von Car und Parrinello durchgeführt. In einem klassischen, generell akzeptierten Mechanismus erfolgt die Aggregation von Pt-Atomen nur nach kompletter Reduktion der Pt(II)-Komplexen zum metallischen Pt(0)-Zustand. Im Gegensatz dazu, in der hier beobachteten Reaktionsablauf entstehen stabile Pt-Pt-Bindungen schon nach einem einzigen Reduktionsschritt. Darüber hinaus wird es gefunden, dass kleine Pt-Cluster durch Addition von unreduzierten PtCl2(H2O)2-Komplexen wachsen können. Das stimmt mit einem experimentell beocbachteten autokatalytischen Clusterwachstumsmechanismus überein. Es wird weiterhin gefunden, dass Pt(II)-Komplexe, die kovalent an DNA oder an Proteine gebunden sind, als sehr effiziente Nukleationszentren für das weitere Metallclusterwachstum wirken können. Das ist eine Konsequenz des starken Donor-Charakters der organischen Liganden, in derer Anwesenheit stärkere Metall-Metall-Bindungen als frei in der Lösung gebildet werden können. In der Tat, in Metallisierungsexperimenten können 5 Nanometer dünne, mehrere Mikrometer lange, regelmässige Clusterkette erzeugt werden, die rein heterogen auf das Biomolekulare Templat gewachsen sind. / In this thesis we investigate the molecular mechanisms of platinum cluster nucleation and growth in solution and on biopolymers by means of first-principles molecular dynamics. In contrast with a classical picture where clusters nucleate by aggregation of metallic Pt(0) atoms, we find that Pt--Pt bonds can form between dissolved Pt(II) complexes already after a single reduction step. Furthermore, we observe that small clusters grow by addition of unreduced PtCl2(H2O)2 complexes, consistently with an autocatalytic growth mechanism. Moreover Pt(II) ions covalently bound to biopolymers are found to act as preferred nucleation sites for the formation of clusters. This is a consequence of the strong donor character of the organic ligands which induce the formation of stronger metal-metal bonds than those obtained in solution. In fact, in metallization experiments we obtain a clean and purely heterogeneous metallization of single DNA molecules leading to thin and uniform Pt cluster chains extended over several microns.
126

Investigation of Polymer Based Materials in Thermoelectric Applications

Luo, Jinji 19 May 2015 (has links)
With the advancements in the field of wireless sensor networks (WSNs), more and more applications require the sensor nodes to have long lifetime. Energy harvesting sources, e.g. thermoelectric generators (TEGs), can be used to increase the lifetime and capability of the WSNs. Integration of energy harvesters into sensor nodes of WSNs can realize self powered systems, providing the possibility for maintenance free WSNs. TEGs can convert the existing temperature differences into electricity. The efficiency of TEGs is directly related to the dimensionless figure of merit (ZT) of materials, which is given as ZT=σS^2 T/k, where σ is the electrical conductivity, S is the Seebeck coefficient, k is the thermal conductivity, T is the temperature and σS^2 is the power factor. Traditional thermoelectric (TE) materials are based on inorganic materials, of which the thermal conductivity is high. Over the past decade, the use of nanostructuring technology, e.g. superlattice, could decrease the thermal conductivity in order to enhance the efficiency of TE materials. However, the high cost and the rigidity of inorganic TE materials are limiting factors. As alternatives, polymer based materials have become the research focus due to their intrinsic low thermal conductivity, high flexibility and high electrical conductivity. Moreover, polymer based materials could be fabricated in solution form, giving the possibility for employing printing techniques hence a decrease in the production cost. Unlike the typical approach, in which secondary dopants are added into PEDOT:PSS solutions to modify the power factor of polymer films, this thesis is focused on a more efficient method to improve TE properties. This thesis demonstrates for the first time that post treatment of PEDOT:PSS films with the secondary dopant DMSO as the medium results in a much larger power factor than the traditional addition method. The post treatment method also avoids the usually required mixing step involved in the addition method. Different solvents were selected to discuss the impact factors in the modification of the power factor by this post treatment approach. The post treatment of PEDOT:PSS films was then extended to utilize a green solvent EMIMBF_4 (an ionic liquid) as the medium. EMIMBF_4 is found to exchange ions with PEDOT:PSS films. As a result, the EMIM^+ cations remain in the films and reduce the oxidation level of PEDOT chains, which affects the Seebeck coefficient and the electrical conductivity. Furthermore, TE materials based on hybrid composites with polymer as the matrix and Te nanostructures as the nanoinclusions were investigated. This thesis successfully developed a green synthesis method to obtain Te nanostructures, in which a non toxic reductant and a non toxic Te sources were used. Well controlled Te nanostructures including nanorods, nanowires and nanotubes were synthesized by wet chemical and hydrothermal synthesis. Those as synthesized Te nanowires were then integrated into PEDOT:PSS solution for composite films fabrication. A high Seebeck coefficient up to 200 μV/K was observed in the composite film. / Mit den Weiterentwicklungen der Drahtlosen Sensornetzwerke (engl. WSN, wireless sensor networks) stellen immer mehr Anwendungen die Forderung einer langen Lebensdauer der Sensorknoten. Energiegewinnungssysteme (engl. Energy Harvesters) wie z.B. thermoelektrische Generatoren (TEGs) können genutzt werden, um die Lebensdauer und Leistungsfähigkeit der WSN zu steigern. Mit der Integration von Energy Harvesters können WSN ohne äußere Stromversorgung realisiert und somit die Möglichkeit zur Wartungsfreiheit geschaffen werden. TEGs liefern Energie durch die Umwandlung einer Temperaturdifferenz in Elektrizität. Die Effektivität der TEG ist direkt verbunden mit der Material-Kennzahl ZT und ist gegeben durch ZT=σS^2 T/k, wobei σ die elektrische Leitfähigkeit ist, S der Seebeck Koeffizient, k die thermische Leifähigkeit, T die Temperatur und σS^2 der Leistungsfaktor. Herkömmliche thermoelektrische (TE) Materialien basieren auf anorganischen Materialien, von denen die thermische Leitfähigkeit hoch ist. Im Laufe des letzten Jahrzehnts konnte durch den Einsatz der Nanostrukturierung die thermische Leitfähigkeit verringern werden um damit die Effizienz von TE-Materialien zu steigern. Die Steifigkeit dieser Materialien ist ein anderer Aspekt. Als Alternative für anorganische TE Materialien sind Polymer basierte TE Materialien zum Fokus der Forschung geworden aufgrund einer intrinsisch niedrigen thermischen Leitfähigkeit, hohen Flexibilität und hohen elektrischen Leitfähigkeit. Des Weiteren können diese Polymere in gelöster Form verarbeitet werden, was die Möglichkeit für den Einsatz von Drucktechnologien und damit geringeren Produktionskosten gibt. Anders als der herkömmliche Ansatz den Leistungsfaktor der Polymerfilme durch die Ergänzung von sekundären Dotanten in PEDOT:PSS Lösungen zu verändern, wurde in dieser Arbeit eine effizientere Methode zur Verbesserung der TE Eigenschaften gesucht. In dieser Arbeit wird zum ersten Mal gezeigt, dass die Nachbehandlung von PEDOT:PSS Schichten mit sekundären Dotanten Dimethylsulfoxid (DMSO) als Medium der Nachbehandlung zu einem viel höheren Leistungsfaktor führt als bei der Zugabemethode und außerdem die sonst erforderliche Mischprocedur vermeidet. Es wurden verschiedene Lösungsmittel ausgewählt um die Einflussfaktoren bei der Modifikation des Leistungsfaktors durch die Nachbehandlung von Polymerschichten zu diskutieren. Die Nachbehandlung von PEDOT:PSS Schichten wurde nachfolgend erweitert um das umweltfreundliche Lösungsmittel EMIMBF4 (eine ionische Flüssigkeit) als das Medium einzusetzen. EMIMBF4 ist bekannt für den Austausch von Ionen mit PEDOT:PSS Schichten, so dass EMIM Kationen in der Schicht verbleiben, die Oxidationsstufe der PEDOT-Ketten senken und damit den Seebeck-Koeffizient und die elektrische Leitfähigkeit beeinflussen. Des Weiteren konzentriert sich diese Arbeit auf TE Materialien basierend auf Kompositen aus Polymeren mit Nanoeinlagerungen. Erfolgreiche Syntheseansätze wurden für Tellur-Nanostrukturen entwickelt, bei denen keine giftigen Reduktionsmittel und keine giftigen Tellur-Quellen zur Verwendung kamen. Es erfolgte die Erzeugung von kontrollierten Tellur-Nanostrukturen, einschließlich Nanostäben, Nanodrähten und Nanoröhren, mit nass-chemischer und hydrothermaler Synthese. Die so hergestellten Nanodrähte wurden dann in PEDOT:PSS Lösungen integriert für die Herstellung von Komposite-Schichten. Dabei konnte ein hoher Seebeck-Koeffizienten, bis zu 200 μV/K, festgestellt werden.
127

Ternary organic–inorganic nanostructured hybrid materials by simultaneous twin polymerization

Weißhuhn, J., Mark, T., Martin, M., Müller, P., Seifert, A., Spange, S. 06 March 2017 (has links) (PDF)
The acid and base catalyzed simultaneous twin polymerization (STP) of various 2,2′-disubstituted 4H-1,3,2-benzodioxasiline derivatives 2a–d with 2,2′-spirobi[4H-1,3,2-benzodioxasiline] (1) are presented in this paper. The products are nanostructured ternary organic–inorganic hybrid materials consisting of a cross-linked organic polymer, silica and a disubstituted polysiloxane. It can be demonstrated whether and in which extent the copolymerization of the two inorganic fragments of 1 and 2 takes place among the STP and how the molar ratio of the two components determines the structure formation of the resulting hybrid material. Steric and electronic effects of the substituents at the silicon center of 2 on the molecular structure formation and the morphology of the resulting hybrid material were investigated by means of solid state CP MAS 29Si and 13C NMR spectroscopy as well as high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The mechanical properties (hardness and Young's modulus) of the hybrid materials were analyzed by means of nanoindentation measurements. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
128

Multiple polymerization – formation of hybrid materials consisting of two or more polymers from one monomer

Ebert, T., Wollbrink, A., Seifert, A., John, R., Spange, S. 06 March 2017 (has links) (PDF)
Hybrid materials consisting of three different components were synthesized by the polymerization of one heterotrifunctional monomer in just one reaction step using, at the most, one catalyst. The polymerization of 2-furfuyloxy-2-methyl-4H-1,3,2-benzodioxasiline leading to a hybrid material consisting of phenolic resin, poly(furfuryl alcohol), and polymethylsilsesquioxane is, to the best of our knowledge, the first polymerization of this kind. The influence of different catalysts on the polymerization behavior and thus on the structure of the hybrid material was investigated. In accordance with the term “twin polymerization”, which is used for the polymerization of one monomer yielding two separate polymers, this type of polymerization could be called “triple polymerization”. The term “multiple polymerization” is introduced as a general term for the underlying concept of the synthesis of multiple polymers starting from one monomer in one process step. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
129

Artificial photosynthesis - 4-Aminobenzoic acids effect on charge transfer in a photo catalytic system

Moberg, Simon January 2019 (has links)
Artificial photosynthesis is used to harvest solar energy and store it in the form of chemical bonds. The system of interest in this study does this by splitting water into hydrogen and oxygen gas through a plasmon assisted process, collective oscillations from free electron gas. This is a renewable way to store energy that could be used as an alternative to fossil based fuel. In this study, a small part of this photo catalytic system is studied, namely the interaction between plasmonically active silver nanoparticles (Ag NPs) transferring photo-excited electrons via a linker molecule, 4-aminobenzoic acid (pABA). The pABA linker molecule transfers charge from the Ag surface to a semiconductor and a catalyst performing the water splitting. The pABA can bind in different ways onto the Ag-surface and the aim of this study is to examine which bond is strongest and which best enables charge transfer. To this purpose three systems where simulated quantum mechanically using a supercomputer. The total free energy of the systems was computed and compared. Out of the three studied binding sites, the hollow-site bond (pABA binding to three silver atoms) was found to have the lowest energy, meaningit's the strongest of the possible bonds. Additionally it was found that the band gap (the energy needed to transfer charge) for the pABA decreased when bound to the Ag-surface. The hollow-site bound pABA also had the smallest band gap, meaning it requires the least energy to transfer a charge and should therefore be the best bond fitted for the photo catalytic system. / Artificiell fotosyntes används för att absorbera solenergi och förvara den i formen av kemiska bindningar. Systemet som används i denna studie gör detta genom att splittra vatten till vätgas och syrgas genom en plasmon assisterad process. Detta är ett förnyelsebart sätt att förvara energi och kan användas som ett alternativ till fossila bränslen. I denna studie studeras en liten del utav detta fotokatalytiska system nämligen interaktionen där plasmonaktiva silvernanopartiklar (Ag NPs) överför foto-exciterade elektroner genom molekyllänken 4-aminobensoesyra (pABA). Molekyllänken pABA överför laddning från silverytan till en halvledare och en katalys som utför splittringen av vattnet. pABA kan binda på olika sätt tillen silveryta och denna studie syftar till att undersöka vilken utav bindningarna som är starkast och vilken som effektivast överför laddning. För att göra detta simulerades tre system kvantmekaniskt med hjälp av en superdator, ett system för varje sorts bindning. Den totala fria energin av systemen beräknades och jämfördes. Av de tre undersökta bindningarna hadehollow-site bindningen (pABA som binder till tre silveratomer) längst energi, vilket betyder att det är den starkaste av bindningarna. Utöver detta så visade det sig att bandgapet (energin som krävs för att överföra laddning) minskade för pABA när den var bunden till Ag-ytan. Hollow-site bundet pABA hade även minst bandgap, vilket betyder att den kräver minst energi för att överföra laddning och är därmed den mest effektiva bindningen för det fotokatalytiska systemet.
130

Elektrochemische Metallabscheidung mit Kapillarsonden

Müller, Anne-Dorothea 21 February 2002 (has links)
Es wird ein Verfahren zur lokalisierten elektrochemischen Abscheidung metallischer Strukturen aus Kapillarsonden vorgestellt. Der experimentelle Aufbau, die Herstellung der Sonden, das Arbeiten im Nahfeld der Probe (Scherkraft-Abstandsdetektion)sowie die verschiedenen Beschaltungmöglichkeiten der elektrochemischen Zelle werden ausführlich beschrieben. Ergänzend zu den experimentellen Arbeiten werden einerseits numerische Simulationen gezeigt, die zur Veranschaulichung der Potentialverteilung in der Apexregion dienen und qualitativ beschreiben, wie sich das Schichtdickenprofil der abgeschiedenen Strukturen mit den einstellbaren Parametern (Elektrodenpotentiale, Spitze-Probe-Abstand) variieren läßt. Andererseits werden die verschiedenen Beschaltungsmöglichkeiten der Zelle anhand von Schaltungssimulationen verglichen und so die Wahl des günstigsten Arbeitspunktes für die in den Experimenten verwendete (bi)-potentiostatische Abscheidung diskutiert. Mit dieser Anordnung wurden lokalisiert Cluster in einer porösen Aluminiumoxidmembran deponiert und anschließend abgebildet. In weiteren Strukturierungsversuchen wurden Kupfer bzw. Gold lokalisiert elektrochemisch auf ITO abgeschieden, wobei das Schichtwachstum simultan optisch in Transmission beobachtet wurde. Es werden u.a. Strukturen erzeugt, deren laterale Abmessungen kleiner als der Kapillardurchmesser sind (Fokussierung, max. Verhältnis 8:1). Die derzeit kleinsten elektrochemisch erzeugbaren Strukturen haben eine laterale Ausdehnung von ca. 5 Mikrometern. / A method for the localized electrochemical deposition of metal structures using capillary tips is presented. The experimental set-up, the tip preparation, the distance detection in near-field operation (shear-force detection), as well as the different types of circuiting of the electrochemical cell are described in detail. In addition to the experimental work, numerical simulations for the qualitative visualization of the potential distribution around the apex region show, how the films thickness profile can be adjusted with the variable parameters (electrode voltages, tip-sample distance). Circuit simulations of the electrochemical cell allow to pre-estimate the optimum working conditions for the used (bi)-potentiostatic electrode set-up. With this method, clusters have been deposited in a thin film of porous alumin oxide and imaged in shear-force mode. Gold and copper structures have been deposited on ITO, while the film growth was observed optically. The lateral dimension of the deposited structures can be smaller than the inner diameter of the capillaries (maximum focus: 8:1). The smallest structures produced in this work have lateral dimensions of 5 micrometers.

Page generated in 0.0546 seconds