• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 689
  • 335
  • 71
  • 2
  • Tagged with
  • 1113
  • 511
  • 292
  • 197
  • 166
  • 141
  • 121
  • 111
  • 103
  • 98
  • 97
  • 97
  • 89
  • 81
  • 76
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
711

Modélisation des problèmes bi-fluides par la méthode des lignes de niveau et l'adaptation du maillage : Application à l'optimisation des formes / Modeling the problem two-fluid flows by the level set method and mesh adaptation : Application to the shape optimization

Tran, Thi Thanh Mai 07 January 2015 (has links)
La première préoccupation de cette thèse est le problème de deux fluides ou un fluide à deux phases, c’est-à-dire que nous nous sommes intéressés à la simulation d’écoulements impliquant deux ou plusieurs fluides visqueux incompressibles immiscibles de propriétés mécaniques et rhéologiques différentes. Dans ce contexte, nous avons considéré que l’interface mobile entre les deux fluides est représentée par la ligne de niveau zéro d’une fonction ligne de niveau et régie par l’équation d’advection, où le champ advectant est la solution des équations de Navier-Stokes. La plupart des méthodes de capture d’interface utilisent une grille cartésienne fixe au cours de la simulation. Contrairement à ces approches, la nôtre est fortement basée sur l’adaptation de maillage, notamment au voisinage de l’interface. Cette adaptation de maillage permet une représentation précise de l’interface, à l’aide de ses propriétés géométriques, avec un nombre de degrés de liberté minimal.La résolution d'un problème à deux fluides est résumée par les étapes suivantes:- Résoudre les équations de Navier-Stokes par la méthode de Lagrange-Galerkin d’ordre 1;- Traitement géométrique la tension de surface se basant sur la discrétisation explicite de l'interface dans le domaine de calcul;- Résoudre l'équation d’advection par la méthode des caractéristiques;- Les techniques de l'adaptation de maillage.On propose ici un schéma entre l’advection de l’interface, la résolution des équations de Navier-Stokes et l’adaptation de maillage. Certains résultats des exemples classiques pour les deux problèmes de monofluide et bifluide comme la cavité entrainée, la rémontée d’une bulle, la coalescence de deux bulles et les instabilités Rayleigh-Taylor sont étudiés en deux et trois dimensions.La deuxième partie de cette thèse est liée à l'optimisation des formes en mécanique des fluides. Nous construisons un schéma numérique en utilisant la méthode des lignes de niveau et l’adaptation de maillage dans le contexte des systèmes de Stokes. Le calcul de la sensibilité de la fonction objective est liée à la méthode de variation des limites d’Hadamard et les dérivées des formes sont calculées par la méthode de Céa. Un exemple numérique avec la fonction objective de la dissipation d'énergie est présenté pour évaluer l'efficacité et la fiabilité du schéma proposé. / The first concern of this thesis is the problem of two fluids flow or two-phase flow, i.e weare interested in the simulation of the evolution of an interface (or a free surface) between twoimmiscible viscous fluids or two phases of a fluid. We propose a general scheme for solving two fluids flow or two-phase flow which takes advantage of the flexibility of the level set method for capturing evolution of the interfaces, including topological changes. Unlike similar approaches that solve the flow problem and the transport equation related to the evolution of the interface on Cartesian grids, our approach relies on an adaptive unstructured mesh to carry out these computations and enjoys an exact and accurate description of the interface. The explicit representation of the manifold separating the two fluids will be extracted to compute approximately the surface tension as well as some algebraic quantities like the normal vector and the curvature at the interface.In a nutshell, the resolution of a two-fluid problem is summarized by the steps involves thefollowing ingredients:– solving incompressible Navier-Stokes equations by the first order Lagrange-Galerkin method;– geometrical treatment to evaluate the surface tension basing on the explicit discretisation of the interface;– solving the level set advection by method of characteristics; – the techniques of mesh adaptation.It is obvious that no numerical method is completely exact in solving the PDE problemat hand, hence, we need a discretized computational domain. However, the accuracy of numericalsolutions or the mass loss/gain can generally be improved with mesh refinement. The question thatarises is related to where and how to refine the mesh. At each time, our mesh adaptation producesthe adapted mesh based on the geometric properties of the interface and the physical properties ofthe fluid, simply speaking, only one adapted mesh at each time step to assume both the resolutionof Navier-Stokes and the advection equations. It answers to the need for an accurate representationof the interface and an accurate approximation of the velocity of fluids with a minimal number ofelements, then decreasing the amount of computational time. Some results of the classical examples for both problems of monofluid and bifluid flows as : lid-driven cavity, rising bubble, coalescence of two bubbles, and Rayleigh-Taylor instability are investigated in two and three dimensions.The second part of this thesis is related to shape optimization in fluid mechanics. We construct a numerical scheme using level set method and mesh adaptation in the context of Stokes systems. The computation of the sensitivity of objective function is related to the Hadamard’s boundary variation method and the shape derivatives is computed by Céa’s formal method. A numerical example with theobjective function of energy dissipation is presented to assess the efficiency and the reliability of theproposed scheme.
712

Sensitivity Relations and Regularity of Solutions of HJB Equations arising in Optimal Control / Relations de sensibilité et régularité des solutions d'une classe d'équations d'HJB en controle optimal

Scarinci, Teresa 30 November 2015 (has links)
Dans cette thèse nous étudions une classe d’équations de Hamilton-Jacobi-Bellman provenant de la théorie du contrôle optimal des équations différentielles ordinaires. Nous nous intéressons principalement à l’analyse de la sensibilité de la fonction valeur des problèmes de contrôle optimal associés à de telles équations de H-J-B. Dans la littérature, les relations de sensibilité fournissent une “mesure” de la robustesse des stratégies optimales par rapport aux variations de la variable d’état. Ces résultats sont des outils très importants pour le contrôle appliqué, parce qu’ils permettent d’étudier les effets que des approximations des données du système peuvent avoir sur les politiques optimales. Cette thèse est dédiée également à l’étude des problèmes de Mayer et de temps minimal. Nous supposons que la dynamique du problème soit une inclusion différentielle, afin de permettre aux données d’être non régulières et d’embrasser un ensemble plus grand d’applications. Néanmoins, cette tâche rend notre analyse plus difficile. La première contribution de cette étude est une extension de quelques résultats classiques de la théorie de la sensibilité au domaine des problèmes non paramétrées. Ces relations prennent la forme d’inclusions d’état adjoint, figurant dans le principe du maximum de Pontryagin, dans certains gradients généralisés de la fonction valeur évalués le long des trajectoires optimales. En deuxième lieu, nous développons des nouvelles relations de sensibilité impliquant des approximations du deuxième ordre de la fonction valeur. Cette analyse mène à de nouvelles applications concernant la propagation, tant ponctuel que local, de la régularité de la fonction valeur le long des trajectoires optimales. Nous proposons également des applications aux conditions d’optimalité. / This dissertation investigates a class of Hamilton-Jacobi-Bellman equations arising in optimal control of O.D.E.. We mainly focus on the sensitivity analysis of the optimal value function associated with the underlying control problems. In the literature, sensitivity relations provide a measure of the robustness of optimal control strategies with respect to variations of the state variable. This is a central tool in applied control, since it allows to study the effects that approximations of the inputs of the system may produce on the optimal policies. In this thesis, we deal whit problems in the Mayer or in the minimum time form. We assume that the dynamic is described by a differential inclusion, in order to allow data to be nonsmooth and to embrace a large area of concrete applications. Nevertheless, this task makes our analysis more challenging. Our main contribution is twofold. We first extend some classical results on sensitivity analysis to the field of nonparameterized problems. These relations take the form of inclusions of the co-state, featuring in the Pontryagin maximum principle, into suitable gradients of the value function evaluated along optimal trajectories. Furthermore, we develop new second-order sensitivity relations involving suitable second order approximations of the optimal value function. Besides being of intrinsic interest, this analysis leads to new consequences regarding the propagation of both pointwise and local regularity of the optimal value functions along optimal trajectories. As applications, we also provide refined necessary optimality conditions for some class of differential inclusions.
713

Interplanetary transfers with low consumption using the properties of the restricted three body problem / Transferts interplanétaires à faible consommation utilisant les propriétés du problème restreint des trois corps

Chupin, Maxime 19 October 2016 (has links)
Le premier objectif de cette thèse est de bien comprendre les propriétés de la dynamique du problème circulaire restreint des trois corps et de les utiliser pour calculer des missions pour satellites pourvus de moteurs à faible poussée. Une propriété fondamentale est l'existence de variétés invariantes associées à des orbites périodiques autour des points de \bsc{Lagrange}. En suivant l'idée de l'\emph{Interplanetary Transport Network}, la connaissance et le calcul des variétés invariantes, comme courants gravitationnels, sont cruciaux pour le \emph{design} de missions spatiales. Une grande partie de ce travail de thèse est consacrée au développement de méthodes numériques pour calculer le transfert entre variétés invariantes de façon optimale. Le coût que l'on cherche alors à minimiser est la norme $L^{1}$ du contrôle car elle est équivalente à minimiser la consommation des moteurs. On considère aussi la norme $L^{2}$ du contrôle car elle est, numériquement, plus facile à minimiser. Les méthodes numériques que nous utilisons sont des méthodes indirectes rendues plus robustes par des méthodes de continuation sur le coût, sur la poussée, et sur l'état final. La mise en œuvre de ces méthodes repose sur l'application du Principe du Maximum de Pontryagin. Les algorithmes développés dans ce travail permettent de calculer des missions réelles telles que des missions entre des voisinages des points de \bsc{Lagrange}. L'idée principale est d'initialiser un tir multiple avec une trajectoire admissible composée de parties contrôlées (des transferts locaux) et de parties non-contrôlées suivant la dynamique libre (les variétés invariantes). Les méthodes mises au point ici, sont efficaces et rapides puisqu'il suffit de quelques minutes pour obtenir la trajectoire optimale complète. Enfin, on développe une méthode hybride, avec à la fois des méthodes directes et indirectes, qui permettent d'ajuster la positions des points de raccord sur les variétés invariantes pour les missions à grandes variations d'énergie. Le gradient de la fonction valeur est donné par les valeurs des états adjoints aux points de raccord et donc ne nécessite pas de calculs supplémentaire. Ainsi, l'implémentation de algorithme du gradient est aisée. / The first objective of this work is to understand the dynamical properties of the circular restricted three body problem in order to use them to design low consumption missions for spacecrafts with a low thrust engine. A fundamental property is the existence of invariant manifolds associated with periodic orbits around Lagrange points. Following the Interplanetary Transport Network concept, invariant manifolds are very useful to design spacecraft missions because they are gravitational currents. A large part of this work is devoted to designing a numerical method that performs an optimal transfer between invariant manifolds. The cost we want to minimize is the $L^{1}$-norm of the control which is equivalent to minimizing the consumption of the engines. We also consider the $L^{2}$-norm of the control which is easier to minimize numerically. The numerical methods are indirect ones coupled with different continuations on the thrust, on the cost, and on the final state, to provide robustness. These methods are based on the application of the Pontryagin Maximum Principal. The algorithms developed in this work allow for the design of real life missions such as missions between the realms of libration points. The basic idea is to initialize a multiple shooting method with an admissible trajectory that contains controlled parts (local transfers) and uncontrolled parts following the natural dynamics (invariant manifolds). The methods developed here are efficient and fast (less than a few minutes to obtain the whole optimal trajectory). Finally, we develop a hybrid method, with both direct and indirect methods, to adjust the position of the matching points on the invariant manifolds for missions with large energy gaps. The gradient of the value function is given by the values of the costates at the matching points and does not require any additional computation. Hence, the implementation of the gradient descent is easy.
714

Identification de fractures dans un milieu poreux / Identification of fractures in porous medium

Cheikh, Fatma 12 October 2016 (has links)
Cette thèse est consacrée à l'étude mathématique d'un problème inverse en hydrogéologie : le but est d'identifier des fractures en milieu poreux, connaissant des mesures de l'écoulement dans le sous-sol. Le nombre, la localisation et les paramètres physiques des fractures sont recherchés. Ce problème est formulé comme la minimisation au sens des moindres carrés d'une fonctionnelle évaluant l'écart entre les mesures et les résultats du modèle direct. L'écoulement est celui d'un fluide monophasique incompressible (loi de Darcy). Un modèle traitant les fractures comme des interfaces est utilisé. Le problème direct est le modèle de fracture discrétisé par la méthode des éléments finis mixtes hybrides.Pour résoudre ce problème inverse, un nouvel algorithme itératif a été développé, basé sur l’utilisation d’indicateurs de fractures mis au point pendant la thèse. Ces indicateurs donnent une information au premier ordre concernant l'effet de l'ajout d'une nouvelle fracture. Comme ces indicateurs sont peu coûteux, un grand nombre de configurations de fractures sont testées à chaque itération. L’algorithme a été programmé, validé puis testé numériquement dans des situations variées, en utilisant des mesures synthétiques. Il donne des résultats très satisfaisants, bien que ce problème soit réputé difficile.Enfin, l’étude de l’identifiabilité du problème inverse a été amorcée. Pour un modèle simplifié de fractures (failles très perméables, cas le plus courant dans le sous-sol), on a montré que le problème. / This PhD is dedicated to the mathematical study of an inverse problem in hydrogeology: the goal is to identify fractures in porous medium, knowing measurements of the underground flow. The number, the location and the physical parameters of the fracture are looked for. This problem is formulated as the least squares minimization of a function evaluating the misfit between measurements and the result of the direct model. We used a model describing the flow of a monophasic incompressible fluid (Darcy's law), in a porous medium containing some fractures represented by interfaces. The direct problem is the fracture model discretized by the mixed hybrid finite element method. To solve this inverse problem, we developed an iterative algorithm, which is based on the use of fracture indicators that have been developed durig the thesis. These indicators give a first order information concerning the effect of the addition of a new fracture. As these indicators are inexpensive, a large number of configurations of new fractures is tested at each iteration. The algorithm was programmed, validated and tested numerically in various situations, using synthetic measurements. It gives very satisfactory results, although this problem is considered difficult. Finally, an early study of identifiability of the inverse problem of fractures in porous medium has been achieved. It allowed to prove the identifiability for a simplified model (very permeable faults, which is common in the underground). The question of identifiability for the full fracture model remains open.
715

Rigid isotopy classification of real quintic rational plane curves / Classification des courbes planes réelles de degré 5 à isotopie rigide

Jaramillo Puentes, Andrés 28 September 2017 (has links)
Afin d’étudier les classes d'isotopie rigide des courbes rationnelles nodales de degré 5 dans RPP, nous associons à chaque quintique avec un point double réel marque une courbe trigonale dans la surface de Hirzebruch Sigma3 et le dessin reel nodal correspondant dans CP/(z mapsto bar{z}). Les dessins sont des versions réelles, proposées par S. Orevkov dans cite{Orevkov}, des dessins d'enfants de Grothendieck. Un dessin est un graphe contenu dans une surface topologique, muni d'une certaine structure supplémentaire. Dans cette thèse, nous étudions les propriétés combinatoires et les recompositions des dessins correspondants aux courbes trigonales nodales C subset Sigma dans les surfaces réglées réelles Sigma . Les dessins uninodaux sur une surface a bord quelconque et les dessins nodaux sur le disque peuvent être décomposés en blocs correspondant aux dessins cubiques sur le disque D2 , ce qui conduit a une classification des ces dessins. La classification des dessins considérés mène à une classification à isotopie rigide des courbes rationnelles nodales de degré 5 dans RPP. / In order to study the rigid isotopy classes of nodal rational curves of degree $5$ in $\RPP$, we associate to every real rational quintic curve with a marked real nodal point a trigonal curve in the Hirzebruch surface $\Sigma_3$ and the corresponding nodal real dessin on~$\CP/(z\mapsto\bar{z})$. The dessins are real versions, proposed by S. Orevkov~\cite{Orevkov}, of Grothendieck's {\it dessins d'enfants}. The {\it dessins} are graphs embedded in a topological surface and endowed with a certain additional structure. We study the combinatorial properties and decompositions of dessins corresponding to real nodal trigonal curves~$C\subset \Sigma$ in real ruled surfaces~$\Sigma$. Uninodal dessins in any surface with non-empty boundary and nodal dessins in the disk can be decomposed in blocks corresponding to cubic dessins in the disk~$\mathbf{D}^2$, which produces a classification of these dessins. The classification of dessins under consideration leads to a rigid isotopy classification of real rational quintics in~$\RPP$.
716

Le problème de Cauchy en relativité générale / The Cauchy problem in general relativity

Czimek, Stefan 07 July 2017 (has links)
Dans cette thèse nous étudions le problème de Cauchy en relativité générale. Motivés par la conjecture de censure cosmique faible formulée par Penrose, nous analysons le problème aux données initiales pour les équations d'Einstein dans le vide en faible régularité. Nous démontrons les deux résultats suivants. o Premièrement, nous nous intéressons aux équations de contrainte pour les données initiales et mettons en place une procédure de prolongement. Plus précisément, étant donné des données initiales pour les équations d'Einstein sur la boule unité dans R3, nous les prolongeons de manière continue en des données globales, asymptotiquement plates sur R3. Les équations de contrainte forment un système couplé d'équations non-lineaires sous-determinées géométriques. La preuve de notre procédure de prolongement repose sur un schéma iteratif où nous séparons ce système en deux problèmes de prolongement decouplés et solubles. Enfin, le résultat de prolongement pour les équations de contrainte est obtenu par un argument de point fixe. o Deuxièment, nous prouvons une version localisée du théorème de courbure L2 de Klainerman-Rodnianski-Szeftel. Nous montrons que, étant données des données initiales pour les équations d'Einstein sur une variété compacte avec bord, le temps d'existence de la solution des équations d'Einstein dans le domaine de dépendance de ces données initiales ne dépend que de normes de basse régularité des données initiales. En particulier, notre résultat est un critère localisé de continuité pour les équations d'Einstein. Notre preuve utilise un argument de localisation où, tout d'abord, nous généralisons la théorie de Cheeger-Gromov de convergence pour les variétés Riemanniennes à notre cas de régularité faible, et ensuite nous appliquons la procédure de prolongement pour les équations de contrainte mentionnée ci-dessus avec un argument de changement d’échelle. / In this thesis we study the Cauchy problem of general relativity. Motivated by the weak cosmic censorship conjecture formulated by Penrose, we analyse the initial value problem for the Einstein vacuum equations in low regularity. We prove the following two results. First, we consider the constraint equations of the initial data and demonstrate an extension procedure. More precisely, given small initial data for the Einstein equations on the unit ball in R3, we continuosly extend it to global, asymptotically flat initial data on R3. The constraint equations for the Einstein vacuum equations are a coupled system of non-linear under-determined geometric elliptic equations. The proof of our extension procedure is based on an iterative scheme where we split this system into two decoupled, solvable extension problems. The extension result for the constraint equations follows then by a fix point argument. Second, we prove a localised version of the bounded L2-curvature theorem by Klainerman-Rodnianski-Szeftel. We show that given low regularity initial data to the Einstein equations on a compact manifold with boundary, the time of existence of the solution to the Einstein equations in the domain of dependence of the initial data depends only on low regularity geometric data. In particular, this result is a localised continuation criterion for the Einstein vacuum equations. Our proof uses a localisation argument where we first generalise the known Cheeger-Gromov convergence theory for Riemannian manifolds to our low regularity setting, and then apply the above extension procedure for the constraint equations with a scaling argument.
717

Méthodes d'éléments finis pour le problème de Darcy couplé avec l'équation de la chaleur / Finite element methods for Darcy's problem coupled with the heat equation

Dib, Serena 29 June 2017 (has links)
Dans cette thèse, nous étudions l'équation de la chaleur couplée avec la loi de Darcy à travers de la viscosité non-linéaire qui dépend de la température pour les dimensions d=2,3 (Hooman et Gurgenci ou Rashad). Nous analysons ce problème en introduisant la formulation variationnelle équivalente et en la réduisant à une simple équation de diffusion-convection pour la température où la vitesse dépend implicitement de la température.Nous démontrons l'existence de la solution sans la restriction sur les données par la méthode de Galerkin et du point fixe de Brouwer. L'unicité globale est établie une fois la solution est légèrement régulière et les données se restreignent convenablement. Nous introduisons aussi une formulation variationnelle alternative équivalente. Toutes les deux formulations variationnelles sont discrétisées par quatre schémas d'éléments finis pour un domaine polygonal ou polyédrique. Nous dérivons l'existence, l'unicité conditionnée, la convergence et l'estimation d'erreur a priori optimale pour les solutions des trois schémas. Par la suite, ces schémas sont linéarisés par des algorithmes d'approximation successifs et convergentes. Nous présentons quelques expériences numériques pour un problème modèle qui confirme les résultats théoriques de convergence développées dans ce travail. L'estimation d'erreur a posteriori est établie avec deux types d'indicateurs d'erreur de linéarisation et de discrétisation. Enfin, nous montrons des résultats numériques de validation. / In this thesis, we study the heat equation coupled with Darcy's law by a nonlinear viscosity depending on the temperature in dimension d=2,3 (Hooman and Gurgenci or Rashad). We analyse this problem by setting it in an equivalent variational formulation and reducing it to an diffusion-convection equation for the temperature where the velocity depends implicitly on the temperature.Existence of a solution is derived without restriction on the data by Galerkin's method and Brouwer's Fixed Point. Global uniqueness is established when the solution is slightly smoother and the dataare suitably restricted. We also introduce an alternative equivalent variational formulation. Both variational formulations are discretized by four finite element schemes in a polygonal or polyhedral domain. We derive existence, conditional uniqueness, convergence, and optimal a priori error estimates for the solutions of the three schemes. Next, these schemes are linearized by suitable convergent successive approximation algorithms. We present some numerical experiments for a model problem that confirm the theoretical rates of convergence developed in this work. A posteriori error estimates are established with two types of errors indicators related to the linearisation and discretization. Finally, we show numerical results of validation.
718

Analysis of singularities in elliptic equations : the Ginzburg-Landau model of superconductivity, the Lin-Ni-Takagi problem, the Keller-Segel model of chemotaxis, and conformal geometry / Analyse des singularités dans les équations elliptiques : le modèle de superconductivité Ginzburg-Landau, le problème Lin-Ni-Takagi, le modèle Keller-Segel de chimiotaxie , et la géométrie conforme

Román, Carlos 15 December 2017 (has links)
Cette thèse est consacrée à l'analyse des singularités apparaissant dans des équations différentielles partielles elliptiques non linéaires découlant de la physique mathématique, de la biologie mathématique, et de la géométrie conforme. Les thèmes abordés sont le modèle de supraconductivité de Ginzburg-Landau, le problème de Lin-Ni-Takagi, le modèle de Keller-Segel de la chimiotaxie, et le problème de courbure scalaire prescrite. Le modèle de Ginzburg-Landau est une description phénoménologique de la supraconductivité. Une caractéristique essentielle des supraconducteurs de type II est la présence de vortex, qui apparaissent au-dessus d'une certaine valeur de la force du champ magnétique appliqué, appelée premier champ critique. Nous nous intéressons au régime de epsilon petit, où epsilon est l'inverse du paramètre de Ginzburg-Landau (une constante du matériau). Dans ce régime, les vortex sont au premier ordre des singularités topologiques de co-dimension 2. Nous fournissons une construction quantitative par approximation de vortex en dimension trois pour l'énergie de Ginzburg-Landau, ce qui donne une approximation des lignes de vortex ainsi qu'une borne inférieure pour l'énergie, qui est optimale au premier ordre et vérifiée au niveau epsilon. En utilisant ces outils, nous analysons ensuite le comportement des minimiseurs globaux en dessous et proche du premier champ critique. Nous montrons que, en dessous de cette valeur critique, les minimiseurs de l'énergie de Ginzburg-Landau sont des configurations sans vortex et que les minimiseurs, proche de cette valeur, ont une vorticité bornée. Le problème de Lin-Ni-Takagi apparait comme l'ombre (dans la littérature anglaise ``shadow'') du système de Gierer-Meinhardt d'équations de réaction-diffusion qui modélise la formation de motifs biologiques. Ce problème est celui de trouver des solutions positives d'une équation critique dans un domaine régulier et borné de dimension trois, avec une condition de Neumann homogène au bord. Dans cette thèse, nous construisons des solutions à ce problème présentant un comportement explosif en un point du domaine, lorsqu'un certain paramètre converge vers une valeur critique. La chimiotaxie est l'influence de substances chimiques dans un environnement sur le mouvement des organismes. Le modèle de Keller-Segel pour la chimiotaxie est un système de diffusion-advection composé de deux équations paraboliques couplées. Ici, nous nous intéressons aux états stationnaires radiaux de ce système. Nous sommes alors amenés à étudier une équation critique dans la boule unité de dimension 2, avec une condition de Neumann homogène au bord. Dans cette thèse, nous construisons plusieurs familles de solutions radiales qui explosent à l'origine de la boule, et se concentrent sur le bord et/ou sur une sphère intérieure, lorsqu' un certain paramètre converge vers zéro. Enfin, nous étudions le problème de la courbure scalaire prescrite. Étant donnée une variété Riemannienne compacte de dimension n, nous voulons trouver des métriques conformes dont la courbure scalaire soit une fonction prescrite, qui dépend d'un petit paramètre. Nous supposons que cette fonction a un point critique qui satisfait une hypothèse de platitude appropriée. Nous construisons plusieurs métriques, qui explosent lorsque le paramètre converge vers zéro, avec courbure scalaire prescrite. / This thesis is devoted to the analysis of singularities in nonlinear elliptic partial differential equations arising in mathematical physics, mathematical biology, and conformal geometry. The topics treated are the Ginzburg-Landau model of superconductivity, the Lin-Ni-Takagi problem, the Keller-Segel model of chemotaxis, and the prescribed scalar curvature problem. The Ginzburg-Landau model is a phenomenological description of superconductivity. An essential feature of type-II superconductors is the presence of vortices, which appear above a certain value of the strength of the applied magnetic field called the first critical field. We are interested in the regime of small epsilon, where epsilon is the inverse of the Ginzburg-Landau parameter (a material constant). In this regime, the vortices are at main order co-dimension 2 topological singularities. We provide a quantitative three-dimensional vortex approximation construction for the Ginzburg-Landau energy, which gives an approximation of vortex lines coupled to a lower bound for the energy, which is optimal to leading order and valid at the epsilon-level. By using these tools we then analyze the behavior of global minimizers below and near the first critical field. We show that below this critical value, minimizers of the Ginzburg-Landau energy are vortex-free configurations and that near this value, minimizers have bounded vorticity. The Lin-Ni-Takagi problem arises as the shadow of the Gierer-Meinhardt system of reaction-diffusion equations that models biological pattern formation. This problem is that of finding positive solutions of a critical equation in a bounded smooth three-dimensional domain, under zero Neumann boundary conditions. In this thesis, we construct solutions to this problem exhibiting single bubbling behavior at one point of the domain, as a certain parameter converges to a critical value. Chemotaxis is the influence of chemical substances in an environment on the movement of organisms. The Keller-Segel model for chemotaxis is an advection-diffusion system consisting of two coupled parabolic equations. Here, we are interested in radial steady states of this system. We are then led to study a critical equation in the two-dimensional unit ball, under zero Neumann boundary conditions. In this thesis, we construct several families of radial solutions which blow up at the origin of the ball and concentrate on the boundary and/or an interior sphere, as a certain parameter converges to zero. Finally, we study the prescribed scalar curvature problem. Given an n-dimensional compact Riemannian manifold, we are interested in finding bubbling metrics whose scalar curvature is a prescribed function, depending on a small parameter. We assume that this function has a critical point which satisfies a suitable flatness assumption. We construct several metrics, which blow-up as the parameter goes to zero, with prescribed scalar curvature.
719

Quantum proofs, the local Hamiltonian problem and applications / Preuves quantiques, le problème des Hamiltoniens locaux et applications

Bredariol Grilo, Alex 27 April 2018 (has links)
Dans la classe de complexité QMA – la généralisation quantique de la classe NP – un état quantique est fourni comme preuve à un algorithme de vérification pour l’aider à résoudre un problème. Cette classe de complexité a un problème complet naturel, le problème des Hamiltoniens locaux. Inspiré par la Physique de la matière condensée, ce problème concerne l’énergie de l’état fondamental d’un système quantique. Dans le cadre de cette thèse, nous étudions quelques problèmes liés à la classe QMA et au problème des Hamiltoniens locaux. Premièrement, nous étudions la différence de puissance si au lieu d’une preuve quantique, l’algorithme de vérification quantique reçoit une preuve classique. Nous proposons un cadre intermédiaire à ces deux cas, où la preuve consiste en un état quantique “plus simple” et nous arrivons à démontrer que ces états plus simples sont suffisants pour résoudre tous les problèmes dans QMA. À partir de ce résultat, nous obtenons un nouveau problème QMA-complet et nous étudions aussi la version de notre nouvelle classe de complexité avec erreur unilatérale. Ensuite, nous proposons le premier schéma de délégation vérifiable relativiste de calcul quantique. Dans ce cadre, un client classique délègue son calcul quantique à deux serveurs quantiques intriqués. Ces serveurs peuvent communiquer entre eux en respectant l’hypothèse que l’information ne peut pas être propagé plus vite que la vitesse de la lumière. Ce protocole a été conçu à partir d’un jeu non-local pour le problème des Hamiltoniens locaux avec deux prouveurs et un tour de communication. Dans ce jeu, les prouveurs exécutent des calculs quantiques de temps polynomiaux sur des copies de l’état fondamental du Hamiltonien. Finalement, nous étudions la conjecture PCP quantique, où l’on demande si tous les problèmes dans la classe QMA acceptent un système de preuves où l’algorithme de vérification a accès à un nombre constant de qubits de la preuve quantique. Notre première contribution consiste à étendre le modèle QPCP avec une preuve auxiliaire classique. Pour attaquer le problème, nous avons proposé une version plus faible de la conjecture QPCP pour ce nouveau système de preuves. Nous avons alors montré que cette nouvelle conjecture peut également être exprimée dans le contexte des problèmes des Hamiltoniens locaux et ainsi que dans lecadre de la maximisation de la probabilité de acceptation des jeux quantiques. Notre résultat montre la première équivalence entre un jeu multi-prouveur et une conjecture QPCP. / In QMA, the quantum generalization of the complexity class NP, a quantum state is provided as a proof of a mathematical statement, and this quantum proof can be verified by a quantum algorithm. This complexity class has a very natural complete problem, the Local Hamiltonian problem. Inspired by Condensed Matters Physics, this problem concerns the groundstate energy of quantum systems. In this thesis, we study some problems related to QMA and to the Local Hamiltonian problem. First, we study the difference of power when classical or quantum proofs are provided to quantum verification algorithms. We propose an intermediate setting where the proof is a “simpler” quantum state, and we manage to prove that these simpler states are enough to solve all problems in QMA. From this result, we are able to present a new QMA-complete problem and we also study the one-sided error version of our new complexity class. Secondly, we propose the first relativistic verifiable delegation scheme for quantum computation. In this setting, a classical client delegates her quantumcomputation to two entangled servers who are allowed to communicate, but respecting the assumption that information cannot be propagated faster than speed of light. This protocol is achieved through a one-round two-prover game for the Local Hamiltonian problem where provers only need polynomial time quantum computation and access to copies of the groundstate of the Hamiltonian. Finally, we study the quantumPCP conjecture, which asks if all problems in QMA accept aproof systemwhere only a fewqubits of the proof are checked. Our result consists in proposing an extension of QPCP proof systems where the verifier is also provided an auxiliary classical proof. Based on this proof system, we propose a weaker version of QPCP conjecture. We then show that this new conjecture can be formulated as a Local Hamiltonian problem and also as a problem involving the maximum acceptance probability of multi-prover games. This is the first equivalence of a multi-prover game and some QPCP statement.
720

Produits eulériens motiviques / Motivic Euler products

Bilu, Margaret 28 November 2017 (has links)
L’objectif de cette thèse est l’étude de la fonction zêta des hauteurs motivique associée à un problème de comptage de courbes sur les compactifications équivariantes d’espaces affines, résolvant au chapitre 6 l’analogue motivique de la conjecture de Manin pour celles-ci. La fonction zêta des hauteurs provenant du problème de comptage considéré est récrite convenablement à l’aide d'une formule de Poisson motivique démontrée au cinquième chapitre, qui généralise celle de Hrushovski-Kazhdan. Chaque terme est alors décomposé sous la forme d'un produit eulérien motivique, dont la définition et les propriétés sont établies au chapitre 3. La convergence de ces produits eulériens doit être comprise pour une topologie des poids que nous introduisons au quatrième chapitre et qui repose d'une part sur la théorie des modules de Hodge de Saito, et d'autre part sur une mesure motivique sur l’anneau de Grothendieck des variétés avec exponentielles, construite dans le chapitre 2 à l’aide de la notion de cycles évanescents motiviques. On en déduit ainsi une description de l'asymptotique d'une proportion positive des coefficients du polynôme de Hodge-Deligne des espaces de modules des courbes sur la compactification équivariante donnée, lorsque le degré tend vers l'infini. / The goal of this thesis is the study of the motivic height zeta function associated to the problem of counting curves on equivariant compactifications of vector groups, solving in chapter 6 the motivic analogue of Manin's conjecture for such varieties.The motivic height zeta function coming from this counting problem is rewritten in a convenient way using a Poisson summation formula proved in chapter 5, and which generalises Hrushovski and Kazhdan's motivic Poisson formula. Each term is then expressed as a motivic Euler product, the definition and properties of the latter being established in chapter 3. The convergence of these Euler products must be understood for a weight topology which we introduce in the fourth chapter and which relies both on Saito's theory of mixed Hodge modules and on a motivic measure on the Grothendieck ring of varieties with exponentials, constructed in chapter 2 using the notion of motivic vanishing cycles. We deduce from this a description of the asymptotic of a positive proportion of the coefficients of the Hodge-Deligne polynomial of the moduli spaces of curves on the given equivariant compactification, when the degree goes to infinity.

Page generated in 0.0399 seconds