21 |
Synthese, Charakterisierung und elektrochemische Eigenschaften nanostrukturierter, perowskitischer ElektrodenmaterialienFranke, Daniela 24 September 2013 (has links) (PDF)
La0.6Ca0.4Mn0.8Ni0.2O3-, La0.6Ca0.4Mn0.8Fe0.2O3- und La0.75Ca0.25Mn0.5Fe0.5O3-Volumenmaterialien wurden im potentiometrischen Messaufbau bereits erfolgreich auf ihre NO-Sensitivität getestet. Keramischen Nanomaterialien werden generell eine Reihe neuer oder verbesserter Eigenschaften (verbessertes Sinterverhalten, erhöhte NOx-Sensitivität, höhere Leitfähigkeit) zugesprochen.
La0.6Ca0.4Mn0.8Ni0.2O3, La0.6Ca0.4Mn0.8Fe0.2O3 und La0.75Ca0.25Mn0.5Fe0.5O3 wurden mittels PVA/Sucrose-Methode, Aktivkohlemethode und Fällungssynthese als Nanomaterialien sowie mit Festkörperreaktion als Volumenmaterialien dargestellt und mit typischen Charakterisierungsmethoden untersucht.
Die Materialien wurden in verschiedenen Schichtdicken auf YSZ-Substrate aufgetragen und potentiometrisch sowie impedanzspektroskopisch auf ihre NO-Sensitivität und die Querempfindlichkeit gegenüber NO2 und Propylen geprüft. Potentiometrische Messungen im NO-Gasstrom ergeben eine Abhängigkeit der NO-Sensitivität von der Partikelgröße, der Schichtdicke und der Beschichtungsmethode. Impedanzspektroskopische Messungen an beidseitig beschichteten YSZ-Substraten zeigen ebenfalls eine Abhängigkeit des Zellwiderstands von der NO-Konzentration und der Partikelgröße.
Die Nanomaterialien zeigen bei unterschiedlichen Sauerstoffpartialdrücken im untersuchten Temperaturbereich (300°C bis 850°C) höhere Leitfähigkeiten als die Volumenmaterialien gleicher Zusammensetzung. Dieses Verhalten wird mit dem höheren Sauerstoffaustausch der Nanomaterialien in Verbindung gebracht, der zur Erzeugung zusätzlicher Defekte in der Kristallstruktur führt. Die Nanostruktur und somit eine entsprechend hohe Leitfähigkeit bleiben bei hohen Sintertemperaturen (T > 1000°C), die der Herstellung gasdichter Presslinge dienen, erhalten.
XANES- und Photoelektronenspektroskopie wurden verwendet, um die Punktdefekte zu definieren.
|
22 |
Photon-assisted spectroscopy of electronic interface states in perovskite oxide heterostructures / Photonengestützte Spektroskopie elektronischer Grenzflächenzustände in Heterostrukturen perowskitischer OxideBeyreuther, Elke 19 December 2007 (has links) (PDF)
Complex oxides are an intriguing field of solid-state research, as they can exhibit a wide variety of functional properties, such as ferroelasticity, ferroelectricity, ferro- and antiferromagnetism or an even more complicated type of magnetic ordering, the combination or interaction of those ferroic properties (multiferroicity), high spin polarization, or high-temperature superconductivity. Thus they are prospective candidates for future materials in microelectronics. It is a matter of fact that the performance of such oxide-based devices depends mainly on transport properties, which in turn depend on the distribution and density of intrinsic or extrinsic electronic interface states across the device structure. The present thesis focuses on the identification and characterization of such electronic properties by two different photoassisted spectroscopy techniques: surface photovoltage spectroscopy and photoelectron spectroscopy. This work especially deals with perovskite oxides, namely with the model perovskite strontium titanate (SrTiO3) as a substrate and three differently doped lanthanum manganite thin films (10-15 nm thickness) grown by pulsed laser deposition (PLD) on the SrTiO3 substrate(La0.7Sr0.3MnO3, La0.7Ca0.3MnO3, La0.7Ce0.3MnO3). The first part aims at the identification of electronic surface and interface states at the free SrTiO3 surface as well as at the three different lanthanum manganite/SrTiO3 interfaces. For that purpose three different experimental realizations of the surface photovoltage spectroscopy technique were implemented and employed: photoelectron spectroscopy under additional optical excitation, the capacitive detection of the photoinduced displacement current in a parallel-plate capacitor geometry under modulated optical excitation, and the classical Kelvin probe technique. The methods are evaluated comparatively with respect to their suitability to analyze the given oxidic interfaces. The main result of this first part is a map of the energetic positions and relaxation time constants of the surface states at the SrTiO3 surface as well as of the interface states at the lanthanum manganite/SrTiO3 interfaces within the SrTiO3 bandgap. The interface states were classified into film- and substrate-induced states and it could be demonstrated that an appropriate annealing procedure can dramatically decrease their densities. The second part tackles the problem of the manganese valence and the doping type of di- and tetravalent-ion-doped LaMnO3. The question whether the insulating parent compound LaMnO3 becomes an electron-doped semiconductor after doping with tetravalent cations such as Ce4+ - which would be in analogy to the well-established hole doping after partial substitution of La3+ by divalent cations such as Sr2+ or Ca2+ - has been discussed controversially in the literature so far. Due to the physics of the manganite crystal lattice the question can also be formulated in a different way: Can part of the manganese ions be driven from the Mn3+ state towards the Mn2+ state without any crystal instabilities or phase separation phenomena? In order to contribute to the clarification of this question, an extensive X-ray- and UV-photoelectron spectroscopy (XPS/UPS) investigation was performed. The three differently doped lanthanum manganite thin films were comparatively studied considering the exchange splitting of the Mn 3s core level line, which is a linear function of the Mn valence, as measured by XPS and the work function as extracted from UPS. All measurements were performed at different states of deoxygenation after heating in ultrahigh vacuum and reoxidation after heating in a pure oxygen atmosphere. Strong evidence for electron doping of the La0.7Ce0.3MnO3 film after deoxygenation was found. Furthermore, the reversible tunability of the Mn valence by variation of the oxygen content could be demonstrated for both tetravalent- and divalent-ion-doped lanthanum manganite films. / Oxidische Komplexverbindungen können eine Vielzahl an funktionellen Eigenschaften, wie z.B. Ferroelastizität, Ferroelektrizität, Ferro- und Antiferromagnetismus sowie kompliziertere magnetische Ordnungen, die Kombination und Interaktion solcher ferroischer Eigenschaften (Multiferroizität), hohe Spinpolarisation oder Hochtemperatursupraleitung aufweisen und gelten daher als aussichtsreiche Materialien für die zukünftige Mikroelektronik. Entscheidend für die Funktionsfähigkeit oxidischer Bauelemente sind deren elektronische Transporteigenschaften, die in äußerst sensibler Weise von der Verteilung und Dichte von ex- oder intrinsischen elektronischen Defektzuständen an Grenz- und Oberflächen innerhalb der Bauelementstruktur abhängen. Die vorliegende Arbeit beschäftigt sich mit der Spektroskopie solcher elektronischer Eigenschaften mittels photonenbasierter Methoden. Im Fokus stehen dabei perowskitische Oxide , speziell das Modellperowskit Strontiumtitanat (SrTiO3) als Substrat und darauf mittels gepulster Laserdeposition (PLD) abgeschiedene dünne Filme (10-15 nm Dicke) dotierter Lanthanmanganate (La0.7Sr0.3MnO, La0.7Ca0.3MnO3, La0.7Ce0.3MnO3). Im Rahmen einer halbleiterphysikalischen Interpretation widmet sich der erste Teilder Identifikation elektronischer Ober- und Grenzflächenzustände an der SrTiO3-Oberfläche sowie an verschiedenen Lanthanmanganat/SrTiO3-Grenzflächen mittels dreier unterschiedlicher experimenteller Methoden zur Vermessung der Oberflächenphotospannung: der Photoelektronenspektroskopie unter zusätzlicher optischer Anregung, einer kapazitiven Detektionsmethode in Plattenkondensatorgeometrie unter modulierter optischer Anregung und der optischen Kelvin-Sonde. Neben einem auf die bei oxidischen Ober- und Grenzflächen auftretenden besonderen Herausforderungen zugeschnittenen Methodenvergleich werden Grenzflächenzustände bezüglich ihrer energetischen Position in der Bandlücke des SrTiO3 und ihres Relaxationsverhaltens analysiert, als substrat- oder filminduziert klassifiziert, und die Verringerung ihrer Dichte nach geeigneter Ausheilprozedur wird nachgewiesen. Der zweite Teil der Arbeit befasst sich mit der in der Literatur bisher kontrovers diskutierten Frage, ob sich die isolierende Stammverbindung LaMnO3 durch Dotierung mit tetravalenten Kationen, wie z.B. Ce4+, in einen elektronendotierten Halbleiter verwandeln lässt - analog zur Herstellung lochdotierter Lanthanmanganate durch Dotierung mit divalenten Kationen, wie z.B. Sr2+ oder Ca2+. Die Frage ist äquivalent zur Betrachtung, ob unter Beibehaltung der Stabilität des Kristallgitters ein Teil der Manganionen vom Mn3+-Zustand in den Mn2+-Zustand übergehen kann. Um einen Beitrag zur Klärung dieses Problems zu leisten, wurden als elektronisch sensitive Methoden die Röntgen- und UV-Photoelektronenspektroskopie (XPS/UPS) gewählt. Die oben genannten Lanthanmanganatfilme wurden dazu hinsichtlich der Austauschaufspaltung der Mangan-3s-Linie im XP-Spektrum, die in linearer Weise von der Manganvalenz abhängt, und der anhand der Breite des UP-Spektrums ermittelten Austrittsarbeit jeweils nach Reinigung der Oberfläche im Ultrahochvakuum (UHV) vergleichend untersucht. Die Messungen wurden nach unterschiedlich starker Desoxidation durch Heizen im UHV und Reoxidierung durch Heizen in Sauerstoffatmosphäre durchgeführt. Es konnte nachgewiesen werden, dass eine Elektronendotierung des La0.7Ce0.3MnO3-Films bei geeigneter Einstellung des Sauerstoffgehalts tatsächlich möglich ist. Außerdem wurde gezeigt, dass sich sowohl in di- als auch in tetravalent dotierten Lanthanmanganatfilmen die Manganvalenz und damit der Dotierungstyp reversibel durchstimmen lässt.
|
23 |
Existenzbereiche und physikalische Eigenschaften metallreicher Perowskite (SE3X)M (SE = Seltenerd-Metall; X = N, O; M = Al, Ga, In, Sn): Mit Ergänzungen zu den ternären Systemen EA-In-N (EA = Ca, Sr, Ba)Kirchner, Martin 11 April 2006 (has links)
Die Existenz metallreicher Perowskite der Zusammensetzung (SE3X)M (X = O, N; SE = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Er, Ho, Tm, Lu; M = Al, Ga, In, Sn) wurde untersucht. Die Charakterisierung der Proben erfolgte mit Röntgenpulverdiffraktometrie und Elementaranalysen (O und N). Oxide (SE3O)Al mit SE = La, Ce, Pr, Nd und Sm und (SE3O)In mit SE = Ce, Pr und Nd wurden erhalten. Die Reihe der Verbindungen (SE3N)Al (SE = La, Ce, Pr, Nd, Sm) wurde um die Seltenerd-Metalle SE = Gd, Tb, Dy, Ho, Er und Tm erweitert. Die metallreichen Perowskite (SE3N)Sn (SE = La, Ce, Pr, Sm) und (SE3N)Ga (SE = Ce, Pr, Sm, Gd, Tb) wurden erstmals beschrieben. Die thermische Stabilität (DSC) der Phasen (SE3X)M ist für die Nitride allgemein am höchsten. Nitride von Al und Ga zersetzen zwischen 1000 °C und 1200 °C, Stannide bleiben bis 1250 °C thermisch stabil. Messungen der magnetischen Suszeptibilität und der LIII-Absorbtionskanten sind in Einklang mit einer Elektronenkonfiguration SE3+. Die gemessenen elektrischen Widerstände sind charakteristisch für schlechte metallische Leiter. Verschiedene Gehaltschnitte SE3Al-(SE3X)Al und SE3In-(SE3X)In wurden mit Röntgenpulverdiffraktometrie und DTA untersucht. Die Oxide und Nitride (SE3X1-y)M (SE = La, Ce; X = N, O) weisen nur geringe Phasenbreiten auf. Die Carbide (Ce3C1-y)In zeigen hingegen signifikante Phasenbreiten. In den Systemen EA-In-N wurden röntgenografisch phasenreine Pulver von (Ca4N)[In]2 und (EA19N7)[In4]2 (EA = Ca, Sr) erhalten. Durch Elementaranalysen auf H, C, N, O, EA und In und Neutronenbeugung am Pulver können alternative Zusammensetzungen mit einer ausgeglichenen Ladungsbilanz im Sinne des Zintl-Konzepts für diese Phasen ausgeschlossen werden. Im System La-Al wurde die neue Phase La16Al13 beobachtet und an Einkristallen sowie an Pulvern charakterisiert. Das in der Literatur im Cu3Au-Strukturtyp beschrieben kubische Polymorph von Ce3Al wurde auf einen ternären metallreichen Perowskit (Ce3X)Al zurückgeführt.
|
24 |
Investigating the Ionic Landscape of Perovskite Photovoltaics via Argon Gas Cluster Depth ProfilingKreß, Joshua 30 May 2022 (has links)
Perovskite-based photovoltaic is one of the most promising classes of emerging solar cell technologies. This material class combines several advantageous properties, including low exciton binding energy, high charge carrier diffusion length and high optical absorption. Despite these excellent attributes, some challenges remain in perovskite research. Most notably the device stabilities and lifetimes need to be significantly improved in order to push this technology towards commercialization.
Defect physics in perovskite photovoltaics has been shown to be a main factor in understanding long-term device instabilities. However, the number of measurement techniques that can track changes in the ionic landscape during device degradation is very limited, as the perovskite layer is buried under charge extraction layers and metallic contacts. In this thesis argon gas-cluster ion beam etching is combined with x-ray and ultraviolet photoelectron spectroscopy to achieve high resolution energetic and compositional depth profiles. In contrast to most layer-to-layer techniques this method can be applied after any operation time of the photovoltaic and therefore nicely investigate potential changes in the defect landscape.
In the first part of this thesis, the impact of argon gas-cluster etching on the perovskite structure is investigated in order to identify potential damage that prevents this technique from being viable for perovskite materials. It is found that metallic lead is gradually created and a small preferential etching effect of the organic cations takes place during the depth profiling, but it is demonstrated that the major part of the crystal structure stays intact and that the energetics of the sample remains very stable. Moreover, it is demonstrated that fitting of the obtained ultraviolet photoelectron spectroscopy spectra leads to high resolution energetic and compositional depth profiles, which are suitable to identify potential loss mechanisms in full photovoltaic devices.
In the second part, we investigate the increase in device performance of a perovskite photovoltaic during the first subsequent measurements under full illumination, which is a common example of a short-term instability. Ultraviolet photoelectron spectroscopy depth profiles reveal a strong band bending effect appearing after biasing the device which consequently leads to an increase in device open-circuit voltage. Density functional theory simulations link this band bending effect to the accumulation of iodine interstitials at the interface between the perovskite and the electron transport layer.
In the final part, long-term degradation of perovskite photovoltaics is studied by investigating the impact of ionic additives on the perovskite active layer, which increases the lifetime of these devices significantly. It is found that most properties of the perovskite layer remain unaffected by the ionic additive, e.g. microstructure, energetic disorder and photoluminescence. Photoelectron spectroscopy depth profiling revealed an accumulation of iodine at the interface towards the electron transport layer, which is significantly reduced in additive-containing samples. Deep-level transient spectroscopy revealed a new mobile defect species in the ionic additive samples and at the same time a reduction of iodine diffusivity.
|
25 |
Photon-assisted spectroscopy of electronic interface states in perovskite oxide heterostructuresBeyreuther, Elke 10 December 2007 (has links)
Complex oxides are an intriguing field of solid-state research, as they can exhibit a wide variety of functional properties, such as ferroelasticity, ferroelectricity, ferro- and antiferromagnetism or an even more complicated type of magnetic ordering, the combination or interaction of those ferroic properties (multiferroicity), high spin polarization, or high-temperature superconductivity. Thus they are prospective candidates for future materials in microelectronics. It is a matter of fact that the performance of such oxide-based devices depends mainly on transport properties, which in turn depend on the distribution and density of intrinsic or extrinsic electronic interface states across the device structure. The present thesis focuses on the identification and characterization of such electronic properties by two different photoassisted spectroscopy techniques: surface photovoltage spectroscopy and photoelectron spectroscopy. This work especially deals with perovskite oxides, namely with the model perovskite strontium titanate (SrTiO3) as a substrate and three differently doped lanthanum manganite thin films (10-15 nm thickness) grown by pulsed laser deposition (PLD) on the SrTiO3 substrate(La0.7Sr0.3MnO3, La0.7Ca0.3MnO3, La0.7Ce0.3MnO3). The first part aims at the identification of electronic surface and interface states at the free SrTiO3 surface as well as at the three different lanthanum manganite/SrTiO3 interfaces. For that purpose three different experimental realizations of the surface photovoltage spectroscopy technique were implemented and employed: photoelectron spectroscopy under additional optical excitation, the capacitive detection of the photoinduced displacement current in a parallel-plate capacitor geometry under modulated optical excitation, and the classical Kelvin probe technique. The methods are evaluated comparatively with respect to their suitability to analyze the given oxidic interfaces. The main result of this first part is a map of the energetic positions and relaxation time constants of the surface states at the SrTiO3 surface as well as of the interface states at the lanthanum manganite/SrTiO3 interfaces within the SrTiO3 bandgap. The interface states were classified into film- and substrate-induced states and it could be demonstrated that an appropriate annealing procedure can dramatically decrease their densities. The second part tackles the problem of the manganese valence and the doping type of di- and tetravalent-ion-doped LaMnO3. The question whether the insulating parent compound LaMnO3 becomes an electron-doped semiconductor after doping with tetravalent cations such as Ce4+ - which would be in analogy to the well-established hole doping after partial substitution of La3+ by divalent cations such as Sr2+ or Ca2+ - has been discussed controversially in the literature so far. Due to the physics of the manganite crystal lattice the question can also be formulated in a different way: Can part of the manganese ions be driven from the Mn3+ state towards the Mn2+ state without any crystal instabilities or phase separation phenomena? In order to contribute to the clarification of this question, an extensive X-ray- and UV-photoelectron spectroscopy (XPS/UPS) investigation was performed. The three differently doped lanthanum manganite thin films were comparatively studied considering the exchange splitting of the Mn 3s core level line, which is a linear function of the Mn valence, as measured by XPS and the work function as extracted from UPS. All measurements were performed at different states of deoxygenation after heating in ultrahigh vacuum and reoxidation after heating in a pure oxygen atmosphere. Strong evidence for electron doping of the La0.7Ce0.3MnO3 film after deoxygenation was found. Furthermore, the reversible tunability of the Mn valence by variation of the oxygen content could be demonstrated for both tetravalent- and divalent-ion-doped lanthanum manganite films. / Oxidische Komplexverbindungen können eine Vielzahl an funktionellen Eigenschaften, wie z.B. Ferroelastizität, Ferroelektrizität, Ferro- und Antiferromagnetismus sowie kompliziertere magnetische Ordnungen, die Kombination und Interaktion solcher ferroischer Eigenschaften (Multiferroizität), hohe Spinpolarisation oder Hochtemperatursupraleitung aufweisen und gelten daher als aussichtsreiche Materialien für die zukünftige Mikroelektronik. Entscheidend für die Funktionsfähigkeit oxidischer Bauelemente sind deren elektronische Transporteigenschaften, die in äußerst sensibler Weise von der Verteilung und Dichte von ex- oder intrinsischen elektronischen Defektzuständen an Grenz- und Oberflächen innerhalb der Bauelementstruktur abhängen. Die vorliegende Arbeit beschäftigt sich mit der Spektroskopie solcher elektronischer Eigenschaften mittels photonenbasierter Methoden. Im Fokus stehen dabei perowskitische Oxide , speziell das Modellperowskit Strontiumtitanat (SrTiO3) als Substrat und darauf mittels gepulster Laserdeposition (PLD) abgeschiedene dünne Filme (10-15 nm Dicke) dotierter Lanthanmanganate (La0.7Sr0.3MnO, La0.7Ca0.3MnO3, La0.7Ce0.3MnO3). Im Rahmen einer halbleiterphysikalischen Interpretation widmet sich der erste Teilder Identifikation elektronischer Ober- und Grenzflächenzustände an der SrTiO3-Oberfläche sowie an verschiedenen Lanthanmanganat/SrTiO3-Grenzflächen mittels dreier unterschiedlicher experimenteller Methoden zur Vermessung der Oberflächenphotospannung: der Photoelektronenspektroskopie unter zusätzlicher optischer Anregung, einer kapazitiven Detektionsmethode in Plattenkondensatorgeometrie unter modulierter optischer Anregung und der optischen Kelvin-Sonde. Neben einem auf die bei oxidischen Ober- und Grenzflächen auftretenden besonderen Herausforderungen zugeschnittenen Methodenvergleich werden Grenzflächenzustände bezüglich ihrer energetischen Position in der Bandlücke des SrTiO3 und ihres Relaxationsverhaltens analysiert, als substrat- oder filminduziert klassifiziert, und die Verringerung ihrer Dichte nach geeigneter Ausheilprozedur wird nachgewiesen. Der zweite Teil der Arbeit befasst sich mit der in der Literatur bisher kontrovers diskutierten Frage, ob sich die isolierende Stammverbindung LaMnO3 durch Dotierung mit tetravalenten Kationen, wie z.B. Ce4+, in einen elektronendotierten Halbleiter verwandeln lässt - analog zur Herstellung lochdotierter Lanthanmanganate durch Dotierung mit divalenten Kationen, wie z.B. Sr2+ oder Ca2+. Die Frage ist äquivalent zur Betrachtung, ob unter Beibehaltung der Stabilität des Kristallgitters ein Teil der Manganionen vom Mn3+-Zustand in den Mn2+-Zustand übergehen kann. Um einen Beitrag zur Klärung dieses Problems zu leisten, wurden als elektronisch sensitive Methoden die Röntgen- und UV-Photoelektronenspektroskopie (XPS/UPS) gewählt. Die oben genannten Lanthanmanganatfilme wurden dazu hinsichtlich der Austauschaufspaltung der Mangan-3s-Linie im XP-Spektrum, die in linearer Weise von der Manganvalenz abhängt, und der anhand der Breite des UP-Spektrums ermittelten Austrittsarbeit jeweils nach Reinigung der Oberfläche im Ultrahochvakuum (UHV) vergleichend untersucht. Die Messungen wurden nach unterschiedlich starker Desoxidation durch Heizen im UHV und Reoxidierung durch Heizen in Sauerstoffatmosphäre durchgeführt. Es konnte nachgewiesen werden, dass eine Elektronendotierung des La0.7Ce0.3MnO3-Films bei geeigneter Einstellung des Sauerstoffgehalts tatsächlich möglich ist. Außerdem wurde gezeigt, dass sich sowohl in di- als auch in tetravalent dotierten Lanthanmanganatfilmen die Manganvalenz und damit der Dotierungstyp reversibel durchstimmen lässt.
|
26 |
Synthese, Charakterisierung und elektrochemische Eigenschaften nanostrukturierter, perowskitischer ElektrodenmaterialienFranke, Daniela 30 November 2012 (has links)
La0.6Ca0.4Mn0.8Ni0.2O3-, La0.6Ca0.4Mn0.8Fe0.2O3- und La0.75Ca0.25Mn0.5Fe0.5O3-Volumenmaterialien wurden im potentiometrischen Messaufbau bereits erfolgreich auf ihre NO-Sensitivität getestet. Keramischen Nanomaterialien werden generell eine Reihe neuer oder verbesserter Eigenschaften (verbessertes Sinterverhalten, erhöhte NOx-Sensitivität, höhere Leitfähigkeit) zugesprochen.
La0.6Ca0.4Mn0.8Ni0.2O3, La0.6Ca0.4Mn0.8Fe0.2O3 und La0.75Ca0.25Mn0.5Fe0.5O3 wurden mittels PVA/Sucrose-Methode, Aktivkohlemethode und Fällungssynthese als Nanomaterialien sowie mit Festkörperreaktion als Volumenmaterialien dargestellt und mit typischen Charakterisierungsmethoden untersucht.
Die Materialien wurden in verschiedenen Schichtdicken auf YSZ-Substrate aufgetragen und potentiometrisch sowie impedanzspektroskopisch auf ihre NO-Sensitivität und die Querempfindlichkeit gegenüber NO2 und Propylen geprüft. Potentiometrische Messungen im NO-Gasstrom ergeben eine Abhängigkeit der NO-Sensitivität von der Partikelgröße, der Schichtdicke und der Beschichtungsmethode. Impedanzspektroskopische Messungen an beidseitig beschichteten YSZ-Substraten zeigen ebenfalls eine Abhängigkeit des Zellwiderstands von der NO-Konzentration und der Partikelgröße.
Die Nanomaterialien zeigen bei unterschiedlichen Sauerstoffpartialdrücken im untersuchten Temperaturbereich (300°C bis 850°C) höhere Leitfähigkeiten als die Volumenmaterialien gleicher Zusammensetzung. Dieses Verhalten wird mit dem höheren Sauerstoffaustausch der Nanomaterialien in Verbindung gebracht, der zur Erzeugung zusätzlicher Defekte in der Kristallstruktur führt. Die Nanostruktur und somit eine entsprechend hohe Leitfähigkeit bleiben bei hohen Sintertemperaturen (T > 1000°C), die der Herstellung gasdichter Presslinge dienen, erhalten.
XANES- und Photoelektronenspektroskopie wurden verwendet, um die Punktdefekte zu definieren.
|
27 |
Metal Halide Perovskites: Photophysics and Inkjet Printing of Solar CellsNandayapa Bermudez, Edgar Ricardo 10 August 2021 (has links)
Metallhalogenid-Perowskite (MHPs) sind Halbleiter, die einzigartige photophysikalische Eigenschaften aufweisen, die sie ideal für photovoltaische Anwendungen machen. Techniken werden kontinuierlich entwickelt, um die Leistungsgrenzen der Perowskite weiter zu verschieben. Dennoch weisen diese Materialien verschiedene Herausforderungen auf. Zu diesen gehören eine geringe Stabilität unter einer Vielzahl von äußeren Bedingungen, sowie eine große Diskrepanz zwischen den Wirkungsgraden von Geräten im Labormaßstab und großflächigen Geräten.
Zunächst wurden mit Hilfe von Photolumineszenz-Spektroskopie Ladungsübertragungsmechanismen zwischen MHPs und atmosphärischen Gasen untersucht, um deren Einfluss auf die Materialstabilität zu bestimmen. Durch den Vergleich der Emission von verschiedene MHP wurde die Wirkung untersucht, die atmosphärische Gase auf Grenzdefekte im Material haben. Diese Löschungseffekte wurden nachfolgend mit dem Stern-Volmer-Modell analysiert. Es stellte sich heraus, dass ein Teil von der Gase bindet jedoch an die MHPs, wobei teilweise Kristalldefekte passiviert werden und für jedes der Gase Ladungstransfermechanismen vorgeschlagen wurden.
Zweitens wurde die Skalierung von MHP-Bauelementen mittels Tintenstrahldruck untersucht. Dazu wurden drei Kristallisationstechniken ausgewertet. Eine davon verwendete eine sequenzielle Abscheidung von zwei Präkursortinten, während die beiden anderen kristallisierte Tinten verwendeten, die in einem Schritt abgeschieden wurden. Die letztgenannten Techniken verwendeten beide niedrige Drücke und bei einer wurde ein kontrollierter Stickstoffstrom auf die Probe angewendet. Solarzellen mit einer Effizienz von 16,8% auf einer Fläche von 0,16 cm² wurden demonstriert.
Diese Ergebnisse zeigen ein neuartiges Verfahren zur Untersuchung von strahlungslosen Verlustwegen in MHPs auf. Zusätzlich demonstrieren diese Studien, dass der Tintenstrahldruck eine geeignete Technologie ist, um MHP-Bauelemente zu skalieren. / Metal halide perovskites (MHPs) are semiconductor materials that show unique photophysical properties, making them ideal for photovoltaic applications. Having shown power conversion efficiencies of up to 25.5%, techniques are continuously being developed to push perovskites to unprecedent limits. Yet, these materials present challenges like a low stability under a variety of conditions as well as a large disparity between the efficiencies of lab scale and large area devices. This thesis addresses these two major obstacles.
First, charge transfer mechanisms between MHPs and atmospheric gases were studied to determine their effect on the material stability by using photoluminescence spectroscopy. By comparing the emission of MHPs, the effect that molecular oxygen, nitrogen, argon, and water have on boundary defects in the material was studied. These quenching effects were later analyzed using the Stern-Volmer model. It was found that the gases bounce off the surface, but a portion of them bind to the MHPs, in occasions passivating defects on the crystals. Using these results, charge transfer mechanisms were proposed for each one of the gases.
Second, scaling of MHP devices was examined using inkjet printing. For this, three crystallization techniques were evaluated. One of them used sequential deposition of two precursor inks, while the other two crystallized ink that was deposited in one step. Both latter techniques used low pressures, below 1 mbar, and only one of them applied a controlled stream of nitrogen to the sample. Using these techniques, the deposition of a 15x15 cm² area as well as a device with an efficiency of 16.8% on an area of 0.16 cm² were demonstrated.
These results show a novel procedure to study non-radiative loss paths in MHPs to enhance their stability and performance as devices. Also, they show that inkjet printing is a favorable technology to scale MHP devices and eventually facilitate the mass production of this type of photovoltaic devices.
|
28 |
Electronic structure of heterojunction interfaces investigated by photoelectron spectroscopyWang, Rongbin 06 March 2020 (has links)
Heteroübergänge, die aus (in)organischen/(in)organischen Materialien bestehen, spielen eine entscheidende Rolle für die Leistung optoelektronischer Bauteile. Der Schwerpunkt dieser Arbeit liegt hauptsächlich auf der elektronischen Struktur dieser Heteroübergänge, insbesondere der Ausrichtung der Energieniveaus (ELA) an verschiedenen Heteroübergangsschnittstellen, die mit Photoelektronenspektroskopie gemessen wird. Zusätzlich wird die Geräteleistungen mit den PES-Ergebnissen verglichen, um weitere Verbesserung zu ermöglichen. MoOx/n-Si und PEDOT:PSS/n-Si Heteroverbindungen sind aktive Schichten von Solarzellen und mit PES kann direkt, die Groessen der Bandverbiegung auf der n-Si-Seite gemessen werden. Obwohl die Bandverbiegung für einen MoOx/n-Si-Heteroübergang (0,80 eV) größer ist als die von PEDOT:PSS/n-Si (0,71 eV), weisen die entsprechenden Solarzellen (MoOx/n-Si) aufgrund der mangelhaften Passivierung von n-Si und der geringeren Dünnschichtleitfähigkeit von MoOx einen schlechteren Wirkungsgrad (auf. Die Untersuchung der elektronischen Struktur Duenner Schichten aus Perowskit (CH3NH3PbI3) oder Vanadiumdioxid zeigt, dass die Austrittsarbeit durch die Oberflächenkomponenten dramatisch beeinflusst werden kann, wodurch die ELA mit dem prototypischen organischen Lochtransportmaterial N,N′-di(1-naphthyl)-N,N′-diphenylbenzidin (NPB) variiert wird. Bei den CH3NH3PbI3-Dünnschichten, die mit verschiedenen Methoden hergestellt werden, korreliert das Verhältnis der beiden Kohlenstoffarten auf der Oberfläche mit der Variation der Austrittsarbeit. Wie bei der VO2-Oberfläche kann die Austrittsarbeit durch Ändern des Verhältnisses von Sauerstoff und Vanadium auf der Oberfläche von 4,4 eV auf 6,7 eV abgestimmt werden. Belege für eine starke Ferminiveau-Pinning und die damit verbundene Energieniveaubiegung in NPB finden sich für stöchiometrisches VO2 (WF=6,7 eV), wodurch ein ohmscher Kontakt für Löcher entsteht, der als Lochinjektionskontakt in Bauteilen verwendet werden kann. / Heterojunctions, comprised by (in)organic/(in)organic materials, play a crucial role in determining the performance of optoelectronic devices. The focus of this work is mainly on the electronic structure of heterojunctions present in the optoelectronic devices, in particular the energy level alignment (ELA) at different heterojunction interfaces, by employing photoelectron spectroscopy (PES). Furthermore, interface energetics are correlated with the device performances in order to guide the future improvement. MoOx/n-Si and PEDOT:PSS/n-Si heterojunctions are active layers in solar cells and PES measurements give direct band bending magnitudes generated at the n-Si. Even though the band bending magnitude of the MoOx/n-Si heterojunction (0.80 eV) is larger than that of the PEDOT:PSS/n-Si (0.71 eV), the corresponding solar cells (MoOx/n-Si) show inferior power conversion efficiency (PCE), due to the deficient passivation of n-Si and lower thin film conductivity of MoOx. The investigations of electronic structure of perovskite (CH3NH3PbI3) and vanadium dioxide (VO2) thin films show that the work function can be dramatically affected by the surface components, which subsequently varies the ELA with the deposited prototypical organic hole transport material N,N′-di(1-naphthyl)-N,N′-diphenylbenzidine (NPB). As for the CH3NH3PbI3 thin films fabricated by different methods, the ratio of the two C 1s species (CH3NH3+ and CH3+) on the surface correlates with variation of the work function. As for the VO2 thin film, the work function can be tuned from 4.4 eV to 6.7 eV by changing the ratio of oxygen and vanadium on the surface. Evidence for strong Fermi-level pinning and the associated energy-level bending in NPB is found for the clean and stoichiometric VO2 (WF=6.7 eV), rendering an Ohmic contact for holes, which can be utilized as a hole injection contact into the devices.
|
29 |
Ionic Defects in Metal Halide Perovskite Solar CellsReichert, Sebastian 21 May 2021 (has links)
Solarzellen aus organisch-anorganischen hybriden Perowskithalbleitern gelten als mögliche Schlüsseltechnologie zur Erzeugung günstiger und umweltfreundlicher elektrischer Energie und somit als Meilenstein für die Energiewende. Um die weltweit stetig wachsende Nachfrage an elektrischer Energie zu decken, bedarf es Solarzellentechnologien, welche gleichzeitig eine hohe Effizienz nahe dem Shockley-Queisser-Limit als auch eine hinreichend gute Stabilität aufweisen. Während die Effizienz von Solarzellen auf Basis von Perowskithalbleitern in dem letzten Jahrzehnt eine bemerkenswerte Entwicklung erfahren hat, lassen sich die wesentlichen physikalischen Mechanismen dieser Technologie noch nicht vollständig erklären. Die elektronisch-ionische Mischleitfähigkeit ist eine dieser Eigenschaften, welche die Effizienz und besonders die Stabilität der Perowskit-Solarzelle beeinflusst. Zentrales Thema dieser Arbeit ist daher die Untersuchung von mobilen ionischen Defekten und deren Einfluss auf Solarzellenparametern. Es wird gezeigt, dass die Migrationsraten ionischer Defekte in Perowskit breiten Verteilungen unterliegen. Durch die Anwendung eines neu entwickelten Regularisationsalgorithmus für inverse Laplace-Transformationen und verschiedener Messmoden für transiente Störstellenspektroskopie kann somit geklärt werden, warum sich berichtete ionische Defektparameter aus der Literatur für gleiche Defekte stark unterscheiden können. Dieses grundlegende Verständnis kann angewendet werden, um den Einfluss von kleinen stöchiometrischen Variationen auf die Defektlandschaft zu untersuchen und das Zusammenspiel zwischen elektronischen und ionischen Eigenschaften besser zu verstehen. Der Einsatz der Meyer-Neldel Regel ermöglicht ferner eine Kategorisierung ionischer Defekte in Perowskithalbleitern. Im letzten Teil dieser Arbeit wird gezeigt, dass elektrische und optische Methoden wie intensitätsmodulierte Spektroskopie geeignet sind, um Informationen über mobile Ionen in hybriden Perowskiten zu erhalten. Zusätzlich wird das elektronische Rekombinationsverhalten näher untersucht. / Solar cells made of organic–inorganic hybrid perovskite semiconductors are considered as a possible key technology for the conversion of cheap and environmentally
friendly electrical energy and thus as a milestone for the turnaround in energy policy. In order to meet the steadily growing global demand for electrical energy, solar cell tech-
nologies are required that are both highly efficient, i.e. close to the Shockley–Queisser limit, and sufficiently stable. While the efficiency of solar cells based on perovskite semi-
conductors has undergone a remarkable development in the last decade, the essential physical mechanisms of this technology cannot yet be fully explained. The electronic-
ionic mixed conductivity is one of these properties, which influences the efficiency and especially the stability of the perovskite solar cell. The central topic of this thesis
is therefore the investigation of mobile ionic defects and their influence on solar cell parameters. It is shown that the migration rates of ionic defects in perovskites are
attributed to wide distributions. By application of a newly developed regularisation algorithm for inverse Laplace transform and different measurement modes for deep-level
transient spectroscopy, it can thus be clarified why reported ionic defect parameters from the literature for the same defects can differ significantly. This basic understanding can
be used to study the influence of small stoichiometric variations on the defect landscape and to better understand the interaction between electronic and ionic properties. Us-
ing the Meyer–Neldel rule also allows the characterisation of ionic defects in perovskite semiconductors. The last part of this thesis shows that electrical and optical methods
such as intensity-modulated spectroscopy are suitable for obtaining information about mobile ions in hybrid perovskites. In addition, the electronic recombination behaviour
is examined more closely.
|
30 |
Präparation und Charakterisierung ferroelektrischer perowskitischer Multilagen. / Preparation and electrical characterisation of multilayers of ferroelectric Perovskites.Köbernik, Gert 30 May 2004 (has links) (PDF)
This work deals with the structural and dielectric properties of Bariumtitanate (BTO) / Strontiumtitanate (STO) superlattices. The investigations were carried during the research for a doctoral thesis on the IFW Dresden, Institute for Metallic Materials (under supervision of Prof. Schulz). These multilayers have been prepared on single crystalline STO of (100) and (111) orientated substrates. All films where grown in an epitaxial mode. Additional superlattices and Bariumstrontiumtitanate (BSTO) thin films on silicon substrates with platinum bottom electrodes have been prepared. Thereby, (111) fibre-textured polycrystalline superlattices were produced. According to our knowledge this result was achieved for the first time (is unique in the world at the moment). According to high resolution TEM investigations of (001) oriented superlattices multilayers with atomically thin interfaces without noticeable interdiffusion have been prepared. XRD pattern of a multilayer consisting of BTO and STO monolayers that have only a thickness adequate one unit cell of BTO respective STO confirm this assumption. Multilayers on (111) oriented STO substrates show a much higher interface roughness than (001) orientated films. Regarding to the examinations in this thesis it is suggested that the roughness is correlated with the reduction of internal stresses by deformation of the stack and not with interdiffusion between the monolayers. For electrical measurements the film thickness has been varied from 30 nm to 300 nm and the periodicity in the range from 0.8 nm to 20 nm. Additionally, BSTO films of equivalent thickness and integral chemical composition were produced. Dielectical measurements were carried out in the temperature range from 20 K to 600 K and hysteresis measurements were done. It has to be pointed out, that multilayers have always lower dielectrical performances then BSTO films. In all cases the dielectric constant (DC) decreases with decreasing film thickness. Multilayers of a small periodicity show the highest DC?s, decreasing with increasing monolayer thickness in all cases. The maximum of DC shifted with decreasing film thickness to higher temperatures thus correlating with an increase of the out of plane lattice parameter. In this paper the mismatch between the stack respectivly the BSTO layers and the substrate has widely been discussed. In the case of BSTO the dielectric data can be qualitatively explained with the theory of strained films, developed mainly by Pertsev, under the assumption of a strain gradient in the thin film. Strain effects do also play an important role in ferroelectric multilayers as well as size and coupling effects between the monolayers. An adequate theory for the description of the dielectric behaviour of the ferroelectric superlattice produced during this research does yet not exist. Some thesis where pointed out, which effects have to be essentially included in to a consistent theory of ferroelectric multilayer. Some practical tips are also given, how to prepare monolayers and superlattices with very high DC and exellent hysteretic behaviour. / Es wurden (001) und (111) orientierte symmetrische BTO/STO-Multilagen auf niobdotierten STO-Einkristallen abgeschieden. Hierbei wurde sowohl die Gesamtschichtdicke, als auch deren Periodizität variiert. Zum Vergleich wurden weiterhin Ba0.5Sr0.5TiO3-Mischschichten unterschiedlicher Dicke präpariert. Aus den HRTEM und XRD Untersuchungen kann geschlossen werden, dass alle erhaltenen Schichten sowohl phasenrein als auch perfekt biaxial texturiert sind. Im Falle der (001) orientierten Multilagen konnten atomar scharfe Grenzflächen zwischen Einzellagen erhalten werden, wobei sich die Einzellagendicke bis auf eine Monolage (0.4 nm) reduzieren lässt. Aus der Schichtdickenabhängigkeit von d(001), dem mittleren out-of-plane Gitterparameter der Schicht, wird geschlossen, dass die Schichten auf den STO-Einkristallen Spannungsgradienten in den Schicht-normalen besitzen und an der Grenzfläche zum Substrat am stärksten verspannt sind. Die (111) orientierten Multilagen auf den STO-Einkristallen zeigen gegenüber den Schichten auf den (100) orientierten STO-Einkristallen eine deutlich erhöhte Interfacerauhigkeit. Vermutet wird, dass dies einerseits durch die andere kristallographische Orientierung der Wachstumsnormalen bedingt ist, weil damit jeweils keine geschlossenen SrO- bzw. BaO- und TiO3-Lagen ausgebildet werden. Andererseits zeigen die TEM-Aufnahmen eine deutliche Zunahme der Welligkeit der Einzellagen mit wachsendem Abstand vom Substrat, die rein mechanischen Effekten zugeschrieben wird. Die Verwölbung der Einzellagen könnte damit der Reduzierung der mechanischen Energie innerhalb des Systems dienen, wobei die Netzebenen dem Verlauf der Einzellagen folgen. Auf platinbeschichteten Siliziumsubstraten konnten erstmals phasenreine (111) fasertexturierte Mischschichten und BTO/STO-Multilagen abgeschieden werden. Grundlage hierfür war die Optimierung des Pt/Ti/SiO2/Si Schichtsystems hinsichtlich seiner thermischen Stabilität bis zu 800°C. Die Textur der Schichten wird von der Platingrundelektrode übernommen und deren Rauhigkeit teilweise verstärkt. Eine mechanische Verwölbung der Einzellagen konnte hier nicht beobachtet werden. Für die elektrischen Messungen wurden auf allen Schichten etwa 50 nm dicke Platinelektroden durch eine Hartmaske mittels Elektronenstrahlverdampfung im Hochvakuum bei etwa 300°C aufgebracht. Anschließend wurden die Schichten an Luft getempert, um das Sauerstoffdefizit, dass sich bei der Elektrodenabscheidung einstellt, auszugleichen. Die elektrischen Messungen zeichnen sich durch den sehr großen untersuchten Temperaturbereich aus. Temperaturabhängige Messungen im Bereich von 30-600 K finden sich für ferroelektrische Dünnschichten sehr selten in der Literatur und stellen für BTO/STO-Multilagen ein Novum dar. Auch die biasabhängige und teilweise auch temperaturabhängige Messung der Kapazität der Multilagen (C-V-Messungen) ist bisher einmalig. Durch die temperaturabhängigen Hysteresemessungen wurden Einblicke in den elektrischen Polungszustand der Schichten erhalten. Dadurch wird eine sinnvolle Interpretation der ε(T)-Kurven erst möglich. Der Vorteil der Integration des Polarisationsstromes unter Verwendung einer Dreieckspannung als Messsignal besteht in der direkten physikalischen Aussage der Strom-Spannungskurven über die Schaltspannung der Schichten.
|
Page generated in 0.0542 seconds