• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 17
  • 3
  • Tagged with
  • 43
  • 43
  • 26
  • 24
  • 22
  • 20
  • 15
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Neue Ansätze zur linearen und nichtlinearen optischen Charakterisierung molekularer und nanokristalliner Ensembles: Zusammenhang zwischen makroskopischer Funktion und Struktur auf mesoskopischer Längenskala technologisch relevanter Materialien

Bock, Sergej 29 October 2020 (has links)
Durch neue Ansätze zur Charakterisierung molekularer und nanokristalliner Materialien spiegelt die vorliegende Arbeit die Synergie von linearer Optik über Ultrakurzzeitphysik zur nichtlinearen Optik wider. Angefangen mit der linearen diffusen Reflektanz (Remission) zur Bestimmung des spektralen Reflexionsvermögens von Pulverpartikeln, erlaubt die hier gezeigte alternative Herangehensweise (s. Kapitel 2) nicht nur ein vereinfachtes Messen der Remission zur Analyse von Materialzusammensetzungen, Verunreinigungen und Co-Dotierungen, sondern eröffnet zudem über Monte-Carlo Simulationen, kombiniert mit der Kubelka-Munk Theorie und der Mie Streuung, auch den Zugang zu dem ansonsten experimentell unzugänglichen Absorptionskoeffizienten von nicht-transluzenten Proben. Die präsentierten Mess- und Simulationsergebnisse an Pulvertabletten aus Rutil-Titandioxid (TiO2) und Cer-dotierten Yttrium Aluminium Granat (YAG:Ce3+) sind mit den bisherigen in der Literatur vorliegenden Ergebnissen konsistent oder zumindest vergleichbar. Auch lassen sich nach Modifikation der Kubelka-Munk Funktion die Bandkanten-Energien Eg der mikro- und nanokristallinen Pulverproben mittels so genannter Tauc Plots verifizieren. Basierend auf einer starken Temperatur- und Konzentrationsabhängigkeit lassen sich die Emissionsspektren der oben genannten YAG:Ce3+-Leuchtstoffe aufgrund von Überlappung oder Verschiebung der energetischen Grundniveaus 2F5/2 und 2F7/2 variieren (s. Kapitel 3). Während sich bei Tieftemperaturen um 19K die doppelbandige Natur der Leuchtstoffe zeigt, verbreitern sich die Emissionsbanden bei Raumtemperatur zu einer Einzelbande, womit eine spektral sehr breite Fluoreszenz einhergeht. Mathematische Entfaltungen dieser Spektren zeigen jeweils den prozentualen Beitrag der Relaxation aus dem untersten angeregten Zustand 5d1 in einen der beiden Grundzustände 2F5/2 und 2F7/2 und ebenso den Einfluss der Temperatur und Cer-Konzentration. Tatsächlich führen die experimentellen Ergebnisse der vorliegenden Arbeit zu der Erkenntnis, dass eine der vier untersuchten YAG:Ce3+-Proben eine erhöhte Cer-Konzentration aufweisen muss. Anders als bei den schwach konzentrierten YAG:Ce3+-Proben ist die spektrale Doppelbande des stark konzentrierten Leuchtstoffs selbst bei 19K nur zu erahnen, während der Beitrag des 5d1 --> 2F7/2 Übergangs auf die Gesamtfluoreszenz retrograd zum 5d1 --> 2F5/2 Übergang mit steigender Temperatur sogar abnimmt. Im direkten Anschluss an die spektrale Vermessung der Proben folgen zeitaufgelöste Lebensdauermessungen zur Bestimmung der Nachleuchtdauern dieser Leuchtstoffe mittels Pikosekunden-Laserpulsen (ps-Pulse) (s. Kapitel 3.3). Auch hier stellen sich Unterschiede zwischen den genannten YAG:Ce3+-Proben heraus und untermauern erneut die Annahme unterschiedlicher Cer-Konzentrationen: Während die Nachleuchtdauer der niedrig konzentrierten Leuchtstoffe von der Temperatur nahezu unberührt bleibt, zeigt sich eine bemerkenswerte Temperaturabhängigkeit des 5d1 --> 2F5/2 Übergangs beim YAG:Ce3+ mit hohem Cer-Gehalt. Auf Basis sämtlicher experimenteller Erkenntnisse und einer ausgiebigen Literaturrecherche kann schließlich eine Fremddotierung der Leuchtstoff-Proben nahezu vollständig ausgeschlossen und ein Energieschema für die vorliegenden YAG:Ce3+-Leuchtstoffe mit den wichtigsten optischen Übergängen erstellt werden. In Hinblick auf potentielle holographische Applikationen wie der optischen Datenspeicherung oder Echtzeit-Holographie erweisen sich die in Polydimethylsiloxan eingebetteten photoschaltbaren Ruthenium-Sulfoxide aufgrund der äußerst geringen Beugungseffizienz von < 10−2 als nicht pragmatisch für die Praxis (s. Kapitel 4). Vergleichbare photoschaltbare Materialien, wie zum Beispiel Natriumnitrosylprussiat, erreichen hingegen Effizienzen von bis zu 100 %. Dennoch zeichnen sich die in Publikation 2 (s. Anhang A.2) vorgestellten Resultate an OSO-PDMS durch ihre äußerst hohe Qualität aus. Sowohl die dynamische Hologramm-Entstehung als auch die Rocking-Kurve folgen den physikalischen Theorien einwandfrei und lassen sich mit den bekannten mathematischen Anpassungen exakt wiedergeben, womit sich entsprechend intrinsische Größen ableiten lassen. Zudem beeindruckt der experimentelle Aufbau mit der präzisen Messung der oftmals nicht detektierbaren Nebenmaxima der gezeigten Rocking-Kurve sowie des Winkel-Multiplexings. Bemerkenswert ist außerdem aus physikalischer Sicht der immense Unterschied zwischen cw- und fs-Holographie. Hier deuten sich nichtlineare Effekte an, die zu der Erkenntnis führen, dass sich die bekannten Theorien mit cw-Lasern nicht ohne Weiteres deckungsgleich auf die Holographie mit ultrakurzen Laserpulsen anwenden lassen. Ein möglicher Erklärungsansatz ist in Kapitel 4.1 beschrieben. Einen praktischen Zweck zur Nutzung nichtlinearer Effekte erfüllt die vorgestellte Messmethode zur Unterscheidung polarer und nicht-polarer Materialien mittels intensiver fs- Puls-Anregung von sogenannten harmonischen (Upconversion-)Nanopartikeln (s. Kapitel 5). Denn anders als die zu Beginn behandelten Leuchtstoffe, weisen die harmonischen Nanopartikel eine starke Anti-Stokes Verschiebung durch Frequenzkonversion zweier oder dreier Photonen zu einem energiereicheren (kurzwelligen) Photon auf. Diese als SHG (second harmonic generation) und THG (third harmonic generation) bekannte Lichtemission wird spektral vermessen, wobei die zu Beginn der Arbeit beschriebenen linearen diffusen Reflektanzmessungen den zu erwartenden Spektralbereich ohne nennenswerte Absorption eingrenzen. Die eigens definierte Gütezahl fR, bestehend aus dem integrierten SHG- und THG-Emissionsspektrum einer Probe, kategorisiert dann die polare (fR > 1) oder nicht-polare (fR << 1) Natur des Materials.
42

Synthese und Funktion nanoskaliger Oxide auf Basis der Elemente Bismut und Niob

Wollmann, Philipp 22 March 2012 (has links)
Am Beispiel von ferroelektrischen Systemen auf Bismut-Basis (Bismutmolybdat, Bismutwolframat und Bismuttitanat) und von Strontiumbariumniobat werden neue Möglichkeiten zur Synthese solcher Nanopartikel aufgezeigt. Die Integration der Nanopartikel in transparente Nanokompositmaterialien und die Entwicklung neuer Precursoren für die Herstellung von Dünnschichtproben gehen den Untersuchungen zur Anwendung als elektrooptische aktive Materialien voraus. Durch weitere Anwendungsmöglichkeiten in der Photokatalyse, dem Test dampfadsorptiver Eigenschaften mit Hilfe eines neuartigen Adsorptionstesters (Infrasorb) und auch mit Hilfe der Ergebnisse der ferroelektrischen Charakterisierung von gesinterten Probenkörpern aus einem Spark-Plasma-Prozess wird ein gesamtheitlicher Überblick über die vielfältigen Aspekte in der Arbeit mit nanoskaligen, ferroelektrischen Materialien gegeben.:Inhaltsverzeichnis...........................................................................................................5 Abkürzungsverzeichnis ...................................................................................................9 1. Motivation....................................................................................................................11 2. Stand der Forschung und theoretischer Teil ...............................................................14 2.1. Nanoskalige Materialien...........................................................................................15 2.1.1. Nanopartikel und Nanokompositmaterialien ....................................................... 15 2.1.2. Dünnschichten..................................................................................................... 21 2.1.3. Anwendungen in der Photokatalyse.................................................................... 22 2.1.4. Anwendungen in der Gas- und Dampfsensorik.................................................... 24 2.2. Ferroelektrika .........................................................................................................26 2.2.1. Bismutmolybdat................................................................................................... 32 2.2.2. Bismutwolframat.................................................................................................. 34 2.2.3. Bismuttitanat ....................................................................................................... 36 2.2.4. Strontiumbariumniobat......................................................................................... 37 2.3. Verwendete Methoden.............................................................................................40 2.3.1. Spark-Plasma-Sintering ........................................................................................40 2.3.2. Bestimmung ferroelektrischer Eigenschaften ...................................................... 42 2.3.3. Charakterisierung nichtlinearer, elektrooptischer Eigenschaften......................... 43 3. Experimenteller Teil ....................................................................................................51 3.1. Synthesevorschriften................................................................................................52 3.1.1. Verwendete Chemikalien und Substrate.............................................................. 52 3.1.2. Solvothermalsynthese von Bi2MO6 (M = Mo, W)................................................... 55 3.1.3. Phasentransfersynthese von Bi2MO6 (M = Mo, W)............................................... 56 3.1.4. Präparation von Bi2MO6/PLA Nanokompositmaterialien (M = Mo, W) ................... 57 3.1.5. Sol-Gel-Synthese von Bi2MO6 (M = Mo, W), Bi4Ti3O12 und Ba0.25Sr0.75Nb2O6 und Dünnschichten..................... 57 3.1.6. Mikroemulsionssynthese von Bi4Ti3O12 ............................................................... 59 3.1.7. Sol-Gel-Synthese von Bi2Ti2O7............................................................................. 60 3.1.8. Synthese von BiOH(C2O4), BiOCH3COO und Bi(CH3COO)3................................... 61 3.2. Vorschriften zur Durchführung und Charakterisierung...............................................62 3.2.1. Verwendete Geräte und Einstellungen ................................................................ 62 3.2.2. Spark Plasma Sintering von Bi2MO6 (M = Mo,W) und Bestimmung ferroelektrischer Eigenschaften ........................ 65 3.2.3. Prüfung elektrooptischer Eigenschaften, Präparation der Bauteile und Messaufbau .............................................. 67 3.2.4. Durchführung photokatalytischer Messungen ....................................................... 69 3.2.5. Messung der Dampfadsorption an Nanopartikeln mit Hilfe berührungsloser Detektion ........................................... 70 4. Ergebnisse und Diskussion...........................................................................................71 4.1. Synthese und Eigenschaften von nanoskaligen Materialien......................................72 4.1.1. Synthese von Bi2MO6 (M = Mo, W) Nanopartikeln................................................. 72 4.1.2. Nanokompositmaterialien mit Bi2MO6 (M = Mo, W)................................................ 81 4.1.3. Synthese der Bismuttitanate Bi4Ti3O12 und Bi2Ti2O7 .......................................... 84 4.1.4. Herstellung von Dünnschichten der Systeme Bi2MO6 (M = Mo, W), Bi4Ti3O12 und Sr0.75Ba0.25Nb2O6 ................. 88 4.2. Funktion der nanoskaligen Materialien .....................................................................100 4.2.1. Bismuthaltige Nanopartikel in der Photokatalyse ..................................................100 4.2.2. Spark-Plasma-Sintern von Bi2MO6-Nanopartikel (M = Mo, W)................................103 4.2.3. Elektrooptische Eigenschaften von Dünnschichten und Kompositmaterialien ............................................................108 4.2.4. Messung der Dampfadsorption an Bi2MO6 (M = Mo, W)-Nanopartikeln mit Hilfe berührungsloser Detektion ............114 4.3. Synthese von BiOH(C2O4), BiO(CH3COO) und Bi(CH3COO)3....................................118 5. Zusammenfassung ......................................................................................................127 6. Ausblick .......................................................................................................................131 7. Literatur ......................................................................................................................132 8. Abbildungs- und Tabellenverzeichnis ..........................................................................146 8.1. Abbildungsverzeichnis...............................................................................................146 8.2. Tabellenverzeichnis...................................................................................................152 9. Anhang ........................................................................................................................154 9.1. Synthese und Eigenschaften von nanoskaligen Materialien......................................155 9.1.1. Solvothermalsynthese von Bi2MO6 (M = Mo, W).....................................................155 9.1.2. Phasentransfersynthese von Bi2MO6 (M = Mo, W).................................................156 9.1.3. Synthese der Bismutmolybdate Bi4Ti3O12 und Bi2Ti2O7 .......................................156 9.1.4. Herstellung von Dünnschichten der Systeme Bi2MO6 (M = Mo, W), Bi4Ti3O12 und Sr0.75Ba0.25Nb2O6 .................159 9.2. Funktion der nanoskaligen Materialien ......................................................................164 9.2.1. Spark-Plasma-Sintern..............................................................................................164 9.2.2. Elektro-optische Eigenschaften von Dünnschichten und Kompositmaterialien .........................................................166 9.2.3. Messung der Dampfadsorption an Bi2MO6 (M = Mo, W)-Nanopartikeln mit Hilfe berührungsloser Detektion ...........174 9.3. Synthese von BiOH(C2O4), BiO(CH3COO) und Bi(CH3COO)3.....................................175 9.3.1. DTA-TG-Ergebnisse .................................................................................................175 9.3.2. Kristalldaten und Strukturverfeinerung ...................................................................177 9.4. Quelltexte ..................................................................................................................181 9.4.1. MATLAB-Skript zur Auswertung elektrooptischer Koeffizienten................................181 9.4.2. MATLAB-Skript zur Auswertung dampfadsorptiver Eigenschaften............................182
43

Ultrafast Photon Management: The Power of Harmonic Nanocrystals in Nonlinear Spectroscopy and Beyond

Kijatkin, Christian 01 April 2019 (has links)
The present work broaches the physics of light-matter interaction, chiefly using nonlinear optical spectroscopy in a newly developed framework termed as Photon Management Concept. This way, existing fragments dealing with specific properties of harmonic and upconversion nanoparticles (HNPs/UCNPs) are consolidated into a full and coherent picture with the primary goal of understanding the underlying physical processes and their impact on the application side, especially in terms of imaging techniques, via suitable experimental and numerical studies. Contemporary optical setups involving contrast-enhancing agents are frequently limited in their excitation and detection configurations owing to a specialization to a select number of markers. As a result, the bandwidth of experimental methods and specimens that may be investigated is severely restricted in a large number of state-of-the-art setups. Here, an alternative approach involving HNPs and UCNPs, respectively, is presented providing an overview from their synthesis to optical characterization and to potential fields of application. Based on their inherent flexibility based on their nonlinear optical response, especially in terms of wavelength and intensity tunability, the PMC alleviates prevalent limitations by dynamically adapting the setup to a sample instead of the preliminary culling to a reduced number of eligible specimens that must not change their optical properties significantly during investigation. The use of HNPs supersedes such concerns due to their nearly instantaneously generated, strongly anti-Stokes shifted, coherent emission capable of producing radiation throughout the visible spectral range, including infrared and ultraviolet wavelengths. This way, HNPs transcend the traditional field of imaging and introduces potential applications in optomanipulation or holographic techniques. Thorough (nonlinear) optical characterization of UCNPs and alkali niobate HNP ensembles is performed to assess the fundamental physical mechanisms interwoven with numerical studies leading to their wide-ranging applicability. Final remarks show that HNPs are ideal candidates for realization of the PMC and yet hold an even further potential beyond current prospects.

Page generated in 0.0866 seconds