• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 20
  • 6
  • 1
  • Tagged with
  • 79
  • 79
  • 46
  • 45
  • 23
  • 21
  • 17
  • 17
  • 14
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Exploiting DNA Repair Vulnerabilities to Modulate Anti-Cancer Immunity : a Study of the Immunological Potential of PARP inhibitors / Exploiter les défauts de réparation de l’ADN pour moduler l’immunité anti-cancéreuse : une étude du potentiel immunologique des inhibiteurs de PARP

Chabanon, Roman 31 January 2019 (has links)
Les inhibiteurs de poly(ADP-ribose) polymérase (PARPi) ciblent sélectivement les cellules porteuses de défauts des voies de réparation de l’ADN tels que les mutations de BRCA1/2 et les défauts d’ERCC1. Sur le plan clinique, plusieurs PARPi ont été approuvés pour le traitement des cancers BRCA-mutés ou platine-sensibles du sein et de l’ovaire, et des essais cliniques sont en cours pour évaluer l’efficacité des PARPi dans le cancer bronchique non-à-petites cellules (CBNPC) platine-sensible. Alors que les PARPi ont un fort potentiel thérapeutique dans les cancers comportant des défauts de réparation de l’ADN, de plus en plus d’essais cliniques évaluent également l’efficacité de ces médicaments en combinaison avec les « inhibiteurs d’immune checkpoints » (ICI) dans diverses populations de patients. Dans ce contexte, il est essentiel de mieux comprendre comment les PARPi modulent la réponse immunitaire anti-tumorale, et d’étudier le potentiel immunologique inhérent de ces médicaments.Dans cette étude, nous avons établi que les cellules de CBNPC déficientes en ERCC1 expriment fortement la signature interféron (IFN) de type I, et que les tumeurs de CBNPC ayant une faible expression d’ERCC1 ont un infiltrat lymphocytaire renforcé. En utilisant des lignées cellulaires isogéniques et des xénogreffes dérivées de patients, nous avons montré que plusieurs PARPi, notamment l’olaparib et le rucaparib, ont des propriétés immunomodulatrices dans les modèles de CBNPC ERCC1-déficients et de cancers du sein triple-négatifs (CSTN) BRCA1-mutés. D’un point de vue mécanistique, les PARPi génèrent des fragments d’ADN cytoplasmiques ayant les caractéristiques de micronoyaux ; ceux-ci activent la voie cGAS/STING et déclenchent une réponse IFN de type I, associée à la sécrétion de la cytokine CCL5. De manière importante, ces effets sont largement diminués dans les cellules de CSTN BRCA1-révertantes et les cellules de CBNPC ré-exprimant ERCC1, ce qui suggère que les défauts de réparation de l’ADN amplifient les phénotypes immunitaires associés au traitement par PARPi. En outre, ces effets sont totalement abrogés dans les cellules de CSTN PARP1-neutralisées, ce qui confirme que les phénotypes observés dépendent d’un effet spécifique des PARPi sur leur cible.Au-delà de leur potentiel d’activation d’une immunité spécifique des cellules cancéreuses via cGAS/STING et la signalisation IFN de type I, nous avons également constaté que les PARPi potentialisent les effets inducteurs de l‘IFN de type II sur l’expression de PD-L1 dans des lignées cellulaires et cellules tumorales fraîches de patients CBNPC, surtout en présence de défauts d’ERCC1. De plus, nous avons montré que certains PARPi, utilisés à des concentrations létales, activent de manière indépendante les éléments moléculaires clés de la mort cellulaire immunogénique, dont l’exposition de la calréticuline à la surface des cellules cancéreuses, la sécrétion d’ATP et le relargage d’HMGB1 en grandes quantités dans le milieu extracellulaire.Dans l’ensemble, ces données précliniques suggèrent que les PARPi ont des propriétés immunomodulatrices intrinsèques qui participent à l’activation de réponses immunitaires anti-tumorales ; ce potentiel pourrait être exploité cliniquement en combinaison avec les ICI dans des populations adéquatement sélectionnées au plan moléculaire. / Poly(ADP-ribose) polymerase inhibitors (PARPi) selectively target cancer cells with DNA repair deficiencies such as BRCA1/2 mutations or ERCC1 defects. Clinically, several PARPi are currently approved for the treatment of BRCA-mutant or platinum-sensitive advanced ovarian and breast cancers, and ongoing clinical trials are investigating the efficacy of PARPi in platinum-sensitive Non-Small Cell Lung Cancer (NSCLC). While PARPi constitute potent targeted therapies for the treatment of DNA repair-deficient malignancies, an increasing number of clinical trials are also evaluating their efficacy in combination with immune checkpoint inhibitor (ICI) in various populations. In this context, it is of critical importance to better understand how PARPi might modulate immune responses against cancer, and to investigate the inherent immunological potential of these agents.In this study, we show that ERCC1-defective NSCLC cells exhibit an enhanced type I interferon (IFN) transcriptomic signature and that low ERCC1 expression correlates with increased lymphocytic infiltration in human NSCLC tumours. Using isogenic cell lines and patient-derived xenografts, we further demonstrate that several clinical PARPi, including olaparib and rucaparib, display cell-autonomous immunomodulatory properties in ERCC1-defective NSCLC and BRCA1-mutant triple-negative breast cancer (TNBC) models. Mechanistically, PARPi generate cytoplasmic chromatin fragments with micronuclei characteristics; this activates the cGAS/STING pathway and elicits downstream type I IFN signalling and CCL5 secretion. Importantly, these effects are suppressed in BRCA1-reverted TNBC cells and ERCC1-rescued NSCLC cells, suggesting that DNA repair defects exacerbate the innate immunity-related phenotypes triggered by PARPi. Similarly, these effects are totally abrogated in PARP1-null TNBC cells, supporting the on-target effect of PARPi in mediating such phenotypes. Besides this potential to activate tumour cell-autonomous immunity through cGAS/STING and type I IFN signalling, we also observed that PARPi synergize with type II IFN to induce PD-L1 expression in NSCLC cell lines and fresh patient tumour cells, especially in the ERCC1-deficient setting. Moreover, we show that lethal concentrations of some PARPi independently activate the key damage-associated molecular patterns dictating the immunogenicity of cancer cell death, including calreticulin exposure at the tumour cell surface, ATP secretion and HMGB1 release in the extracellular compartment.Together, these preclinical data suggest that PARPi have intrinsic immunomodulatory properties that activate anti-cancer immune responses; this could be exploited clinically in combination with ICI in appropriately molecularly-selected populations.
62

Mécanismes de sensibilité/résistance des cellules tumorales aux inhibiteurs de réparation de l'ADN Dbait. / Mechanisms of tumor cells' sensitivity/resistance to the DNA repair inhibitors Dbait.

Jdey, Wael 25 November 2016 (has links)
Les défauts dans les voies de réparation de l’ADN sont aujourd’hui largement exploités pour le traitement du cancer. En effet, la capacité des tumeurs à réparer les lésions induites par les traitements génotoxiques (chimio- et radiothérapie) leur confère une résistance intrinsèque ou acquise à ces traitements. Développer des inhibiteurs de réparation de l’ADN permettrait de contrecarrer cette résistance et de sensibiliser les tumeurs à ces thérapies conventionnelles. Les inhibiteurs de la Poly(ADP-ribose) polymérase (PARPi), premiers candidats de cette famille d’inhibiteurs de réparation de l’ADN, ont montré des résultats encourageants mais sont néanmoins restreints à une sous-population de tumeurs avec une déficience dans la voie de réparation par recombinaison homologue (DRH). De plus, des résistances à ces PARPi ont été constatées suite à la réactivation de la voie RH ou de voies alternatives. Il est donc urgent de développer des agents plus efficaces qui permettraient de limiter la problématique de résistance. Dans le laboratoire, nous avons identifié une nouvelle classe d’inhibiteurs de réparation de l’ADN, les Dbait, consistant en une petite molécule d’ADN double-brin qui miment une cassure double-brin (CDB). AsiDNA, une molécule de la famille Dbait, agit en séquestrant et hyper activant la protéine PARP et ses partenaires, ainsi que la protéine DNA-PK qui modifie la chromatine, inhibant ainsi le recrutement au niveau du site du dommage de plusieurs protéines de réparation des voies RH ou NHEJ. Dans ce manuscrit, nous avons étudié la question des mécanismes de sensibilité à AsiDNA, et nous avons identifié l’instabilité génétique, générée essentiellement par des défauts dans les voies de réparation des CDBs, comme caractéristique majeure pour être sensible à AsiDNA dans différents modèles de cellules et de xénogreffes. De façon intéressante, l’instabilité génétique ne corrélait pas avec la sensibilité aux PARPi, qui présentaient également un profil d’action différent d’AsiDNA. En se basant sur ces différences, et sur le mode d’action d’AsiDNA agissant en tant qu’inhibiteur de la voie RH, la combinaison de ces deux molécules permettrait de s’affranchir de la restriction génétique (DRH) essentielle pour l’efficacité des PARPi. Pour valider cette hypothèse, nous avons montré par des analyses moléculaires que l’olaparib, un PARPi, et AsiDNA préviennent le recrutement au niveau des sites des dommages de XRCC1 et de RAD51/53BP1, respectivement. La combinaison de ces deux inhibiteurs permettait l’accumulation des dommages non réparés résultant en une augmentation de la mort de cellules tumorales de différentes origines, et un retard significatif de la croissance des xénogreffes. Cependant, les cellules non tumorales ne présentaient ni une augmentation des dommages ni de la mort cellulaire. Ces résultats soulignent l’intérêt thérapeutique de la combinaison d’AsiDNA avec les PARPi qui permettrait de s’affranchir de la dépendance au statut DRH et d’élargir leur champ d’application. Dans cette thèse, nous avons également traité la question de la résistance acquise à AsiDNA. En effet, contrairement à l’imatinib et au 6-thioguanine, nous n’avons pas isolé de clones résistants à AsiDNA après des expériences de mutagénèse ou après des traitements répétés sur différents modèles cellulaires. Un tel comportement défie notre acceptation commune de la théorie Darwinienne pour expliquer la résistance des cellules tumorales aux traitements. / Defects in the DNA repair pathways are now widely exploited for the treatment of cancer. Indeed, the ability of tumors to repair the damage induced by genotoxic treatments (chemotherapy and radiotherapy) gives them an intrinsic or acquired resistance to these treatments. Developing DNA repair inhibitors would help to counteract this resistance and sensitize tumors to these conventional therapies. Poly(ADP-ribose) polymerase inhibitors (PARPi), first candidates for this family of DNA repair inhibitors, have shown encouraging results but are nevertheless restricted to a tumor subpopulation with Deficiencies in the Homologous Recombination repair pathway (HRD). In addition, resistances to these PARPi were observed following the reactivation of the HR pathway or alternative pathways. It is therefore urgent to develop more effective agents to limit the resistance problem. In the laboratory, we have identified a new class of DNA repair inhibitors, Dbait, consisting of a small double-stranded DNA molecule that mimics a double-strand break (DSB). AsiDNA, a molecule of the Dbait family, acts by hijacking and hyper activating the PARP protein and its partners, as well as DNA-PK protein that modifies chromatin, thereby inhibiting recruitment at the damage site of several DNA repair proteins. In this manuscript, we studied the issue of mechanisms of sensitivity to AsiDNA, and we identified the genetic instability, generated mainly by defects in the DSBs’ repair, as major feature to be sensitive to AsiDNA in different models of tumor cells and xenografts. Interestingly, genetic instability does not correlate with sensitivity to PARPi, which also had a different action profile than AsiDNA. Based on these differences, and on the mode of action of AsiDNA acting as an inhibitor of the HR pathway, the combination of these two molecules would allow bypassing the genetic restriction (HRD) essential for PARPi efficiency. To validate this hypothesis, we have shown by molecular analyzes that olaparib, a PARPi, and AsiDNA prevent the recruitment at damage sites of the repair proteins XRCC1 and RAD51 / 53BP1, respectively. The combination of these two inhibitors allowed the accumulation of unrepaired damage resulting in an increase of tumor cells’ death, and a significant delay in the growth of xenografts. However, non-tumor cells were not sensitive to this combined treatment. These results highlight the therapeutic interest of combining AsiDNA with PARPi to recapitulate synthetic lethality in all tumors independently of their HR status. In this thesis, we also addressed the issue of acquired resistance to AsiDNA. Indeed, contrary to imatinib and 6-thioguanine, we didn’t recover resistant clones to AsiDNA after mutagenesis or after repeated cycles of treatment on different cell models. Such behavior challenges our common acceptation of a Darwin evolution theory to explain tumor cells resistance to treatment.
63

Évaluation, à partir de modélisations nanodosimétriques, de l'influence de la compaction de la chromatine sur les effets radio-induits précoces et extension aux effets tardifs (réparation des dommages à l’ADN et mort cellulaire). / Evaluation, from nanodosimetric modeling, of the influence of chromatin compaction on early radiation-induced effects and extension to late effects (DNA damage repair and cell death).

Tang, Nicolas 02 October 2019 (has links)
Ce travail de thèse s'inscrit dans le cadre d'une recherche fondamentale visant à améliorer la compréhension des mécanismes d'interaction des rayonnements ionisants avec la matière biologique en s’intéressant à la prédiction par simulations numériques des dommages précoces radio-induits à l’ADN. Dans un premier temps, une étude sur le rôle des différents niveaux de compaction de la chromatine (hétérochromatine et euchromatine) dans l’induction de ces premiers effets, à savoir les cassures de brins de l’ADN, est proposée. De nouveaux modèles géométriques réalistes de noyaux cellulaires intégrant la compaction de la chromatine ont donc été créés et utilisés dans une chaîne de calcul, basée sur le code Monte Carlo ouvert et généraliste Geant4 et son extension Geant4-DNA, permettant de simuler les étapes physique, physico-chimique et chimique menant aux cassures de brin. Les développements effectués dans cette thèse ont également permis d’étudier l’impact de plusieurs types de rayonnement (protons, alphas, photons) sur les dommages radio-induits. Les différents résultats ont été confrontés à des données expérimentales et en particulier à celles obtenues par l’équipe de radiobiologistes de l’IRSN. Enfin, une étude portant sur les effets plus tardifs comme la réparation de l’ADN et la mort cellulaire a été réalisée par l’utilisation conjointe de la chaîne de calcul et de certains modèles paramétriques issus de la littérature. Ainsi, les résultats obtenus dans cette thèse ont permis d’acquérir de nouvelles connaissances et de développer des outils de calcul qui seront bientôt disponibles en accès libre à la communauté scientifique afin de prédire des effets biologiques de plusieurs types de rayonnement dans la perspective d’améliorer les modèles de risque. / This thesis work is part of a fundamental research aimed at improving the understanding of the mechanisms of interaction of ionizing radiation with biological matter by focusing on the prediction of early radiation-induced DNA damage by numerical simulations. As a first step, a study on the role of the different levels of chromatin compaction (heterochromatin and euchromatin) in the induction of these early effects, namely DNA strand breaks, is proposed. New realistic geometric models of cell nuclei integrating chromatin compaction have therefore been created and used in a calculation chain, based on the open source and general purpose Monte Carlo code Geant4 and its extension Geant4-DNA, to simulate the physical, physico-chemical and chemical stages leading to strand breaks. Developments in this thesis have also allowed studying the impact of several types of radiation (protons, alphas, photons) on radiation-induced damage. The various results were compared with experimental data and in particular those obtained by the IRSN team of radiobiologists. Finally, a study on later effects such as DNA repair and cell death was carried out using both the calculation chain and some parametric models from the literature. Thus, the results obtained in this thesis have made it possible to acquire new knowledge and to develop calculation tools that will soon be delivered in free access to the scientific community in order to predict the biological effects of several types of radiation with the aim of improving risk models.
64

Etudes des fonctions du facteur de transcription YB-1, de l'ADN glycosylase hNTH1 et de la topoisomerase humaine I dans le contexte de la résistance aux drogues et en relation avec les voies de réparation de l'ADN / Evaluation of YB-1 transcriptional factor, DNA glycosylase hNTH1 and human topoisomerase I functions in relation to drug resistance and DNA repair mechanisms

Senarisoy, Muge 27 September 2018 (has links)
La résistance acquise aux traitements anticancéreux représente un problème clinique majeur. Les voies de réparation de l'ADN fournissent un mécanisme de résistance, mais celle-ci peut aussi résulter de mutations ou d'une expression réduite de la protéine ciblée. La surexpression ou la localisation nucléaire de la Y-Box binding (YB-1) protéine est considérée comme un marqueur pronostique de chimiorésistance de la tumeur. YB-1 interagit avec plusieurs partenaires ; dans cette étude, nous nous sommes concentrés sur son interaction avec l'enzyme de réparation de l'ADN NTH1 (hNTH1) et l'ADN topoisomérase I (hTopoI), deux enzymes stimulées par YB-1. L'abondance du complexe hNTH1/YB-1 est accrue dans les cellules tumorales résistantes au cisplatine. La TopoI humaine est une enzyme essentielle impliquée dans la régulation cellulaire du surenroulement de l'ADN et est la cible de plusieurs agents anticancéreux. YB-1 augmente la sensibilité à l'inhibiteur de TopoI, la camptothécine, dans les tumeurs. Nous avons caractérisé les complexes YB-1/hNTH1 et YB-1/hTopoI in vitro et in vivo en utilisant des mesures de transfert d'énergie par résonance en fluorescence (ou FRET) pour identifier et développer de nouvelles stratégies pour le traitement de tumeurs chimio-résistantes. Nous avons développé et optimisé un biosenseur original basé sur le FRET pour cribler deux chimiothèques de taille moyenne afin d’identifier des inhibiteurs potentiels du complexe hNTH1/YB-1. Plusieurs «hits» ont été identifiés qui réduisent de façon significative le niveau de FRET de notre biosenseur. Pour certains de ces composés, nous avons reproduit ces résultats à partir de poudres, effectué des courbes dose-réponse et validé leurs actions en tant qu'inhibiteurs de l'interface hNTH1/YB-1 en utilisant d'autres tests d’interactions. Ensemble nos résultats démontrent que YB-1 interagit directement et stimule des enzymes de la réparation de l'ADN et du relaxation de l’ADN, et que cibler l’interface YB-1/hNTH1 représente une nouvelle stratégie intéressante pour le développement de traitements anticancéreux. / Acquired resistance to anti-cancer therapy is common and is a major clinical issue. Functional DNA repair pathways provide a common mechanism for drug resistance, but it can also result from mutations or reduced expression of the targeted protein. The overexpression or nuclear localisation of the multifunctional Y-box binding protein (YB-1) is considered as a prognostic marker for drug resistance in tumours. YB-1 has several interaction partners in cells; in this study, we have focused on its interaction with the human DNA repair enzyme NTH1 (hNTH1) and human DNA topoisomerase I (hTopoI), two enzymes that have been shown to be stimulated by YB-1. The abundance of the hNTH1/YB-1 complex was shown to increase in cisplatin-resistant tumour cells. Human TopoI is an essential enzyme involved in cellular regulation of DNA supercoiling and is the target of several anti-cancer agents. YB-1 enhances the activity of hTopoI and its sensitivity to hTopoI inhibitor, camptothecin in tumour cells. We have characterised the YB-1/hNTH1 and YB-1/hTopoI complexes in vitro and in vivo using Fluorescence Resonance Energy Transfer (FRET) measurements to identify and develop new strategies for the treatment of drug-resistant tumours. We also designed and optimised an original FRET-based biosensor to screen two medium-sized chemical libraries in order to find potential inhibitors of the hNTH1/YB-1 complex. Several “hits” were identified that significantly reduced the FRET level of our biosensor. For some of these compounds, we have reproduced these results starting from powders, have performed dose-response curves and have validated their actions as inhibitors of the hNTH1/YB-1 interface using alternative binding assays. Taken together, our results demonstrate that YB-1 directly interacts and stimulates a DNA repair and a DNA relaxing enzyme and targeting the YB-1/hNTH1 interface represents an interesting new strategy for the development of anti-cancer drugs.
65

Allosteric communication within cancer therapeutic target PARP1 : mechanism of catalytic activation and modulation of allostery by inhibitors

Rouleau-Turcotte, Elise 08 1900 (has links)
L’ADN contient l’information génétique essentielle au développement et au bon fonctionnement de tout organisme vivant. Cependant, l’ADN peut être endommagé ou modifié par une exposition régulière à différents facteurs tels que la lumière du soleil, la pollution, la radiation, etc. La cellule a ainsi développé des mécanismes de réparation très efficaces puisqu’un ADN sain est essentiel pour la santé d’un organisme. La protéine humaine PARP1 est une enzyme clé de la réparation de l’ADN. PARP1 détecte rapidement les dommages à l’ADN en s’y liant, ce qui stimule son activité catalytique. PARP1 catalyse la formation de chaînes d’ADP-ribose qui sont ajoutées à PARP1, ainsi que d’autres protéines, en tant que modification post-traductionnelle. Les chaînes d’ADP- ribose permettent la décondensation de la chromatine ainsi que le recrutement de facteurs de réparation à l’ADN endommagé. PARP1 possède plusieurs domaines régulateurs en plus de son domaine catalytique, le domaine catalytique lui-même se divisant en un domaine hélicoïdal (HD) ainsi qu’un domaine ADP- ribosyltransférase. L’augmentation de l’activité catalytique de PARP1, à la suite de sa liaison à l’ADN endommagé, implique qu’un signal allostérique se transmette à travers ses différents domaines. Le HD joue un rôle essentiel dans le relais de cette communication allostérique puisque c’est ultimement un changement de conformation du HD (i.e « ouverture ») qui révèle le site actif et active l’enzyme. De plus, il a été démontré que les inhibiteurs de PARP1 peuvent moduler l’affinité de l’enzyme pour l’ADN endommagé. Certains inhibiteurs peuvent ainsi provoquer la « capture » de l’ADN par PARP1, un phénomène qui requiert la présence du HD et qui est particulièrement toxique pour les cellules cancéreuses présentant des défauts de réparation de l’ADN. Pour cette raison, la mort cellulaire induite par les inhibiteurs de PARP1 est un traitement prometteur et quatre inhibiteurs sont déjà utilisés pour traiter le cancer des ovaires et du sein. Cependant, le mécanisme précis derrière la capture de l’ADN par PARP1 est encore nébuleux et nécessite de plus amples recherches. Puisque la capture de l’ADN par PARP1 requiert le relais d’un signal allostérique par le HD, et que l’ouverture du HD participe à cette communication, il est donc essentiel de comprendre les changements de conformations effectués par ce domaine. Nous avons ainsi obtenu pour la première fois une structure atomique de PARP1 en conformation active. Celle-ci montre que l’ouverture du HD amène la formation d’une interface additionnelle entre ce domaine et les autres domaines régulateurs de PARP1. Ainsi, entraver la formation de cette nouvelle interaction, par des mutations ponctuelles, diminue grandement l’activité catalytique de PARP1 lié à l’ADN, ce qui suggère que l’interface participe à la communication allostérique de l’enzyme. Tel que mentionné plus haut, les inhibiteurs de PARP1 peuvent moduler de manières différentes l’affinité de PARP1 pour les dommages à l’ADN et ainsi influencer distinctement la communication allostérique de l’enzyme. Nous avons caractérisé une nouvelle série d’inhibiteurs de PARP1 et évalué leur capacité à moduler l’affinité de PARP1 pour l’ADN endommagé. Nos travaux démontrent qu’un inhibiteur volumineux occupant le site actif n’augmentera pas nécessairement l’affinité de PARP1 pour les dommages à l’ADN. Leur capacité à favoriser la capture de l’ADN dépend plutôt de leur interaction avec la région du HD voisine au site actif. En résumé, nos travaux participent à l’amélioration des connaissances concernant l’activation catalytique de PARP1 et la communication allostérique. Une meilleure compréhension de l’allostérie de PARP1 permettra la conception de médicaments ayant la toxicité désirée pour tuer les cellules cancéreuses. / DNA contains the genetic instructions for the development and proper function of all living organisms. However, DNA can be broken and modified in harmful ways through daily exposures to exterior stresses such as sun light, pollution, radiation, etc. Since stable and undamaged DNA is essential for the health of an organism, cells have developed repair mechanisms to ensure that DNA damage is taken care of efficiently. The human protein PARP1 is a key enzyme that contributes to DNA repair. PARP1 rapidly detects DNA lesions which greatly stimulates its catalytic activity. PARP1 catalyzes the formation of chains of ADP-ribose that are attached covalently to PARP1 itself, or other target proteins, as a posttranslational modification. The chains of ADP-ribose allow for the recruitment of chromatin remodelling factors and repair factors to process the DNA lesions. PARP1 carries multiple regulatory domains in addition to its catalytic domain, with the catalytic domain itself composed of the helical domain (HD) and the ADP-ribosyltransferase fold. DNA damage binding greatly stimulates PARP1 catalytic activity, which requires that an allosteric signal is relayed across the enzyme’s domains. Interestingly, the HD has been found to play an essential role in the PARP1 allostery. The HD undergoes a change of conformation (i.e. opening) following PARP1 DNA damage binding which reveals the active site. Additionally, inhibitors binding the active site of the enzyme can modulate PARP1 DNA binding affinity. Some inhibitors can induce PARP1 DNA “trapping”, a phenomenon that requires the HD and appears particularly toxic to cancer cells bearing DNA repair deficiencies. Cell death induced by PARP1 inhibitors is a promising cancer treatment and four inhibitors have approval for clinical use against ovarian and breast cancers. However, the precise mechanism underlying PARP1 trapping on DNA is still unclear and requires further research. Since PARP1 trapping requires the presence of the HD, and that the HD opening is involved in relaying the allosteric signal, it remains essential to characterize its change of conformation. We have obtained for the first time atomic structures of PARP1 in a catalytically active state. Crystal structures show that the HD in open conformation forms an additional interdomain interface. Mutating this interface prevents PARP1 strong catalytic activation following DNA damage binding, suggesting that the allosteric communication is impaired. Additionally, these structures reveal how the HD active conformation leads to the reveal of the active site in the ART domain. As mentioned above, PARP1 inhibitors can modulate the enzyme’s DNA binding affinity and therefore impact its allosteric communication. We have characterized a series of novel inhibitors and tested their propensity to increase PARP1 DNA binding affinity. Our work highlights that bulky inhibitors that fill the active site will not necessarily promote PARP1 affinity for DNA lesions. Rather, it appears that inhibitors may trigger DNA trapping via their interaction with a neighboring region of the HD. Overall, our work deepens our understanding of PARP1 catalytic activation and allosteric communication. Properly understanding how PARP1 trapping occurs will help the design of specific drugs with the desired toxicity to kill cancer cells.
66

The role of Organic Cation Transporters in the pharmacokinetics of clinically relevant DNA damaging agents : in vivo and in silico studies

Papaluca, Arturo 03 1900 (has links)
No description available.
67

Characterization of the AP endonuclease enzyme APN-1 from C. elegans

Patel, Devang January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
68

Le maintien de la stabilité génomique du plastide : un petit génome d’une grande importance

Lepage, Étienne 04 1900 (has links)
Chez les plantes, le génome plastidique est continuellement exposé à divers stress mutagènes, tels l’oxydation des bases et le blocage des fourches de réplication. Étonnamment, malgré ces menaces, le génome du plastide est reconnu pour être très stable, sa stabilité dépassant même celle du génome nucléaire. Néanmoins, les mécanismes de réparation de l’ADN et du maintien de la stabilité du génome plastidique sont encore peu connus. Afin de mieux comprendre ces processus, nous avons développé une approche, basée sur l’emploi de la ciprofloxacine, qui nous permet d’induire des bris d’ADN double-brins (DSBs) spécifiquement dans le génome des organelles. En criblant, à l’aide de ce composé, une collection de mutants d’Arabidopsis thaliana déficients pour des protéines du nucléoïde du plastide, nous avons identifié 16 gènes vraisemblablement impliqués dans le maintien de la stabilité génomique de cette organelle. Parmi ces gènes, ceux de la famille Whirly jouent un rôle primordial dans la protection du génome plastidique face aux réarrangements dépendants de séquences de microhomologie. Deux autres familles de gènes codant pour des protéines plastidiques, soit celle des polymérases de types-I et celle des recombinases, semblent davantage impliquées dans les mécanismes conservateurs de réparation des DSBs. Les relations épistatiques entre ces gènes et ceux des Whirly ont permis de définir les bases moléculaires des mécanismes de la réparation dépendante de microhomologies (MHMR) dans le plastide. Nous proposons également que ce type de mécanismes servirait en quelque sorte de roue de secours pour les mécanismes conservateurs de réparation. Finalement, un criblage non-biaisé, utilisant une collection de plus de 50,000 lignées mutantes d’Arabidopsis, a été réalisé. Ce criblage a permis d’établir un lien entre la stabilité génomique et le métabolisme des espèces réactives oxygénées (ROS). En effet, la plupart des gènes identifiés lors de ce criblage sont impliqués dans la photosynthèse et la détoxification des ROS. Globalement, notre étude a permis d’élargir notre compréhension des mécanismes du maintien de la stabilité génomique dans le plastide et de mieux comprendre l’importance de ces processus. / The plant plastidial genome is constantly threatened by many mutagenic stresses, such as base oxidation and replication fork stalling. Despite these threats, the plastid genome has long been known to be more stable than the nuclear genome, suggesting that alterations of its structure would have dramatic consequences on plant fitness. At the moment, little is known about the genes and the pathways allowing such conservation of the organelle genome sequences. To gain insight into these mechanisms, we developed an assay which uses ciprofloxacin, a gyrase inhibitor, to generate DNA double-strand breaks (DSBs) exclusively in plant organelles. By screening mutants deficient for proteins composing the plastid nucleoid on ciprofloxacin, we were able to identify 16 candidate genes, most likely involved in the repair of DSBs in plastid. Among these genes, those of the Whirly family of single-stranded DNA binding proteins are shown to be key factors in protecting the genome from error-prone microhomology mediated repair (MHMR). Two other family of proteins, the plastid type-I polymerases and the plastid recombinases, seem to be involved in the conservative repair pathways. The evaluation of the epistatic relationship between those two genes and the Whirly genes led us to define the molecular basis of MHMR and to propose that they might act as a backup system for conservative repair pathways. Finally, a non-biased screen, using 50,000 different insertion lines, allowed the identification of numerous genes that were already associated with ROS homeostasis, suggesting a link between DNA repair and ROS imbalance. Globally, our study shed light on the mechanisms that allow the maintenance of plastid genome, while explaining the importance of such conservation of the plastid genome.
69

Biochimie analytique de complexes de réparation de l'ADN : élaboration d'un système analytique intégré / Biochemistry of DNA double-strand breaks repair complexes : elaboration of an analytical system

Berthelot, Vivien 12 December 2014 (has links)
Dans les cellules eucaryotes, les cassures double-brin sont réparée selon deux voies principales : la recombinaison homologue et la jonction des extrémités non homologues, toutes deux bien connues dans la littérature. Cependant quelques zones d'ombres persistent quant à deux aspects singuliers de leur mise en œuvre :- Si ces deux mécanismes peuvent opérer dans les cellules, quels sont les déterminismes qui président au choix d'une voie de réparation plutôt que de l'autre ?- Dans le cas où les cassures double-brin sont induites dans l'ADN par des rayonnements ionisants – comme ceux employés en radiothérapie anticancéreuse – coment s'opère la réparation lorsque les extrémités générées ne sont pas compatibles avec une ligation immédiate ? Connaître les protéines impliquées dans ce cas permettrait d'élaborer des adjuvants à la thérapie anticancéreuse.Afin de contribuer à répondre à ces questionnements, nous avons voulu élaborer un système analytique intégré qui permît 1) le recrutement spécifique de complexes de réparation des cassures double-brin de l'ADN sur des phases chromatographiques constituées au laboration, 2) la résolution de ces complexes sur gel d'acrylamide non-dénaturants et leur visualisation et 3) la caractérisation biochimique fine des complexes séparés. La méthodologie élaborée au cours de cette thèse a concerné chacun des trois points ci-dessous : 1) nous avons conçu et mis en œuvre un système chromatographique nous permettant de distinguer les protéines recrutées spécifiquement sur des oligonucléotides duplexes d'ADN dotés d'extrémités libres de l'ADN (mimant des cassures double-brin) des autres protéines se fixant sur la séquence interne des oligonucléotides ; 2) nous avons adapté à notre problématique une méthodologie d'électrophorèse non-dénaturante permettant la résolution des complexes purifiés tout en garantissant leur intégrité au cours de la migration ; 3) grâce à la visualisation directe des complexes résolus dans le gel, nous avons pu déterminer leur composition en protéines par spectrométrie de masse.L'étude biochimique des complexes purifiés a démontré que les complexes purifiés étaient fonctionnels, c'est à dire capable de liguer deux oligonucléotides entre eux. La fouille des données de spectrométrie de masse, obtenues à partir d'un grand nombre d'expériences indépendantes, nous a permis de montrer qu'ils étaient de la physiologie de l'ADN et particulièrement représentatifs de la diversité des mécanismes de réparation.De manière intéressante, nous avons pu observer que certaines protéines recrutées spécifiquement sur les mimes de cassures double-brin de l'ADN, ne sont pourtant pas connues pour intervenir dans les processus de réponse aux dommages de l'ADN (synthèse de nucléotides, checkpoint, topologie de l'ADN, cytosquelette).Le rôle des protéines évoquées ci-dessus sera prochainement caractérisé in cellulo notamment avec des stratégies de type RNAi. D'autre part, nous utiliserons les développements méthodologiques décrits ci-dessus pour étudier les mécanismes de réparation des cassures double-brin radio-induites, tels qu'ils sont mis en jeu dans les cellules tumorales en constituants de nouvelles phases chromatographiques avec des oligonucléotides irradiés. / In eucaryotic cells, DNA double-strand breaks are repaired through two main pathways : the homologous recombination and the non homologous end joining . Altough these pathways are well characterized, two particular aspects of the repair remain poorly understood :- If two separated pathways may occur in the cells, which mechanism(s) govern the choice of the pathway that will ultimately lead to the repair ?- If the double-strand break is induced by ionizing radiations – as those employed in anti-cancerous radiotherapy – how does the repair occur if the DNA ends at the edge of the break are not compatible with a direct ligation ? A proper knowledge of the proteins involved in this repair would allow the development of additives, useful to increase the efficiency of the radiotherapy.To investigate these questions, we designed a new analytical system allowing : 1) the specific recruitment of DNA double-strand break repair complexes on home-made chromatographic phases, 2) the separation of these complexes in a non-denaturing polyacrylamide gel and their subsequent visualization and 3) their biochemical characterization.The methodology developped in this work has been focused on the following points : 1) we designed and implemented a chromatographic system allowing the distinction between proteins recruited onto duplex DNA oligonucleotide with free DNA ends (mimicking DNA double-strand breaks) and proteins fixed onto the internal sequence of the same oligonucleotides ; 2) we adapted to our problematic a methodology of non-denaturing electrophoresis thus allowing the separation of the purified complexes while guaranteeing their integrity during the migration, 3) we also determined their composition by mass spectrometry after their visualization.The biochemical study has shown that the purified complexes were still functionnal, that is they were able to efficiently ligate two oligonucleotides. The study of the data provided by the mass spectrometry analysis of independant experiences proved that the complexes belonged to the DNA physiology and were especially representative of the diversity of the DNA repair pathways.Interestingly, we observed that some of the protein specifically recruited onto the the double-strand breaks were not known to be involved in the DNA repair (nucleotide synthesis, checkpoint, DNA topology, cytoskeleton).The rôle of these proteins should be characterized in cellulo especially with siRNA. On the other hand we will also use the methodological development described above to study the repair mechanisms of radio-induced DNA double-strand breaks occuring in the irradiated tumorous cells. To achieve this study we will elaborate new chromatographic phases with pre-irradiated oligonucleotides.
70

L'hétérotrimère XPC/Rad23B/centrine 2 : un complexe multifonctionnel dans la réponse cellulaire humaine aux agents génotoxiques

Renaud, Emilie 03 October 2008 (has links) (PDF)
La réponse cellulaire humaine aux agents génotoxiques est essentielle pour le maintien de l'intégrité génétique. Elle implique une régulation coordonnée de nombreuses voies métaboliques qui déclencheront un arrêt du cycle cellulaire et la réparation des macromolécules endommagées, l'inflammation et l'apoptose. La Réparation Globale du Génome par Excision de Nucléotides (GG-NER) est une voie majeure de réparation de l'ADN pour la prévention de la cancérogenèse car elle élimine une grande variété de lésions induites par les rayonnements ultraviolets, des carcinogènes chimiques et d'autres facteurs de notre environnement. Ces lésions sont reconnues par XPC, qui est le premier facteur protéique impliqué dans cette voie de réparation. XPC forme un complexe avec Rad23B. Nous avons montré qu'in vivo le complexe XPC/Rad23B comportait également la centrine 2. Le mode d'interaction de XPC avec la centrine 2 est très conservé de la levure à l'homme indiquant une participation de ce complexe à un processus biologique général à tous les eucaryotes. La centrine 2 est impliquée dans la division cellulaire en régulant la duplication du centrosome. Rad23B intervient dans le contrôle stabilité/dégradation des protéines par le protéasome 26S. Nous avons montré que l'existence de ce complexe ancré à la chromatine permettait son accumulation immédiate sur les sites des lésions induites par les UV ou après l'impact d'un laser à 405 nm. Cette localisation dépend uniquement de la présence de XPC. Nous avons montré que XPC régulait le niveau basal et l'équilibre de la centrine 2 entre le noyau et le centrosome. Ceci pourrait être primordial pour coordonner la réparation de l'ADN et la division cellulaire. De plus, nous avons observé que Rad23B promouvait la survie cellulaire en stabilisant XPC après une irradiation aux UVC. Enfin, nos résultats montrent que la présence de XPC est requise pour l'accumulation des transcrits centrine 2 et Rad23B suite à une irradiation aux UV. Ceci conforte l'idée que XPC pourrait faire partie d'un système de signalisation qui induit l'expression de gènes après la reconnaissance des dommages de l'ADN. Cet hétérotrimère regroupe donc des protéines aux fonctions distinctes qui sont localisées précocement sur les dommages de l'ADN. Nous proposons que ce complexe coordonne différents processus biologiques immédiatement après la reconnaissance des lésions par XPC : la régulation du cycle cellulaire par la centrine 2, le contrôle stabilité/dégradation de protéines, dont XPC, par Rad23B et le déclenchement de la réparation et l'induction de l'expression de gènes par XPC. Des études récentes montrent que XPC serait également impliquée dans d'autres voies de réparation comme la réparation par excision de bases et la réparation des cassures double-brin. L'ensemble de ces observations suggère que ce complexe multifonctionnel pourrait avoir un rôle global dans la réponse cellulaire aux agents génotoxiques.

Page generated in 0.1722 seconds