• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 9
  • 8
  • Tagged with
  • 42
  • 39
  • 36
  • 30
  • 28
  • 18
  • 18
  • 18
  • 15
  • 11
  • 10
  • 10
  • 10
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Characterization and quantification of crystalline and amorphous phase assemblage in ternary binders during hydration

Qoku, Elsa 21 August 2019 (has links)
This dissertation aims to provide a comprehensive understanding of the evolution of solid phase composition with ongoing hydration in OPC‒rich and CAC‒CsHx rich ternary binders. The work is based on a multi‒method approach including XRD, TGA, MAS NMR spectroscopy, calorimetry, microscopy and thermodynamic calculations. From the combinations of results obtained from the different analytical methods, a schematic representation of the phase evolution with ongoing hydration in OPC and CAC‒CsHx rich combinations was achieved, along with plots showing the distributing hydrate phases in the ternary diagram OPC‒CAC‒CsHx. C‒S‒H, portlandite, ettringite and AFm phases stand as main hydration products in the OPC‒rich combinations. C‒S‒H accounts for ~70% of the X‒ray amorphous fraction. In the CAC‒CsHx rich combinations ettringite along with AH3, monosulphoaluminate, strätlingite and hydrogranet phases precipitate. The high portions of X‒ray amorphous fractions in such combinations were mainly attributed to AH3 gel and AFm phases. Additionally, comparison of QXRD results with stoichiometric calculations, thermal analysis and 27Al NMR revealed that a portion of the formed ettringite and portlandite are in an X‒ray amorphous state during hydration. The variation of CAC type and water content strongly influences the hydration mechanism and phase assemblage in the ternary binders, whereas differences in mixtures with different sulphate sources are mainly related to the different dissolution kinetics of the sulphate.
32

Dynamics of Highly Charged Finite Systems Induced by Intense X-ray Pulses

Camacho Garibay, Abraham 15 September 2016 (has links)
The recent availability of X-ray Free Electron Lasers (XFELs) has opened a completely new and unexplored regime for the study of light-matter interactions. The extremely bright intensities delivered by XFELs can couple many photons into the target, turning well known interactions such as photoionization and scattering into new, non-linear, complex many-body phenomena. This thesis reports theoretical investigations aiming to improve the understanding of the fundamental processes and dynamics triggered by intense X-ray pulses, with a special focus in finite systems such as molecules and clusters. Sequential multiple photoionization in atomic clusters was investigated, where previous observations were extended for higher charge states where direct photoionization is frustrated. Through a rate equation study and subsequent molecular dynamics simulations, it was found that frustrated ionization is partially responsible for the low-energy peak observed in the electron energy spectrum. The influence of plasma evaporation over the formation of the sequential low-energy peak was also investigated, identifying the effects of the system size and photon energy. Multiple channel ionization was also investigated for the case of fullerenes. This is done through a series of studies, starting from a simplified rate equation scheme, and culminating with full molecular dynamics simulations. From these results, a good insight was obtained over the origin, physical meaning, and relevant parameters that give rise to the complicated features observed in the electronic spectra. The mechanisms responsible of all these features are expected to be present in other systems, making these results quite general. Diffractive imaging of biomolecules was studied in a final step, with a particular focus on the influence of intramolecular charge transfer mechanisms. To this end a conformer of T4 Lysozyme was used, a representative enzyme with well known structure. Charge migration is found to allow for additional processes such as proton ejection, a mechanism which enables an efficient release of energy from the system. This mechanism considerably suppresses structural damage for heavy ions, improving the quality of the measured diffraction patterns.
33

Nanofocusing Refractive X-Ray Lenses

Boye, Pit 05 February 2010 (has links)
This thesis is concerned with the optimization and development of the production of nanofocusing refractive x-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution x-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established. In this work, the theoretical basics of x-rays and their interaction with matter are described. Especially, aspects of synchrotron radiation are emphasized. Important in x-ray microscopy are the different optics. The details, advantages and disadvantages, in particular those of refractive lenses are given. To achieve small x-ray beams well beyond the 100nm range a small focal length is required. This is achieved in refractive lenses by moving to a compact lens design where several single lenses are stacked behind each other. The, so-called nanofocusing refractive lenses (NFLs) have a parabolic cylindrical shape with lateral structure sizes in the micrometer range. NFLs are produced by using micro-machining techniques. These micro-fabrication processes and technologies are introduced. The results of the optimization and the final fabrication process for silicon lenses are presented. Subsequently, two experiments that are exemplary for the use of NFLs, are introduced. The first one employs a high-resolution scanning fluorescence mapping of a geological sample, and the second one is a coherent x-ray diffraction imaging (CXDI) experiment. CXDI is able to reconstruct the illuminated object from recorded coherent diffraction patterns. In a scanning mode, referred to as ptychography, this method is even able to reconstruct the illumination and the object simultaneously. Especially the reconstructed illumination and the possibility of computed propagation of the wavefield along the focused beam yields findings about the optic used. The collected data give interesting information about the lenses and their aberrations. Comparison of simulated and measured data shows good agreement. Following this, the fabrication process of diamond lenses is described. Diamond with its extraordinary properties is well-suited as lens material for refractive lenses. Finally, a concluding overview of the present and future work of nanofocusing lenses is given. / Diese Dissertation beschäftigt sich mit der Entwicklung und Optimierung der Herstellungsprozesse von refraktiven nanofokussierenden Röntgenlinsen. Diese aus Silizium oder Diamant hergestellten Optiken, sind hervorragend für hochauflösende Röntgen\-mikroskopie geeignet. Ziel dieser Arbeit ist es, einen reproduzierbaren Herstellungsprozess zu erarbeiten, der es erlaubt, Siliziumlinsen von hoher Präzision, Qualität und Quantität zu fertigen. Zusätzlich soll ein Prozess für Diamantlinsen entwickelt und etabliert werden. In der folgenden Arbeit werden die theoretischen Grundlagen von Röntgenstrahlung und deren Wechselwirkung mit Materie beschrieben. Spezielle Aspekte der Synchrotronstrahlung werden hervorgehoben. Wichtig im Zusammenhang mit Röntgenmikroskopie sind die verschieden Optiken. Deren Details, Vor- und Nachteile, insbesondere die der brechenden Linsen, werden genannt. Zur Erzeugung fein gebündelter Röntgenmikrostrahlen im Bereich unter 100nm lateraler Größe benötigt man sehr kurze Brennweiten. Mit brechenden Linsen lässt sich dieses mittels eines kompakten Linsendesigns von vielen hintereinander gestapelten Einzellinsen realisieren. Die so genannten refraktiven nanofokussierenden Linsen (NFLs) besitzen eine parabolische Zylinderform mit lateralen Strukturgrößen im Mikrometerbereich. NFLs werden mittels spezieller Technologien der Mikroprozessierung hergestellt. Diese Mikrostrukturierungsverfahren werden mit ihren jeweiligen Prozessschritten und zugehörenden Technologien vorgestellt. Die Ergebnisse der Optimierung und der endgültige Mikrostrukturierungsprozess für Siliziumlinsen werden dargelegt. Im Anschluss daran werden zwei Experimente erläutert, die beispielhaft für die Anwendung von NFLs stehen. Ersteres ist ein ortsaufgelöstes Fluoreszenzrasterexperiment einer geologischen Probe und das zweite ein kohärentes Röntgen-Beugungsexperiment (CXDI). CXDI ist in der Lage, aus kohärent aufgenommen Beugungsbildern das beleuchtete Objekt zu rekonstruieren. Kombiniert mit einem rasternden Verfahren, welches Ptychographie genannt wird, ist diese Methode in der Lage, die Beleuchtungsfunktion und das Objekt gleichzeitig zu rekonstruieren. Besonderes die rekonstruierte Beleuchtungsfunktion und die Möglichkeit der computergestützten Propagation des Wellenfeldes entlang des fokussierten Strahls, geben aufschlussreiche Informationen über die verwendete Optik. Neue Erkenntnisse über die Linsen und deren Aberrationen können so gewonnen werden. Vergleiche von simulierten mit gemessenen Daten zeigen gute Übereinstimmung. Daran anschließend erfolgt die Beschreibung der Entwicklung eines Fabrikationsprozess für Diamantlinsen. Diamant mit seinen außergewöhnlichen Materialeigenschaften ist besonders gut als Linsenmaterial für refraktive Röntgenlinsen geeignet. Abschliessend wird ein zusammenfassender Überblick über die derzeitigen und die zu erwartenden Entwicklungen bei refraktiven Linsen gegeben.
34

Magnetoelectric Coupling Mechanisms in YMn2-xFexO5 and NdFe3(BO3)4 Revealed by Resonant X-ray Diffraction

Partzsch, Sven 07 February 2014 (has links)
Multiferroic materials with a coupled ordering of electric and magnetic moments could be used to build energy-efficient, magnetic computer memory that is written with an electrical field. To understand the interaction between the magnetic and electric ordering in such materials, two examples, namely yttrium manganate YMn2O5 and neodymium iron borate NdFe3(BO3)4, are studied by means of resonant x-ray diffraction. The important role of a pure electronic contribution to the ferroelectric polarization is shown in YMn2O5. Furthermore, substitution of Fe can change the magnetic order of YMn2O5 from antiferromagnetic into ferrimagnetic, allowing the storage of easily readable magnetic information. Therefore the change of the magnetic structure upon small Fe substitution is studied. Although most of the magnetic structure of the parent compound is kept, the Fe moments have larger components along the c-direction. In NdFe3(BO3)4 the microscopic origin of the magnetoelectric coupling is addressed as the consequence of the frustration of the Fe and Nd magnetic sublattices. The application of an electrical field shifts the balance from the helical to the collinear magnetic domains, revealing again the strong magnetoelectric coupling. / Multiferroische Materialien mit einer starken magnetoelektrischen Kopplung können als energieeffizienter, magnetischer Speicher benutzt werden, welcher mit einem elektrischen Feld geschrieben wird. Um die Wechselwirkung der elektrischen mit der magnetischen Ordnung in solchen Materialien zu verstehen, werden hier zwei Beispiele, nämlich Yttriummanganat YMn2O5 und Neodymeisenborat NdFe3(BO3)4, mit resonanter Röntgenbeugung untersucht. In YMn2O5 wird die wichtige Rolle eines rein elektronischen Beitrags zur ferroelektrischen Polarisation gezeigt. Um die magnetische Struktur von YMn2O5 von antiferromagnetisch zu ferrimagnetisch zu verändern, kann Fe substituiert werden. Dies ermöglicht es, leicht zu lesende, magnetische Informationen zu speichern. Daher wurde die Änderung der magnetischen Struktur bei leichter Fe Substituierung untersucht. Auch wenn die magnetische Struktur von Fe im wesentlichen der magnetischen Struktur von Mn folgt, haben die Fe Momente größere Komponenten entlang der c-Richtung. In NdFe3(BO3)4 wird der Ursprung der starken magnetischen Kopplung als Folge der Frustration des Nd und Fe Untergitters erklärt. Das Anlegen eines elektrischen Feldes führt zur Verschiebung des Gleichgewichts von den helikalen zu den kollinearen magnetischen Domänen, welches wieder die starke magnetoelektrische Kopplung veranschaulicht.
35

Quantifizierung von DNA-Schäden an adhaerenten Zelllinien nach Bestrahlung mit 188 Re- bzw. Röntgenstrahlung unter Zugabe von Methimazol, Nicotinamid und Perchlorat durch den Comet Assay

Kahmann, Cindy 06 May 2008 (has links)
Dissertationsschrift zur Erlangung eines doctor medicinae (Dr.med.) der Medizinischen Fakultät Carl Gustav Carus der Technischen Universität Dresden
36

Epitaxial Growth and Ultrafast Dynamics of GeSbTe Alloys and GeTe/Sb2Te3 Superlattices

Bragaglia, Valeria 26 September 2017 (has links)
In dieser Arbeit wird das Wachstum von dünnen quasi-kristallinen Ge-Sb-Te (GST) Schichten mittels Molekularstrahlepitaxie demonstriert, die zu einer geordneten Konfiguration von intrinsischen Kristallgitterfehlstellen führen. Es wird gezeigt, wie es eine Strukturanalyse basierend auf Röntgenstrahlbeugungssimulationen, Dichtefunktionaltheorie und Transmissionselektronenmikroskopie ermöglicht, eine eindeutige Beurteilung der Kristallgitterlückenanordnung in den GST-Proben vorzunehmen. Das Verständnis für die Ordnungsprozesse der Gitterfehlstellen erlaubt eine gezielte Einstellung des Ordnungsgrades selbst, der mit der Zusammensetzung und der Kristallphase des Materials in Zusammenhang steht. Auf dieser Basis wurde ein Phasendiagramm mit verschiedenen Wachstumsfenstern für GST erstellt. Des Weiteren wird gezeigt, dass man eine hohe Ordnung der Gitterfehlstellen in GST auch durch Ausheizprozesse und anhand von Femtosekunden-gepulster Laserkristallisation von amorphem Material erhält, das zuvor auf einem als Kristallisationsgrundlage dienenden Substrat abgeschiedenen wurde. Diese Erkenntnis ist bemerkenswert, da sie zeigt, dass sich kristalline GST Schichten mit geordneten Kristallgitterlücken durch verschiedene Herstellungsprozesse realisieren lassen. Darüber hinaus wurde das Wachstum von GeTe/Sb2Te3 Übergittern durchgeführt, deren Struktur die von GST mit geordneten Gitterfehlstellen widerspiegelt. Die Möglichkeit den Grad der Gitterfehlstellenordung in GST gezielt zu manipulieren wurde mit einer Studie der Transporteigenschaften kombiniert. Die Anwendung von großflächigen Charakterisierungsmethoden wie XRD, Raman und IR-Spektroskopie, erlaubte die Bestimmung der Phase und des Fehlstellenordnungsgrades von GST und zeigte eindeutig, dass die Fehlstellenordnung für den Metall-Isolator-Übergang (MIT) verantwortlich ist. Insbesondere wird durch das Vergleichen von XRD-Messungen mit elektrischen Messungen gezeigt, dass der Übergang von isolierend zu leitend erfolgt, sobald eine Ordnung der Kristallgitterlücken einsetzt. Dieses Phänomen tritt in der kubischen Kristallphase auf, wenn Gitterfehlstellen in GST von einem ungeordneten in einen geordneten Zustand übergehen. Im zweiten Teil des Kapitels wird eine Kombination aus FIR- und Raman-Spektroskopie zur Untersuchung der Vibrationsmoden und des Ladungsträgerverhaltens in der amorphen und der kristallinen Phase angewendet, um Aktivierungsenergien für die Elektronenleitung, sowohl für die kubische, als auch für die trigonale Kristallphase von GST zu bestimmen. Hier ist es wichtig zu erwähnen, dass, in Übereinstimmung mit Ergebnissen aus anderen Untersuchungen, das Auftauchen eines MIT beim Übergang zwischen der ungeordneten und der geordneten kubischen Phase beobachtet wurde. Schlussendlich wurden verschiedene sogenannte Pump/Probe Technik, bei der man das Material mit dem Laser anregt und die Röntgenstrahlung oder Terahertz (THz)-spektroskopie als Sonde nutzt, angewandt. Dies dient um ultra-schnelle Dynamiken zu erfassen, die zum Verständnis der Umschaltmechanismen nötig sind. Die Empfindlichkeit der THz-Messungen hinsichtlich der Leitfähigkeit, sowohl in GST, als auch in GeTe/Sb2Te3 Übergittern zeigte, dass die nicht-thermische Natur der Übergitterumschaltprozesse mit Grenzflächeneffekten zusammenhängt und . Der Ablauf wird mit beeindruckender geringer Laser-Fluenz erreicht. Dieses Ergebnis stimmt mit Berichten aus der Literatur überein, in denen ein Kristall-zu Kristallwechsel von auf Übergittern basierenden Speicherzellen für effizienter gehalten wird als GST Schmelzen, was zu einen ultra-schwachen Energieverbrauch führt. / The growth by molecular beam epitaxy of Ge-Sb-Te (GST) alloys resulting in quasi-single-crystalline films with ordered configuration of intrinsic vacancies is demonstrated. It is shown how a structural characterization based on transmission electron microscopy, X-ray diffraction and density functional theory, allowed to unequivocally assess the vacancy ordering in GST samples, which was so far only predicted. The understanding of the ordering process enabled the realization of a fine tuning of the ordering degree itself, which is linked to composition and crystalline phase. A phase diagram with the different growth windows for GST is obtained. High degree of vacancy ordering in GST is also obtained through annealing and via femtosecond-pulsed laser crystallization of amorphous material deposited on a crystalline substrate, which acts as a template for the crystallization. This finding is remarkable as it demonstrates that it is possible to create a crystalline GST with ordered vacancies by using different fabrication procedures. Growth and structural characterization of GeTe/Sb2Te3 superlattices is also obtained. Their structure resembles that of ordered GST, with exception of the Sb and Ge layers stacking sequence. The possibility to tune the degree of vacancy ordering in GST has been combined with a study of its transport properties. Employing global characterization methods such as XRD, Raman and Far-Infrared spectroscopy, the phase and ordering degree of the GST was assessed, and unequivocally demonstrated that vacancy ordering in GST drives the metal-insulator transition (MIT). In particular, first it is shown that by comparing electrical measurements to XRD, the transition from insulating to metallic behavior is obtained as soon as vacancies start to order. This phenomenon occurs within the cubic phase, when GST evolves from disordered to ordered. In the second part of the chapter, a combination of Far-Infrared and Raman spectroscopy is employed to investigate vibrational modes and the carrier behavior in amorphous and crystalline phases, enabling to extract activation energies for the electron conduction for both cubic and trigonal GST phases. Most important, a MIT is clearly identified to occur at the onset of the transition between the disordered and the ordered cubic phase, consistently with the electrical study. Finally, pump/probe schemes based on optical-pump/X-ray absorption and Terahertz (THz) spectroscopy-probes have been employed to access ultrafast dynamics necessary for the understanding of switching mechanisms. The sensitivity of THz-probe to conductivity in both GST and GeTe/Sb2Te3 superlattices showed that the non-thermal nature of switching in superlattices is related to interface effects, and can be triggered by employing up to one order less laser fluences if compared to GST. Such result agrees with literature, in which a crystal to crystal switching of superlattice based memory cells is expected to be more efficient than GST melting, therefore enabling ultra-low energy consumption.
37

Brilliant radiation sources by laser-plasma accelerators and optical undulators

Debus, Alexander 17 July 2012 (has links) (PDF)
This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical applications, material and life sciences and is going to significantly contribute to a new generation of radiation sources and free-electron lasers (FELs).
38

Brilliant radiation sources by laser-plasma accelerators and optical undulators / Brilliante Strahlungsquellen durch Laser-Plasma Beschleuniger und optische Undulatoren

Debus, Alexander 15 October 2012 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich in Experiment und Theorie mit Laser-Plasma beschleunigten Elektronen und optischen Undulatoren zur Erzeugung von brillianter Synchrotronstrahlung. Zum ersten Mal wird experimentell nachgewießen, dass laserbeschleunigte Elektronenpulse kürzer als 30 fs sind. Ferner werden solche Elektronenpulse erstmalig in einem Demonstrationsexperiment durch einen magnetischen Undulator als Synchrotronstrahlenquelle genutzt. Aufbauend auf diesen experimentellen Erkenntnissen, sowie umfangreichen numerischen Simulationen zur Thomsonstreuung, werden die theoretischen Grundlagen einer neuartigen Interaktionsgeometrie für Laser-Materie Wechselwirkungen entwickelt. Diese neue, in der Anwendbarkeit sehr allgemeine Methode basiert auf raum-zeitlicher Laserpulsformung durch nichtlineare Winkeldispersion wie diese durch VLS- (varied-line spacing) Gitter erzeugt werden kann und hat den Vorteil nicht durch die Fokussierbarkeit des Lasers (Rayleighlänge) begrenzt zu sein. Zusammen mit laserbeschleunigten Elektronen ermöglicht dieser traveling-wave Thomson scattering (TWTS) benannte Ansatz neuartige, nur auf optischer Technologie basierende Synchrotronstrahlenquellen mit Zentimeter bis Meter langen optische Undulatoren. Die hierbei mit existierenden Lasern erzielbaren Brillianzen übersteigen diese bestehender Thomsonquellen-Designs um 2-3 Größenordnungen. Die hier vorgestellten Ergebnisse weisen weit über die Grenzen der vorliegenden Arbeit hinaus. Die Möglichkeit Laser als Teilchenbeschleuniger und auch optischen Undulator zu verwenden führt zu bauartbedingt sehr kompakten und energieeffizienten Synchrotronstrahlungsquellen. Die hieraus resultierende monochromatische Strahlung hoher Brillianz in einem Wellenlängenbereich von extremen ultraviolett (EUV) zu harten Röntgenstrahlen ist für die Grundlagenforschung, medizinische Anwendungen, Material- und Lebenswissenschaften von fundamentaler Bedeutung und wird maßgeblich zu einer neuen Generation ultrakurzer Strahlungsquellen und freien Elektronenlasern (FELs) beitragen. / This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical applications, material and life sciences and is going to significantly contribute to a new generation of radiation sources and free-electron lasers (FELs).
39

Dynamik endlicher Vielteilchen-Systeme in intensiven Röntgenlaserpulsen

Gnodtke, Christian 21 April 2011 (has links) (PDF)
Die Arbeit beschäftigt sich mit der neuartigen Wechselwirkung von intensiven und ultrakurzen Röntgenlaserpulsen mit atomaren endlichen Systemen, die derzeit durch eine neue Generation von Lichtquellen, sogenannter X-ray free-electron laser (XFEL) zugänglich gemacht wird. Eine der Vorzeigeanwendungen der XFELs ist die zukünftig potentiell mögliche Strukturbestimmung endlicher nicht-periodischer Systeme mit atomarer Auflösung durch Diffraktion. Hierbei stellt sich der durch die hohe notwendige Pulsintensität bedingte Strahlenschaden an dem System als limitierender Faktor heraus, der ein detailliertes Verständnis der durch Photoabsorption induzierten Dynamik voraussetzt, um diese Art der "Mikroskopie" zum Erfolg zu führen. Wir verwenden daher zur Beschreibung der laserinduzierten Dynamik ein mikroskopisches Modell in dem Photoionisation und inner-atomare Zerfallsprozesse durch quantenmechanische Raten behandelt werden und die Dynamik der Ionen und energetischen Elektronen in einer klassischen Molekulardynamik-Simulation erfasst wird. Eine Neuerung gegenüber bisherigen Modellen ist die Berücksichtigung der Ionisation von Atomen durch starke interne Felder in dem hoch-geladenen System. Durch eine Anwendung des Modells auf Neoncluster kann gezeigt werden, dass diese Feldionisation einen wichtigen Beitrag zur laserinduzierten Dynamik darstellt. Sie führt zur ultraschnellen Formation eines Nanoplasmas, welches sich im Kern des geladenen Clusters ansammelt und dort die Ladung der Clusterionen neutralisert. Hierdurch wird eine vorzeitige Coulomb-Explosion des Clusters vermieden. Es wird dargelegt, dass dieser Mechanismus der lokalen Schadensreduzierung durch die Einbettung des Clusters in ein Heliumtröpfchen auf den gesamten Cluster ausgeweitet werden kann, da durch Feldionisation und Migration von Elektronen die vollständige laserbedingte Aufladung des Clusters auf das Heliumtröpfchen transferiert wird. Eine Analyse der resultierenden Diffraktionsmuster bestätigt, dass der reduzierte Strahlenschaden am Cluster den Anwendungsbereich für Diffraktionsexperimente erheblich ausweitet. Kürzlich wurde am SLAC National Accelerator Laboratory der erste XFEL in Betrieb genommen. Eine Modifikation des Modells auf dort bereits erzielbare Wellenlängen wird genutzt um Vorhersagen über das Photoabsorptionsverhalten, aus dem alle weiteren Schäden folgen, an kleinen Neoncluster zu treffen. Hiermit lassen sich bereits jetzt durch den Vergleich zu Experimenten die wichtigen Schadensmechanismen und ihre theoretische Beschreibung testen. Es wird ferner das interessante Relaxationsverhalten des durch massive Photoionisation in XFEL-Strahlung erzeugten Elektronenplasmas untersucht. Diese neuartige Anregung erfolgt auf einer Femtosekunden-Zeitskala und produziert eine hohe Dichte an energetischen Elektronen. Wir beschreiben dieses Plasma durch ein generisches Modell seiner Vielteilchen-Dynamik. Hierbei kann der gesamte Parameterraum des Modells in vier Klassen unterteilt werden, die sich nach Anregungsgrad, der den Elektronenverlust des Plasmas regelt, und Anregungsdauer, die die transiente Dynamik beeinflusst, unterscheiden. Speziell der Bereich starker Anregung bei gleichzeitig kurzer Anregungsdauer zeigt ein interessantes neues Verhalten, bei dem sich eine Equilibrierung des Systems im Kontinuum andeutet.
40

Brilliant radiation sources by laser-plasma accelerators and optical undulators

Debus, Alexander January 2012 (has links)
This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical applications, material and life sciences and is going to significantly contribute to a new generation of radiation sources and free-electron lasers (FELs).

Page generated in 0.1081 seconds