• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 413
  • 58
  • 47
  • 19
  • 13
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 7
  • 7
  • 4
  • 3
  • Tagged with
  • 693
  • 132
  • 97
  • 95
  • 76
  • 70
  • 63
  • 60
  • 56
  • 54
  • 48
  • 43
  • 38
  • 38
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
691

Modelling of input data uncertainty based on random set theory for evaluation of the financial feasibility for hydropower projects

Beisler, Matthias Werner 25 May 2011 (has links)
The design of hydropower projects requires a comprehensive planning process in order to achieve the objective to maximise exploitation of the existing hydropower potential as well as future revenues of the plant. For this purpose and to satisfy approval requirements for a complex hydropower development, it is imperative at planning stage, that the conceptual development contemplates a wide range of influencing design factors and ensures appropriate consideration of all related aspects. Since the majority of technical and economical parameters that are required for detailed and final design cannot be precisely determined at early planning stages, crucial design parameters such as design discharge and hydraulic head have to be examined through an extensive optimisation process. One disadvantage inherent to commonly used deterministic analysis is the lack of objectivity for the selection of input parameters. Moreover, it cannot be ensured that the entire existing parameter ranges and all possible parameter combinations are covered. Probabilistic methods utilise discrete probability distributions or parameter input ranges to cover the entire range of uncertainties resulting from an information deficit during the planning phase and integrate them into the optimisation by means of an alternative calculation method. The investigated method assists with the mathematical assessment and integration of uncertainties into the rational economic appraisal of complex infrastructure projects. The assessment includes an exemplary verification to what extent the Random Set Theory can be utilised for the determination of input parameters that are relevant for the optimisation of hydropower projects and evaluates possible improvements with respect to accuracy and suitability of the calculated results. / Die Auslegung von Wasserkraftanlagen stellt einen komplexen Planungsablauf dar, mit dem Ziel das vorhandene Wasserkraftpotential möglichst vollständig zu nutzen und künftige, wirtschaftliche Erträge der Kraftanlage zu maximieren. Um dies zu erreichen und gleichzeitig die Genehmigungsfähigkeit eines komplexen Wasserkraftprojektes zu gewährleisten, besteht hierbei die zwingende Notwendigkeit eine Vielzahl für die Konzepterstellung relevanter Einflussfaktoren zu erfassen und in der Projektplanungsphase hinreichend zu berücksichtigen. In frühen Planungsstadien kann ein Großteil der für die Detailplanung entscheidenden, technischen und wirtschaftlichen Parameter meist nicht exakt bestimmt werden, wodurch maßgebende Designparameter der Wasserkraftanlage, wie Durchfluss und Fallhöhe, einen umfangreichen Optimierungsprozess durchlaufen müssen. Ein Nachteil gebräuchlicher, deterministischer Berechnungsansätze besteht in der zumeist unzureichenden Objektivität bei der Bestimmung der Eingangsparameter, sowie der Tatsache, dass die Erfassung der Parameter in ihrer gesamten Streubreite und sämtlichen, maßgeblichen Parameterkombinationen nicht sichergestellt werden kann. Probabilistische Verfahren verwenden Eingangsparameter in ihrer statistischen Verteilung bzw. in Form von Bandbreiten, mit dem Ziel, Unsicherheiten, die sich aus dem in der Planungsphase unausweichlichen Informationsdefizit ergeben, durch Anwendung einer alternativen Berechnungsmethode mathematisch zu erfassen und in die Berechnung einzubeziehen. Die untersuchte Vorgehensweise trägt dazu bei, aus einem Informationsdefizit resultierende Unschärfen bei der wirtschaftlichen Beurteilung komplexer Infrastrukturprojekte objektiv bzw. mathematisch zu erfassen und in den Planungsprozess einzubeziehen. Es erfolgt eine Beurteilung und beispielhafte Überprüfung, inwiefern die Random Set Methode bei Bestimmung der für den Optimierungsprozess von Wasserkraftanlagen relevanten Eingangsgrößen Anwendung finden kann und in wieweit sich hieraus Verbesserungen hinsichtlich Genauigkeit und Aussagekraft der Berechnungsergebnisse ergeben.
692

Regime fatigue : a cognitive-psychological model for identifying a socialized negativity effect in U.S. Senatorial and Gubernatorial elections from 1960-2008

Giles, Clark Andrew 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This research project proposes to try to isolate and measure the influence of “regime fatigue” on gubernatorial elections and senatorial elections in the United States where there is no incumbent running. The research begins with a review of the negativity effect and its potential influence on schema-based impression forming by voters. Applicable literature on the topics of social clustering and homophily is then highlighted as it provides the vehicle through which the negativity effect disseminates across collections of socially-clustered individuals and ultimately contributes to changing tides of public opinion despite the fact that the political party identification can remain relatively fixed in the aggregate.
693

Revision of an artificial neural network enabling industrial sorting

Malmgren, Henrik January 2019 (has links)
Convolutional artificial neural networks can be applied for image-based object classification to inform automated actions, such as handling of objects on a production line. The present thesis describes theoretical background for creating a classifier and explores the effects of introducing a set of relatively recent techniques to an existing ensemble of classifiers in use for an industrial sorting system.The findings indicate that it's important to use spatial variety dropout regularization for high resolution image inputs, and use an optimizer configuration with good convergence properties. The findings also demonstrate examples of ensemble classifiers being effectively consolidated into unified models using the distillation technique. An analogue arrangement with optimization against multiple output targets, incorporating additional information, showed accuracy gains comparable to ensembling. For use of the classifier on test data with statistics different than those of the dataset, results indicate that augmentation of the input data during classifier creation helps performance, but would, in the current case, likely need to be guided by information about the distribution shift to have sufficiently positive impact to enable a practical application. I suggest, for future development, updated architectures, automated hyperparameter search and leveraging the bountiful unlabeled data potentially available from production lines.

Page generated in 0.097 seconds