• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 12
  • 6
  • 2
  • 1
  • Tagged with
  • 60
  • 60
  • 18
  • 17
  • 13
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Homogénéisation des composites linéaires : Etude des comportements apparents et effectif / Homogenization of linear elastic matrix-inclusion composites : a study of their apparent and effective behaviors

Salmi, Moncef 02 July 2012 (has links)
Les travaux effectués au cours de cette thèse portent principalement sur la construction de nouvelles bornes du comportement effectif des matériaux biphasés de type matrice-inclusions à comportement linéaire élastique. Dans un premier temps, afin d’encadrer le comportement effectif, nous présentons une nouvelle approche numérique, inspirée des travaux de Huet (J. Mech. Phys. Solids 1990 ; 38:813-41), qui repose sur le calcul des comportements apparents associés à des volumes élémentaires (VE) non-carrés construits à partir d'assemblages de cellules de Voronoï, chaque cellule contenant une inclusion entourée de matrice. De tels VE non-carrés permettent d'éviter l'application directe des CL sur les inclusions à l’origine d’une surestimation artificielle des comportements apparents. En utilisant les théorèmes énergétiques de l'élasticité linéaire et des procédures de moyennisation appropriées portant sur les comportements apparents, un nouvel encadrement du comportement effectif est obtenu. Son application au cas d'un composite biphasé, constitué d'une matrice isotrope et de fibres cylindriques parallèles et identiques distribuées aléatoirement dans le plan transverse, conduit à des bornes plus resserrées que celles obtenues par Huet. En nous appuyant sur cette nouvelle procédure numérique, nous avons ensuite réalisé une étude statistique des comportements apparents à l'aide de simulations de type Monté Carlo. Puis, à partir des tendances issues de cette étude statistique, nous avons proposé et mis en œuvre de nouveaux critères de tailles de VER. / This work is devoted to the derivation of improved bounds for the effective behavior of random linear elastic matrix-inclusions composites. In order to bounds their effective behavior, we present a new numerical approach, inspired by the works of Huet (J. Mech. Phys. Solids 1990 ; 38:813-41), which relies on the computation of the apparent behaviors associated to non square (or non cubic) volume elements (VEs) comprised of Voronoï cells assemblages, each cell being composed of a single inclusion surrounded by the matrix. Such non-square VEs forbid any direct application of boundary conditions to particles which is responsible for the artificial overestimation of the apparent behaviors observed for square VEs. By making used of the classical bounding theorems for linear elasticity and appropriate averaging procedures, new bounds are derived from ensemble averages of the apparent behavior associated with non square VEs. Their application to a two-phase composite composed of an isotropic matrix and aligned identical fibers randomly and isotropically distributed in the transverse plane leads to sharper bounds than those obtained by Huet. Then, by making use of this new numerical approach, a statistical study of the apparent behavior is carried out by means of Monte Carlo simulations. Subsequently, relying on the trends derived from this study, some proposals to define RVE criteria are presented.
52

Stratégie de couplage expérimentation/modélisation dans les matériaux hétérogènes. Identification de propriétés mécaniques locales / Experimentation/modelisation coupling strategies in heterogeneous materials. Identification of local elastic mechanical properties.

Pétureau, Louis 07 December 2018 (has links)
Le développement de méthodes d’identification de paramètres de lois de comportement de matériaux est devenu primordial pour avoir accès à la connaissance complète du comportement. En effet, les méthodes de mesure optiques, comme la Corrélation d’Images Numériques, permettent d’obtenir les quantités cinématiques de la relation de comportement sous forme de champs de vecteurs. En revanche, les contraintes ne sont généralement pas mesurables et il est nécessaire d’identifier les paramètres de la loi de comportement du matériau considéré pour y avoir accès. Plusieurs méthodes ont vu le jour et permettent de répondre à cette problématique mais la plupart d’entre elles supposent une homogénéité du matériau. Ce mémoire traite de l’application de certaines de ces méthodes, notamment la méthode de l’écart à l’équilibre (MEQ) et la méthode de recalage de modèle éléments finis (MREF), dans des matériaux hétérogènes à microstructure complexe où les propriétés mécaniques évoluent spatialement dans le volume. L’objectif est d’identifier ces propriétés mécaniques locales qui régissent la cinématique mesurée de tels matériaux dans le cadre de l’élasticité linéaire isotrope. Dans un premier temps, les deux méthodes citées sont décrites, implémentées et comparées sur des cas simulés en 2D. La MREF est préférée à la MEQ car plus robuste vis-à-vis des incertitudes de mesure. Basée sur un formalisme itératif, une parallélisation de l’algorithme a été opérée pour diminuer le coût en temps de la méthode. Des expérimentations dans le plan sur des éprouvettes en polyuréthane où les hétérogénéités sont maîtrisées ont permis de valider la méthode. Enfin, deux applications en 3D sur un matériau en mousse polyuréthane et un composite à base de fibres de bois démontrent l’intérêt d’une telle méthode pour l’identification de propriétés mécaniques locales. La mise en évidence d’une relation entre les propriétés locales identifiées et les propriétés locales de la microstructure de ces matériaux est effectuée. / The development of identification methods of material constitutive equation parameters has become fundamental to completely know the mechanical behavior. Indeed, optical methods, such as Digital Image Correlation, allows to get kinematics quantities of the constitutive equation as vectors fields. But, stresses are usually not available experimentally and one has to identify constitutive equation parameters to compute them. Several methods have been developed and answer to that problematic but most of them suppose the materials as homogeneous. This memoir is about the application of some of these methods, such as the equilibrium gap method (EGM) and the finite element model updating method (FEMU), in the case of heterogeneous materials with complex structures where mechanical properties vary spatially in the volume. The objective is to identify these local mechanical properties which rule the measured kinematics of such materials considering the isotropic linear elasticity. Firstly, both methods are detailed, implemented and compared on 2D simulated cases. The FEMU method is preferred because it is more robust in the presence of noisy data. Based on an iterative process, a parallelisation of the algorithm is achieved in order to reduce the cost of the method. In-plane experiments on polyurethane samples where heterogeneities are controlled have validated the method. Finally, two 3D applications on a polyurethane foam material and a wood-based fibrous composite have demonstrated the interest of this approach to identify local mechanical properties. The highlighting of a relationship between identified local properties and microstructural properties of these materials is made.
53

Étude asymptotique et numérique d’inclusions fines dans des domaines élastiques / Asymptotic and numerical study of fine inclusions in elastic domains

Ben Hassine, Mohamed Rafik 26 September 2017 (has links)
Ce travail de thèse a concerné la modélisation mathématique et l’approximation numérique de l’influence d‘une inclusion très fine sur un substrat élastique de différente rigidité. L’étude est motivée par les applications dans les pneumatiques et ne se base pas sur des techniques d’homogénéisation classiques. En effet, l’objectif a été de traiter l’interaction entre une seule inclusion et son milieu élastique et non une densité d’inclusions. L’étude a comporté trois volets, le premier concernant une modélisation mathématique pour des lois de comportement linéaires aboutissant à une expression de la contribution de l’inclusion sous la forme du champ sans inclusion corrigé par des correcteurs à différents ordres. Ces correcteurs sont indépendants de la taille caractéristique de l’inclusion, Le second a concerné l’approximation numérique de cette influence moyennant la méthode des éléments finis et celle des éléments finis inversés. Une stratégie numérique de prise en compte de l’influence de plusieurs inclusions y est aussi présentée. Le dernier volet est prospectif et discute de la possibilité de l’extension de l’approche pour des lois de comportement non linéaires. / This work focused on mathematical modeling and numerical approximation of the influence of a very thin inclusion on an elastic substrate of different stiffness. The study is motivated by applications in tires and is not based on conventional homogenization techniques. Indeed, the objective was to treat the interaction between a single inclusion and its elastic medium and not a density of inclusions. The study consisted of three parts, the first concerning mathematical modeling for linear behavior laws leading to an expression of the contribution of the inclusion in the form of the inclusion-free field corrected by correctors at different orders. These correctors are independent of the characteristic size of the inclusion. The second relates to the numerical approximation of this influence by means of the finite element method and that of the inverted finite elements. A numerical strategy for taking into account the influence of several inclusions is also presented. The last part is prospective and discusses the possibility of extending the approach for nonlinear behavioral laws.
54

Modélisation morphologique et micromécanique 3D de matériaux cimentaires / 3D morphological and micromechanical modeling of cementitious materials

Escoda, Julie 30 April 2012 (has links)
Cette thèse porte sur la modélisation morphologique de matériaux cimentaires, et sur l'analyse de leurs propriétés linéaires élastiques. Dans cet objectif, des images 3D, obtenues par micro-tomographie, de matériaux cimentaires (mortier et béton) sont étudiées. Dans un premier temps, l'image de mortier est segmentée afin d'obtenir une image de microstructure réelle pour des calculs en élasticité linéaire. L'image de béton est utilisée, après traitement, pour la détermination des caractéristiques morphologiques du matériau. Un modèle aléatoire de béton est ensuite développé et validé par des données morphologiques. Ce modèle comporte trois phases qui correspondent à la matrice, les granulats et les pores. La phase des granulats est modélisée par implantation sans recouvrement de polyèdres de Poisson. Pour cela, un algorithme de génération vectorielle de polyèdres de Poisson est mis en place et validé par des mesures morphologiques. Enfin, les propriétés linéaires élastiques effectives de la microstructure de mortier et de microstructures simulées sont déterminées par méthode FFT (Fast-Fourier Transform), pour différents contrastes entre le module de Young des granulats et de la matrice. Cette étude des propriétés effectives est complétée par une analyse locale des champs dans la matrice, afin de déterminer l'arrangement spatial entre les zones de concentration de contraintes dans la matrice, et les différentes phases de la microstructure (granulats et pores). Une caractérisation statistique des champs est de plus réalisée, avec notamment le calcul du Volume Élémentaire Représentatif (VER). Une comparaison des propriétés élastiques effectives et locales obtenues d'une part sur une microstructure simulée contenant des polyèdres et d'autre part sur une microstructure contenant des sphères est de plus effectuée. / The goal of this thesis is to develop morphological models of cementitious materials and use these models to study their local and effective response. To this aim, 3D images of cementitious materials (mortar and concrete), obtained by micro-tomography, are studied. First, the mortar image is segmented in order to obtain an image of a real microstructure, to be used for linear elasticity computations. The image of concrete is used, after being processed, to determine various morphological characteristics of the material. A random model of concrete is then developed and validated by means of morphological data. This model is made up of three phases, corresponding to the matrix, aggregates and voids. The aggregates phase is modelled by implantation of Poisson polyhedra without overlap. For this purpose, an algorithm suited to the vector generation of Poisson polyhedra is introduced and validated with morphological measurements. Finally, the effective linear elastic properties of the mortar and other simulated microstructures are estimated with the FFT (Fast-Fourier Transform) method, for various contrasts between the aggregates and matrix' Young moduli. To complete this work, focused on effective properties, an analysis of the local elastic response in the matrix phase is undertaken, in order to determine the spatial arrangement between stress concentration zones in the matrix and the phases of the microstructure (aggregates and voids). Moreover, a statistical fields characterization, in the matrix, is achieved, including the determination of the Representative Volume Element (RVE) size. Furthermore, a comparison between effective and local elastic properties obtained from microstructures containing polyhedra and spheres is carried out.
55

Intégration des données de sismique 4D dans les modèles de réservoir : recalage d'images fondé sur l'élasticité non linéraire / New Formulation of the Objective Function for Better Incorporation of 4D Seismic Data into Reservoir : Models and Image Registration Based on Nonlinear Elasticity

Derfoul, Ratiba 04 October 2013 (has links)
Dans une première partie, nous proposons une méthodologie innovante pour la comparaison d'images en ingénierie de réservoir. L'objectif est de pouvoir comparer des cubes sismiques obtenus par simulation avec ceux observés sur un champ pétrolier, dans le but de construire un modèle représentatif de la réalité. Nous développons une formulation fondée sur du filtrage, de la classification statistique et de la segmentation d'images. Ses performances sont mises en avant sur des cas réalistes. Dans une seconde partie, nous nous intéressons aux méthodes de recalage d'images utilisées en imagerie médicale pour mettre en correspondance des images. Nous introduisons deux nouveaux modèles de recalage fondés sur l'élasticité non linéaire, où les formes sont appréhendées comme des matériaux de type Saint Venant-Kirchhoff et Ciarlet-Geymonat. Nous justifions théoriquement l'existence de solutions ainsi que la résolution numérique. Le potentiel de ces méthodes est illustré sur des images médicales. / In a first part, we propose an innovative methodology for image matching in the context of reservoir simulation. In order to build a model consistent with data collected on the field, we need to evaluate the error between seismic cubes obtained by simulation and seismic cubes acquired in the oil field. Using image processing tools, we develop a new formulation of the error. The application of this new formulation on synthetic reservoir cases demonstrates its efficiency. In a second part, we address the issue of designing two theoretically well-motivated registration models capable of handling large deformations since they are based on nonlinear elasticity. The shape to be matched are viewed as Ciarlet-Geymonat materials for the first model and as Saint-Venant Kirchhoff materials for the second one. We investigate the efficiency of the proposed matching model for the registration of mouse brain gene expression data to a neuroanatomical mouse atlas.
56

Asymptotic and numerical methods for fluid-structure interaction problems and applications to the materials science and engineering / Méthodes asymptotiques et numériques pour les problèmes d’interaction fluide-solide et applications en science des matériaux et en science pour ingénieur

Malakhova-Ziablova, Irina 12 February 2015 (has links)
Le but de cette thèse pluridisciplinaire est d’étudier le problème de l’interaction fluide-structure à partir du point de vue mathématique et physique. Des problèmes d’interaction d’un fluide visqueux avec une structure élastique décrivent, par exemple, des interactions entre le manteau terrestre et de la croûte terrestre, le sang et la paroi vasculaire dans un vaisseau sanguin, etc. En génie l’interaction fluide visqueux-structure apparaît lors de la formation de solution colloïdale quand un laser passe à travers le fluide influençant le substrat (ablation laser dans un liquide). Fusion sélective au laser (FSL) est utilisée pour étudier le comportement des contraintes résiduelles en dépendance des propriétés thermoélastiques et mécaniques du matériau et des formes variées des cordons rechargés. A partir du point de vue mathématique le système couplé “flux fluide visqueux – plaque mince élastique” en 3D lorsque l’épaisseur de la plaque, E, tend vers zéro, tandis que la densité et le module de Young du matériau élastique sont d’ordre 1 et E-3, respectivement, est considéré. Le solide est couché par le fluide qui occupe un domaine épais. La modélisation multi-échelle est effectuée pour la partie élastique. Le développement asymptotique complet est construit lorsque E tend vers zéro. L’existence, la régularité et l’unicité de la solution pour le problème initial sont étudiées au moyen de techniques variationnelles. La méthode de décomposition asymptotique partielle du domaine est appliquée pour le système couplé. L’erreur de la méthode est évaluée / The goal of this multi-disciplinary thesis is to study the fluid-structure interaction problem from mathematical and physical viewpoints. Viscous fluid-structure interaction problems describe, for example, interactions between the Earth mantle and the Earth crust, the blood and the vascular wall in a blood vessels, etc. In engineering viscous fluid-structure interaction appears during colloidal solution formation when a laser pierce through the fluid influencing the substrate (laser ablation in a liquid). Selective laser melting (SLM) is used to study the behavior of residual stresses depending on the thermoelastic and mechanical properties of the material and on various forms of reloaded beads. From mathematical point of view the coupled system “viscous fluid flow-thin elastic plate” in 3D when the thickness of the plate, E, tends to zero, while the density and the Young’s modulus of the plate material are of order 1 and E-3, respectively, is considered. The plate lies on the fluid which occupies a thick domain. The multi-scale modeling is performed for the elastic part. The complete asymptotic expansion is constructed when E tends to zero. The existence, the regularity and the uniqueness of the solution for the original problem are studied by means of variational techniques. The method of asymptotic partial domain decomposition is applied for the coupled system. The error of the method is evaluated
57

Fast algorithms for frequency domain wave propagation

Tsuji, Paul Hikaru 22 February 2013 (has links)
High-frequency wave phenomena is observed in many physical settings, most notably in acoustics, electromagnetics, and elasticity. In all of these fields, numerical simulation and modeling of the forward propagation problem is important to the design and analysis of many systems; a few examples which rely on these computations are the development of metamaterial technologies and geophysical prospecting for natural resources. There are two modes of modeling the forward problem: the frequency domain and the time domain. As the title states, this work is concerned with the former regime. The difficulties of solving the high-frequency wave propagation problem accurately lies in the large number of degrees of freedom required. Conventional wisdom in the computational electromagnetics commmunity suggests that about 10 degrees of freedom per wavelength be used in each coordinate direction to resolve each oscillation. If K is the width of the domain in wavelengths, the number of unknowns N grows at least by O(K^2) for surface discretizations and O(K^3) for volume discretizations in 3D. The memory requirements and asymptotic complexity estimates of direct algorithms such as the multifrontal method are too costly for such problems. Thus, iterative solvers must be used. In this dissertation, I will present fast algorithms which, in conjunction with GMRES, allow the solution of the forward problem in O(N) or O(N log N) time. / text
58

Variational models in martensitic phase transformations with applications to steels

Muehlemann, Anton January 2016 (has links)
This thesis concerns the mathematical modelling of phase transformations with a special emphasis on martensitic phase transformations and their application to the modelling of steels. In Chapter 1, we develop a framework that determines the optimal transformation strain between any two Bravais lattices and use it to give a rigorous proof of a conjecture by E.C. Bain in 1924 on the optimality of the so-called Bain strain. In Chapter 2, we review the Ball-James model and related concepts. We present some simplification of existing results. In Chapter 3, we pose a conjecture for the explicit form of the quasiconvex hull of the three tetragonal wells, known as the three-well problem. We present a new approach to finding inner and outer bounds. In Chapter 4, we focus on highly compatible, so called self-accommodating, martensitic structures and present new results on their fine properties such as estimates on their minimum complexity and bounds on the relative proportion of each martensitic variant in them. In Chapter 5, we investigate the contrary situation when self-accommodating microstructures do not exist. We determine, whether in this situation, it is still energetically favourable to nucleate martensite within austenite. By constructing different types of inclusions, we find that the optimal shape of an inclusion is flat and thin which is in agreement with experimental observation. In Chapter 6, we introduce a mechanism that identifies transformation strains with orientation relationships. This mechanism allows us to develop a simpler, strain-based approach to phase transformation models in steels. One novelty of this approach is the derivation of an explicit dependence of the orientation relationships on the ratio of tetragonality of the product phase. In Chapter 7, we establish a correspondence between common phenomenological models for steels and the Ball-James model. This correspondence is then used to develop a new theory for the (5 5 7) lath transformation in low-carbon steels. Compared to existing theories, this new approach requires a significantly smaller number of input parameters. Furthermore, it predicts a microstructure morphology which differs from what is conventionally believed.
59

Finite-amplitude waves in deformed elastic materials / Onde d'amplitude finie dans des matériaux élastiques déformés

Rodrigues Ferreira, Elizabete 10 October 2008 (has links)
Le contexte de cette thèse est la théorie de l'élasticité non linéaire, appelée également "élasticité finie". On y présente des résultats concernant la propagation d'ondes d'amplitude finie dans des matériaux élastiques non linéaires soumis à une grande déformation statique homogène. Bien que les matériaux considérés soient isotropes, lors de la propagation d'ondes un comportement anisotrope dû à la déformation statique se manifeste. <p><p>Après un rappel des équations de base de l'élasticité non linéaire (Chapitre 1), on considère tout d'abord la classe générale des matériaux incompressibles. Pour ces matériaux, on montre que la propagation d'ondes transversales polarisées linéairement est possible pour des choix appropriés des directions de polarisation et de propagation. De plus, on propose des généralisations des modèles classiques de "Mooney-Rivlin" et "néo-Hookéen" qui conduisent à de nouvelles solutions. Bien que le contexte soit tri-dimensionnel, il s'avère que toutes ces ondes sont régies par des équations d'ondes scalaires non linéaires uni-dimensionelles. Dans le cas de solutions du type ondes simples, on met en évidence une propriété remarquable du flux et de la densité d'énergie. <p><p>Dans les Chapitres 3 et 4, on se limite à un modèle particulier de matériaux compressibles appelé "modèle restreint de Blatz-Ko", qui est une version compressible du modèle néo-Hookéen. <p><p>En milieu infini (Chapitre 3), on montre que des ondes transversales polarisées linéairement, faisant intervenir deux variables spatiales, peuvent se propager. Bien que la théorie soit non linéaire, le champ de déplacement de ces ondes est régi par une version anisotrope de l'équation d'onde bi-dimensionnelle classique. En particulier, on présente des solutions à symétrie "cylindrique elliptique" analogues aux ondes cylindriques. Comme cas particulier, on obtient aussi des ondes planes inhomogènes atténuées à la fois dans l'espace et dans le temps. De plus, on montre que diverses superpositions appropriées de solutions sont possibles. Dans chaque cas, on étudie les propriétés du flux et de la densité d'énergie. En particulier, dans le cas de superpositions il s'avère que des termes d'interactions interviennent dans les expressions de la densité et du flux d'énergie. <p><p>Finalement (Chapitre 4), on présente une solution exacte qui constitue une généralisation non linéaire de l'onde de Love classique. On considère ici un espace semi-infini, appelé "substrat" recouvert par une couche. Le substrat et la couche sont constitués de deux matériaux restreints de Blatz-Ko pré-déformés. L'onde non linéaire de Love est constituée d'un mouvement non atténué dans la couche et d'une onde plane inhomogène dans le substrat, choisies de manière à satisfaire aux conditions aux limites. La relation de dispersion qui en résulte est analysée en détail. On présente de plus des propriétés générales du flux et de la densité d'énergie dans le substrat et dans la couche. <p><p><p>The context of this thesis is the non linear elasticity theory, also called "finite elasticity".<p>Results are obtained for finite-amplitude waves in non linear elastic materials which are first subjected to a large homogeneous static deformation. Although the materials are assumed to be isotropic, anisotropic behaviour for wave propagation is induced by the static deformation. <p><p>After recalling the basic equations of the non linear elasticity theory (Chapter 1), we first consider general incompressible materials. For such materials, linearly polarized transverse plane waves solutions are obtained for adequate choices of the polarization and propagation directions (Chapter 2). Also, extensions of the classical Mooney-Rivlin and neo-Hookean models are introduced, for which more solutions are obtained. Although we use the full three dimensional elasticity theory, it turns out that all these waves are governed by scalar one-dimensional non linear wave equations. In the case of simple wave solutions of these equations, a remarkable property of the energy flux and energy density is exhibited.<p><p>In Chapter 3 and 4, a special model of compressible material is considered: the special Blatz-Ko model, which is a compressible counterpart of the incompressible neo-Hookean model. <p><p>In unbounded media (Chapter 3), linearly polarized two-dimensional transverse waves are obtained. Although the theory is non linear, the displacement field of these waves is governed by a linear equation which may be seen as an anisotropic version of the classical two-dimensional wave equation. In particular, solutions analogous to cylindrical waves, but with an "elliptic cylindrical symmetry" are presented. Special solutions representing "damped inhomogeneous plane waves" are also derived: such waves are attenuated both in space and time. Moreover, various appropriate superpositions of solutions are shown to be possible. In each case, the properties of the energy density and the energy flux are investigated. In particular, in the case of superpositions, it is seen that interaction terms enter the expressions for the energy density and the energy flux. <p><p>Finally (Chapter 4), an exact finite-amplitude Love wave solution is presented. Here, an half-space, called "substrate", is assumed to be covered by a layer, both made of different prestrained special Blatz-Ko materials. The Love surface wave solution consists of an unattenuated wave motion in the layer and an inhomogeneous plane wave in the substrate, which are combined to satisfy the exact boundary conditions. A dispersion relation is obtained and analysed. General properties of the energy flux and the energy density in the substrate and the layer are exhibited. <p><p><p><p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
60

Adaptive least-squares finite element method with optimal convergence rates

Bringmann, Philipp 29 January 2021 (has links)
Die Least-Squares Finite-Elemente-Methoden (LSFEMn) basieren auf der Minimierung des Least-Squares-Funktionals, das aus quadrierten Normen der Residuen eines Systems von partiellen Differentialgleichungen erster Ordnung besteht. Dieses Funktional liefert einen a posteriori Fehlerschätzer und ermöglicht die adaptive Verfeinerung des zugrundeliegenden Netzes. Aus zwei Gründen versagen die gängigen Methoden zum Beweis optimaler Konvergenzraten, wie sie in Carstensen, Feischl, Page und Praetorius (Comp. Math. Appl., 67(6), 2014) zusammengefasst werden. Erstens scheinen fehlende Vorfaktoren proportional zur Netzweite den Beweis einer schrittweisen Reduktion der Least-Squares-Schätzerterme zu verhindern. Zweitens kontrolliert das Least-Squares-Funktional den Fehler der Fluss- beziehungsweise Spannungsvariablen in der H(div)-Norm, wodurch ein Datenapproximationsfehler der rechten Seite f auftritt. Diese Schwierigkeiten führten zu einem zweifachen Paradigmenwechsel in der Konvergenzanalyse adaptiver LSFEMn in Carstensen und Park (SIAM J. Numer. Anal., 53(1), 2015) für das 2D-Poisson-Modellproblem mit Diskretisierung niedrigster Ordnung und homogenen Dirichlet-Randdaten. Ein neuartiger expliziter residuenbasierter Fehlerschätzer ermöglicht den Beweis der Reduktionseigenschaft. Durch separiertes Markieren im adaptiven Algorithmus wird zudem der Datenapproximationsfehler reduziert. Die vorliegende Arbeit verallgemeinert diese Techniken auf die drei linearen Modellprobleme das Poisson-Problem, die Stokes-Gleichungen und das lineare Elastizitätsproblem. Die Axiome der Adaptivität mit separiertem Markieren nach Carstensen und Rabus (SIAM J. Numer. Anal., 55(6), 2017) werden in drei Raumdimensionen nachgewiesen. Die Analysis umfasst Diskretisierungen mit beliebigem Polynomgrad sowie inhomogene Dirichlet- und Neumann-Randbedingungen. Abschließend bestätigen numerische Experimente mit dem h-adaptiven Algorithmus die theoretisch bewiesenen optimalen Konvergenzraten. / The least-squares finite element methods (LSFEMs) base on the minimisation of the least-squares functional consisting of the squared norms of the residuals of first-order systems of partial differential equations. This functional provides a reliable and efficient built-in a posteriori error estimator and allows for adaptive mesh-refinement. The established convergence analysis with rates for adaptive algorithms, as summarised in the axiomatic framework by Carstensen, Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6), 2014), fails for two reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size, what seemingly prevents a reduction under mesh-refinement. Second, the first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm and, thus, involve a data resolution error of the right-hand side f. These difficulties led to a twofold paradigm shift in the convergence analysis with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1), 2015) for the lowest-order discretisation of the 2D Poisson model problem with homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-based a posteriori error estimator accomplishes the reduction property. Furthermore, a separate marking strategy in the adaptive algorithm ensures the sufficient data resolution. This thesis presents the generalisation of these techniques to three linear model problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity problem. It verifies the axioms of adaptivity with separate marking by Carstensen and Rabus (SIAM J. Numer. Anal., 55(6), 2017) in three spatial dimensions. The analysis covers discretisations with arbitrary polynomial degree and inhomogeneous Dirichlet and Neumann boundary conditions. Numerical experiments confirm the theoretically proven optimal convergence rates of the h-adaptive algorithm.

Page generated in 0.0938 seconds