• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 14
  • Tagged with
  • 65
  • 40
  • 34
  • 30
  • 25
  • 17
  • 16
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Biogödsel från gårdsnära biogasproduktion : Klassificering och Tillåtlighet

Lindström, Johanna January 2008 (has links)
Sedan 1996 står biogas för över hälften av den använda fordonsgasen i Sverige. Det blir således allt mer angeläget att framställa biogas. Biogasprojektet Biogas i Brålanda har för avsikt att framställa biogas genom rötning av naturgödsel/stallgödsel och, eller slakterirester. Materia från en eller flera rötas för att producerar biogas och efter rötningen återstår ett högkvalitativt gödselmedel, biogödsel. Biogödseln skall användas som gödsel på de till projektet anslutna åkrarna. Uppsatsens huvudfråga är huruvida biogödseln från projektet Biogas i Brålanda får användas som gödsel på de till projektet anslutna åkrarna. Även klassificering av biogödsel, krav på hygienisering och användning på ekologiska åkrar har utretts. Uppsatsens utredning har framförallt rört sig mellan rättsområdena miljörätt och offentligrätt och har behandlat såväl svensk som EG-rättslig lagstiftning. Spridning av biogödsel är inte tillstånds- eller anmälningspliktig, men biogödsel får likväl inte spridas hur som helst. Biogödselns klassificering som t.ex. avfall eller farligt avfall samt klassificering av rötningsmaterian påverkar huruvida materialen bl.a. måste hygieniseras innan de får användas. Slutligen har uppsatsen utrett huruvida biogödsel som innehåller konventionell gödsel, slakterirester och gödsel från industriell djurhållning får används på ekologiska och KRAV-anslutna åkrar.
42

Anaerobic digestion of pre-treated biological sludge from pulp and paper industry using heat, alkali and electroporation

Cardell, Lina January 2010 (has links)
The biological sludge formed in the pulp and paper wastewater treatment constitutes a costlyproblem to dispose off due to poor dewaterability. It is often incinerated or used as soilconditioner improvement. By using anaerobic digestion of the biological sludge, thedewaterability can be increased. Thanks to the formation of biogas, the sludge volume isdecreased and energy can be recovered as methane. By pre-treating the sludge, the biogasproduction can be increased, making the anaerobic digestion more economically feasible. Eleven samples of biological sludges from six Swedish pulp and paper mills, chosen torepresent different types and sizes of mills available in Sweden, were pre-treated with alkali(NaOH, pH12), heat (80˚C, 1 hr) and electroporation (2000 pulses, 10 kV/cm). Initialmethane production rate and methane potential of all sludges and pre-treatments weredetermined using batch experiment. A combination of two sludges (from the same mill) pretreatedwith alkali and heat was further investigated in a semi-continuous digester experiment. The batch experiments showed that alkali pre-treatment had the greatest positive effect onmethane production. Heat treatment performed second best, whereas electroporation had no orlittle effect. Overall, pre-treatments increased the initial methane production rate, but withinsignificant effects on the methane potential. Heat pre-treatment showed no difference inbiogas production compared to the control in the semi-continuous digester experiment. Alkalitreatment was shown to inhibit biogas production and cause high accumulation of acetate. Itcould not be concluded whether it was an effect from hydroxide or sodium ion addition.Further analysis of the NaOH impact on floc structure, toxicity and bioavailability issuggested to determine the suitability of alkali-treated sludge for anaerobic digestion. / Bioslam, som bildas vid vattenreningen på pappers- och massabruk, utgör en kostnad attomhänderta på grund av avvattningssvårigheter. Kvittblivning sker oftast genom förbränningeller användning som jordförbättringsmedel. Genom rötning kan slammet bli merlättavvattnat och tack vare att det bildas biogas minskar slamvolymen samtidigt som energikan utvinnas från metanet. Produktionen av biogas kan ökas genom att förbehandla slammetinnan rötning, vilket skulle innebära ekonomiska fördelar. Denna studie har undersökt effekten av förbehandling för elva bioslam från sex svenskapappers- och massabruk, valda att representera olika typer och storlekar på svenska bruk.Behandlingen gjordes med alkali (NaOH, pH12), värme (80˚C, 1 h) och elektroporering(2000 pulser, 10 kV/cm). Effekten av förbehandling på initial metanproduktionshastighet ochmetanpotential undersöktes med hjälp av satsvis utrötning (batch) av alla slam. Enkombination av två slam från samma burk utvärderades i ett semi-kontinuerligt rötningsförsökefter förbehandling med värme och alkali. Resultatet från utrötningsförsöket visade att den alkaliska förbehandlingen hade störst positivinverkan på metanproduktionen. Värmebehandlingen presterade näst bäst, medanelektroporeringen visade sig ha liten eller ingen effekt. Generellt sett ökade den initialametanproduktionshastigheten till följd av förbehandling, medan metanpotentialen förblevoförändrad. Värmebehandling gav ingen effekt på biogasproduktionen i det semikontinuerligarötningsförsöket jämfört med kontroll, medan alkalisk förbehandling inhiberadebiogasproduktionen och orsakade höga koncentrationer av ackumulerat acetat. Det kunde inteavgöras huruvida det var natrium- eller hydroxidjoner, som orsakade inhiberingen. För attkunna utvärdera möjligheten att röta slam, som förbehandlats med NaOH, rekommenderasvidare analys av dess påverkan på flockstruktur, toxicitet och biotillgänglighet.
43

Verktyg för uppskattning av bioenergipotential i kommuner i mellersta och södra Sverige / Bio-energy potential estimation tool for counties of middle and southern Sweden

Vega Norell, Pia Carola January 2009 (has links)
Detta examensarbete utförs på uppdrag av Länsstyrelsen i Östergötland och Avdelningen för Teknik och Miljö vid Linköpings Universitet med syfte att skapa ett verktyg för att synliggöra de möjligheterna till den årliga bioenergitillförseln i olika kommuner i södra och mellersta Sverige. Avsikten är att bidra till den kommunala planeringen och effektiviseringen av miljöarbetet just inom energisektorn. Verktyget består av en handbok och ett beräkningsprogram. Den första innehåller information om kartlagda biobränsleresurser som är uppdelade i tre kategorier; Åkerbränslen, trädbränslen samt avfalls- och restprodukter. För varje biobränsleresurs finns information om: faktorer som kan påverka den mängd biobränsleresurser som man kan räkna med till bioenergiproduktion; allmän data om resurserna som energiråvaror; data som kommunen kommer att behöva mata in i beräkningsprogrammet, och information om och förslag på datakällor. Handboken verkar främst som grund inför användningen av beräkningsprogrammet och bedömning av dess resultat. Beräkningsprogrammet är ett lättanvänt Excel dokument som omvandlar inmatade data till Megawattimme (MWh). De data som har använts som beräkningsunderlag till kalkylerna kommer delvis från den genomsnittliga mängden (ton/ha) på normskördar i Östergötland 2004-2007. Avsikten har varit att ha en representativ region att relatera och jämföra resultaten till. Resultaten ska ses som vägledande men inte absoluta. Kartläggningen av biobränsleresurser samt information kring dessa har genomförts utifrån ämnesrelevanta hemsidor såsom miljöportaler, myndigheter och universitet, samt via samtal med aktörer inom miljö- och energibranschen. Följaktligen har verktyget validerats innan det provtestats av Norrköpings miljöstrateg Enver Memic som bidragit med sina synpunkter om handbokens tydlighet och beräkningsprogrammet praktiska användning genom att mata in ungefärliga siffror. Förutom detta har man läst en artikel om miljöbeslut samt identifierat andra liknande beräkningsverktyg. Dessa synpunkter och jämförelser har använts som underlag till diskussionen och avslutande reflektion. Man har kommit fram till att verktyget kan bidra till den kommunala planeringen och effektiviseringen av miljöarbetet inom energisektorn så länge nämnda avgränsningar uppmärksammas. Slutsatser: - Det utformade verktyget är en stödjande del i processen om att fatta beslut inom energisektorn. På grund av sitt relativt lättförståeligt innehåll anses det kunna öka möjligheter till större deltagande i beslutsprocesser - Handboken är ett informativt underlag med förståeligt innehåll som underlättar användningen av ett lättanvänt beräkningsprogram. Å andra sidan kan handbokens stora omfattning hindra en mer djupgående studie om varje biobränsleresurs. Verktyget avses främst för människor som är insatta i miljöfrågor och som kan hitta sätt att dra maximal nytta av beräkningsresultaten - Ett sådant verktyg skulle vara ännu effektivare om det skapades för de kommunerna i varje enskilt län. Ett beräkningsprogram med regionalstatistik som beräkningsunderlag skulle bidra till mer objektiva resultat. Resultaten skulle fortfarande vara vägledande. Kommunerna är fortfarande ansvariga för att eventuellt effektivisera data insamling och databassystem - Avfalls- och restprodukter omfattar ett flertal avfallskategorier, lagar som rör dess användning, aktörer som tar hand om det samt svår tillgängliga data. Det rekommenderas en specifik undersökning av området för att sedan skapa ett verktyg som räknar ut den mängd energi i MWh som kan utvinnas från det - Den metod som har använts för att ta fram detta verktyg kan användas igen som mall till effektivisering eller ny utformning av liknande verktyg / This master thesis is made by commission of Östergötlands County Administrative Board and the Department for Techniques and Environment at the University of Linköping with the purpose of creating a tool which shows the possibilities for the annual bioenergy production in municipalities located in the south and middle of Sweden. This is intended to contribute to the municipal planning and efficiency development of the environmental work within the energy sector. The tool consists of a handbook and a calculation programme. The first one contains information about surveyed biofuel resources which are organized in three categories; field biofuels; forest biofuels and waste fuels and rest products. For each biofuel resource is there information about factors that might  affect the available quantity biofuels for energy production; General information about these resources as sources of energy; Data that has to be fed into the calculation programme; Information about and ideas for data sources The handbook is mainly a foundation preliminary to use of the calculation programme and the assessment of its results.  The calculation programme is an easy-to-use Excel document which transforms data into megawatt per hour (MWh).  The calculation programme is partly based on the average amounts (ton/ha) of vintages in Östergötland 2004-2007.  The purpose has been to have a representative region to relate and compare the results with. The results are to be considered rather as guidance than as absolute numbers. The survey on biofuels and the information about these has been performed on the basis of subject relevant internet homepages such as environmental portals, public authorities and universities as well as conversations with actors within the environmental and energy sector. As next step has the calculation programme been validated before being tested by Norrköpings environmental strategist Enver Memvic who commented the legibility of the handbook and the practical usage of the calculation programme. For this, he typed in rough numbers.  Moreover, an article about tools for environmental decision making has been read as well as three similar calculation tools have been identified. These commentaries and comparisons have been used as basis for the discussion and final reflection. It has been concluded that the created tool can contribute to the municipal planning and efficiency development of the environmental work within the energy sector as long as the mentioned limitations are considered. Conclusions: - The created tool is a supportive part of the decision making process within the energy sector. Due to its understandable content, it is considered to increase the possibilities of participation in decision making. - The handbook is an informative foundation with an understandable content which simplifies the usage of the easy-to-use calculation programme. On the other side might the handbook's broad extent hinder a more detailed study of each biofuel. The tool is mainly intended to be used by people who deal with the environmental problematic and who are capable of finding ways to take the best advantage from the calculation results. - A tool such as this one would be more effective if it was created for the municipalities of each county. A calculation programme with regional statistics as basis for calculations would contribute with more objective results. These results would still be as guidance. The municipalities would still be responsible for eventually developing the collection of data/ database system. -  Waste- and rest-products are not yet considered suitable to be included in such a tool due to the big range of involved actors, waste categories, waste treatments, end-uses that there is a lack of sufficient data for. Such a tool is most suitable for field and forest biofuels resources. - The used method for creating this tool can be used again as a pattern for developing the efficiency of it or creating a similar one.
44

Anaerobic digestion trials with HTC process water / Rötningsförsök med HTC processvatten

Nilsson, Erik January 2017 (has links)
Hydrothermal carbonization (HTC) is a process where elevated temperature and pressure is used in order to convert biomass to hydrochar, a coal-like substance with good dewatering properties and many potential uses. HTC can be used to treat digestate from anaerobic digestion, but the process water that remains after the hydrochar has been recovered needs to be treated further in the wastewater treatment plant. In order to make HTC more competitive compared to other sludge treatments it is important to find a good use for the process water. The main objective of this master thesis was to investigate the effects of recirculating HTC process water to the anaerobic digestion. To achieve the objective, both theoretical calculations and experimental trials were performed. The experimental trials were conducted with an Automatic Methane Potential Test System (AMPTS II) in order to investigate the anaerobic digestion in laboratory scale. In the first trial, three substrates, process water, hydrochar, and primary sludge were tested for their biochemical methane potential (BMP). All substrates were mixed with inoculum. Process water had a BMP of 335 ± 10 % NmL/gvs (normalized CH4 production in mL per g added VS (volatile solids)), hydrochar had BMP of 150 ± 5 % NmL/gvs, and primary sludge had a BMP of 343 ± 2 % NmL/gvs. The methane production was almost the same for process water as for primary sludge i.e. no inhibitory effects could be seen when process water was mixed with only inoculum. In the second trial, a more realistic scenario was tested where process water was co-digested with primary sludge at different ratios. The results from the second trial were not statistically reliable and therefore cannot be used on their own to determine with certainty if the process water could have an inhibitory effect in a full-scale anaerobic digester. However, the combined results from both trials indicate that it is unlikely that the process water would have an inhibitory effect. The possible increase in methane yield, if the digestate from a biogas facility was treated in full-scale implementation of the HTC process, was calculated theoretically. The produced process water would have the capacity to increase the methane production with approximately 10 % for a biogas facility. For the calculations, the BMP for process water was assumed to be 335 NmL/gvs and no synergetic effects was considered.
45

Matavfallsinsamling - vad tycker Danderydsborna?

Meyer, Ruth January 2010 (has links)
Avfallsplanen i Danderyds kommun innefattar ett delmål år 2012 att materialåtervinning ska öka med 40 % från 2009 års nivå. I materialåtervinning inkluderas biologisk behandling av matavfall. En möjlig åtgärd för att uppfylla detta mål är att införa insamling av matavfall för rötning. För att ett införande av matavfallsinsamling ska bli så framgångsrikt som möjligt är det viktigt att studera kommuninvånarnas inställning till detta. En litteraturstudie genomfördes för att undersöka om rötning är en lämplig behandlingsmetod för matavfall för Danderyds kommun. Ytterligare studerades olika insamlingssystem för matavfall, miljöstyrande taxa, erfarenheter från kommuner med matavfallsinsamling och faktorer som styr människors beteende för källsortering. Inga entydiga resultat finns för att rötning är den mest lämpliga behandlingsmetoden för matavfall men det finns många fördelar såsom, produktion av biogas som är en bristvara i Stockholmsområdet, kretsloppet sluts och näringsämnen och mullbildande ämnen återförs till jorden, utsortering av matavfall kan också ge ett ökat intresse för övrig källsortering och att biogas är ett förnyelsebart bränsle. En enkät formulerades och skickades ut till 1000 hushåll, 600 i småhus och 400 i flerfamiljshus för att undersöka de boendes attityd i Danderyds kommun. Svarsfrekvensen för utskicket uppgick till 60 % men endast 39 % var rätt ifyllda för vidare analys av resultatet för småhus och 30 % för flerfamiljshus. Intresset för matavfallsinsamling var stort; nästan 70 % av hushållen i småhus och ungefär 60 % i flerfamiljshus var positivt inställda eller mycket positivt inställda till utsortering av matavfall. 90 % var villiga att göra en stor eller en viss ansträngning vid ett eventuellt införande av matavfallsinsamling. Resultatet från enkäten gav också att 60 % av kommuninvånarna är beredda att förändra sin livsstil till förmån för miljön. När det gällde källsortering angav de svarande att det största problemet var tillgängligheten till återvinningsstationer och att fastighetsnära insamling definierades som den största motivationsåtgärden från Danderyds kommun. Utifrån de förutsättningar som finns i Danderyds kommun och den organisation som finns för avfallshantering och för att uppnå de miljömål som är definierade i avfallsplanen till 2012 föreslås insamling av matavfall för rötning. För att få hög kvalitet på matavfallet bör det samlas in i papperspåse och det utsorterade matavfallet placeras i separat, ventilerat kärl för hushåll i småhus. Vidare föreslås att anslutning till matavfallsinsamling ska vara frivillig. För att motivera kommuninvånarna till att sortera ut sitt matavfall föreslås också att avfallstaxan ska vara miljöstyrd, d.v.s. anslutning till matavfallsinsamling ska ge en lägre avfallstaxa än om ingen utsortering sker och att kommunen ska förse hushållet med lämplig utrustning för matavfallsinsamling. Flerfamiljshus har olika förutsättningar beroende av hur fastighetens avfallsutrymme är dimensionerat och avfallshanteringen bör lösas från fall till fall, en öppen kommunikation mellan avfallsplaneraren och fastighetsförvaltaren bör etableras för att anslutning till matavfallsinsamling ska bli framgångsrik för de boende i fastigheten, kommunen och renhållningsarbetarna. / The municipality of Danderyd is one of the smallest municipalities in Sweden in terms of area it covers. There are about 30 000 inhabitants distributed on 12 710 households. Each inhabitant in Danderyd generates about 220 kg of household waste per year. An analysis of the content of the waste bags was performed in 2009. The conclusion was that the household waste contains about 50 % of food waste and almost 25 % of packaging waste that are included in the recycle scheme for packaging in Sweden; hence there is plenty of material that potentially could be recycled in each waste bag in Danderyd. The waste management plan of the municipality of Danderyd contains different goals that should be fulfilled by the year 2020, there are also some sub targets that should be met by the years 2012 and 2016. One of the sub targets is that the recycling of recyclable material should increase by 40 % compared to the level 2009, including biological treatment of organic waste. One possible measure to reach this sub target is to implement collection of food waste from the households. In order to introduce a possible collection of organic waste, it is important to investigate the attitude towards such a scheme of the inhabitants in Danderyd. Therefore, this study has been performed as a master thesis on the request of the city municipal of the municipality of Danderyd. A questionnaire was distributed to 1000 households in Danderyd, 600 to single family house and 400 to households in multiple dwellings. A literature review was also performed in order to find out if anaerobic digestion is a suitable method to treat the collected organic waste in Danderyd in an economical and environmental perspective. Furthermore, different collection systems for organic waste, differentiated environmental waste collection fees, experience from municipalities that already have a collection of organic waste and factors for successful recycling of recyclable materials were also studied in the literature review. There was no unequivocal result that fermentation of organic waste is the most suitable treatment method of food waste. There are advantages such as; the closure of the material loop, nutrients are recycled back to soil, production of biogas that is a renewable fuel and could replace fossil fuel, biogas is also a scare commodity in the area of Stockholm and the separation and recycling of organic waste could increase the interest of environmental issues and also increase the recycling of other recyclable packaging materials. The questionnaire was returned by 60 % of the households but only 39 % of the questionnaire from single family households and 30 % of the households in multiple dwellings were completed correctly. Furthermore, the result showed that there was a large interest for an introduction of collection of organic waste, almost 70 % of the household in villas and about 60 % of households in multiple dwellings said that they were very interested or interested in participating in a collection scheme of organic waste. Of the household 90 % answered that they were prepared to make a large effort or some effort to separate their food waste if an introduction of a recycling scheme of food waste was made. There was also a large interest in environmental issues and 60 % of the households answered that they thought their life style affected the environment and that they were prepared to change their life style to the benefit of the environment. Regarding the recycling of other recyclable materials, the respondents answered that the largest problem was the availability of recycling stations and that collection of packaging waste at the property was requested as the largest motivation measure that the municipality could offer in order to increase recycling. Based on the condition in Danderyd, the existing organization of waste management and in order to reach the environmental sub targets that are defined in the waste management plan, is an introduction of a collection scheme of food waste for anaerobic digestion suggested. The organic waste should be gathered in paper bags and placed in a separate ventilated garbage bin for single family households. The conditions of the refuse chamber differ for multiple dwellings; therefore the possibility to separate organic waste should be organized for each property. The municipality should establish an open communication with each estate manager in order to facilitate the affiliation to the food waste collection scheme. Furthermore, the affiliation to the food waste collection scheme should be optional in order to achieve good quality of the food waste. To motivate the inhabitants to join the collection scheme, a differentiated environmental waste fee is suggested. The municipality should also provide suitable equipment for the collection of food waste.
46

Inom vilka områden behövs framtida biogassatsningar? / Future support to biogas production in Sweden

Gillgren, Maria January 2010 (has links)
Energimyndigheten har från Regeringen blivit tilldelad 100 miljoner kronor att fördela som investeringsstöd för att främja en effektiv och utökad produktion, distribution samt användning av förnybara gaser såsom biogas. Myndigheten har samtidigt fått i uppdrag att utveckla en sektorsövergripande biogasstrategi och föreslå åtgärder som på kort och lång sikt kan bidra till ökad användning av biogas. Denna strategi ska också tjäna som ett underlag för fördelning av olika former av stöd inom sektorn. Syftet med detta examensarbete är att sammanställa information som kan bidra som underlag vid upprättandet av den sektorsövergripande biogasstrategin. Ett annat syfte är att bidra med underlag för Energimyndighetens bedömning av var ett investeringsstöd kan ge störst effekt för den fortsatta utvecklingen inom biogasområdet. Detta stöd avser den senaste, ovan nämnda, utlysning som Energimyndigheten gjort inom området. Examensrapporten innehåller bland annat en sammanställning av gjorda insatser inom forskningsområdet biogas de senaste åren, finansierat av framför allt Energimyndigheten, men även en inblick i vilka biogassatsningar som är gjorda av andra nationella aktörer. Ett antal personer från bland annat branschorganisationer har intervjuats för att ta del av deras syn på den framtida biogasmarknaden, vilka satsningar som bör göras och vilka hinder som har störst inverkan. Organisationerna är valda utifrån kriteriet att de ska representera olika delar av biogasbranschen och att olika synvinklar därigenom ska framkomma. Rapporten innehåller slutsatser som dragits av tidigare biogassatsningar hos Energimyndigheten och identifiering av biogasområden där det föreligger stort behov av framtida satsningar för utökad produktion, distribution och användning.  Ett område som i detta examensarbete har identifierats ha stort behov av framtida biogassatsningar är bland annat framtagande av alternativa rötningssubstrat, eftersom mängden tillgängligt substrat nuläget inte är tillräcklig. Detta utgör idag en begränsning för biogasproduktionen. Det bör även satsas mer på förbehandling av substrat innan rötning, vilket ökar gasproduktionen och förbättrar substratutnyttjandet i större utsträckning. Mer satsningar behövs också kring hur biogasprocessens slutprodukt, rötresten, kan bli en mer attraktiv produkt så att återcirkulering av växtnäring kan ske i större grad genom rötrestspridning på åkermark. Detta är av stor vikt eftersom en ökad volym rötningssubstrat ger upphov till större mängd rötrester som ska hanteras. Andra områden som är i behov av framtida stöd är utveckling av befintliga anläggningar för att öka och effektivisera produktionen. För att optimera processerna bör framför allt mer medel satsas på kunskapsuppbyggnad och spridning av den vetenskap som finns tillgänglig. Att länka samman universitet, högskolor och naturbruksgymnasium med anläggningar i drift kan vara det mest effektiva sättet att nå ut med relevant information och kunskap. Ur ett samhällsekonomiskt perspektiv bör mer medel läggas på att öka gödselrötning då detta minskar metanläckage. / Swedish Energy Agency has been allocated SEK 100 million from the government to distribute as investment grant to promote efficient and expanded production, distribution and use of renewable gases such as biogas. The Agency has also been given the task to develop a multidisciplinary strategy for biogas and propose measures which can contribute to increased use of biogas in the short and long term. This strategy will also serve as a basis for the allocation of various forms of support in the biogas sector.  The purpose of this study is to compile information which can be used as input for the establishment of the multidisciplinary strategy for biogas. Another purpose is to provide information to support the Swedish Energy Agency in the assessment of which areas an investment grant will have the greatest impact for the future development of biogas. This grant refers to the latest call of Swedish Energy Agency in the sector. This report includes a summary of what areas grants have been given for research of biogas in recent years, mainly financed by the Swedish Energy Agency, but also an insight into efforts made by other national operators. A number of people from professional biogas organizations have been interviewed to share their views on the future biogas market. Which efforts should be made and the main obstacles to be overcome are other questions discussed. The report contains conclusions from the experience of previous support from the Swedish Energy Agency as well as identification of areas in which there is great need for future efforts in order to expand the production, distribution and use of biogas. Some areas which have been identified in this thesis for need of future efforts in the biogas sector is for example the development of alternative substrates for anaerobic digestion, because the amount of available substrate is at present not sufficient. This is currently a limitation for the biogas production. There is also a need to further develop the pre-treatment of the substrate before digestion, in order to increase the gas production and improve substrate utilization to a greater extent. More focus are also needed on how the end product from the biogas process, the digestion residues, can become a more attractive product to the recycling of plant nutrients by use as a bio fertilizer on farmland. This is of great importance because larger volume of digestion will result in greater volume of digestion residues to be managed. Other areas in need of future investments are the development of existing facilities to increase and optimize the production. In order to optimize the production processes, more resources should be devoted to capacity building and dissemination of the available knowledge. Linking universities and colleges together with operating biogas plants could be the most effective way to reach out with relevant information and knowledge. From a socioeconomic perspective more resources should be spent on increasing the volume of manure digestion then it is today, which also will result in reduced methane leaks.
47

Techno-economical analysis of the benefits of anerobic digestion at a rural sisal processing industry in Tanzania

Varela González, Cristina January 2017 (has links)
The low electrification rates and lack of access to energy services are some of the main challenges of the Tanzanian energy system. However, increasing access to power and other energy services would lead to an increase in the energy demand, which the Tanzanian energy system will not be able to meet. Therefore, new solutions are needed to increase access to modern and affordable energy services that facilitate economic and social development, but in a way that is also sustainable. One promising solution seems to be the use of the abundant agricultural residues to produce energy, which could be particularly relevant for rural areas without access to the national grid. Further, the Tanzanian sisal industry has a challenge in addressing the emissions from sisal processing. Each year, the national industry produces approximately one million ton of Sisal Decortication Residue (SDR), causing local eutrophication as well as emissions of methane, a potent greenhouse gas. The solution under study in this thesis is the potential use of the residue generated at a sisal estate in the region of Tanga (Tanzania), to generate biogas, which could potentially produce electricity and heat when fed into a CHP unit. The AD process also reduces the negative environmental impact of the waste. Given the substantial amounts of sisal waste produced at the estate every day, the project aims at providing a solution that will benefit the owner of the estate, the environment and the local communities. It was found that the potential for biogas production is close to 1,200,000 m3 per year. In a CHP unit, this amount of gas would produce around 2,340 MWh of electricity and over 4,160 MWh of heat per year. The different potential applications for the biogas and products are presented and analysed in the local context. The results of the study suggest that the solution that would provide higher benefits from an economic, social, and environmental perspective is to supply part of the biogas to the surrounding villages for its use as a cooking fuel and fed the remaining electricity into the national grid. For this application it was found that the NPV of the project at the end of its lifetime is close to 1,580,000 USD, and the investment would be recovered in less than 9 years. At the same time, the use of biogas as cooking fuel would significantly benefit the households and the environment, by reducing the serious health and environmental problems derived from the processing of traditional biomass resources. / Bristande tillgång till energitjänster är en av de största utmaningarna för energisystemet i Tanzania. Men förbättrad tillgång till energitjänster kommer att leda till en snabb ökning av energibehov i landet, som det tanzaniska energisystemet inte kan hantera. En möjlig lösning kan vara att använder de rikliga jordbruksavfall för energiändamål, särskilt i landsbygdsområdena som saknar tillträde till det nationella elnätet. Denna rapport studerar möjligheterna att använda avfallet från produktion av sisalfiber (vanligtvis kallade Sisal Decortication Residue, SDR) som genererats vid en egendom i regionen Tanga (Tanzania) för att generera biogas, som också kunna producera el och värme i kraftvärmevek. Med tanke på den betydande mängd avfall som producera varje dag, är målet för projektet att hitta en lösning som egendomens ägare, miljön och lokala samhällen kan dra nytta av. Det potentiella utbytet av biogas med dagens produktionsvolym är ca 1,200,00 m3 per år. Detta motsvarar ca 2,340 MWh el samt 4,160 MWh värme per år. Olika potentiella tillämpningar för biogasen och biprodukterna har analyserad och jämförd för gällande lokala förutsättningar. Resultaten av studien tyder på att lösningen för att maximera sociala, ekonomiska och miljömässiga fördelar är att leverera en del av den biogas som framställs till de omgivande byarna för dess användning som bränsle för matlagning. Resten av elen ska tillföras elnätet. Plantagen köper sedan den el som krävs för den egna produktionen. Resultaten uppgå till ett positivt nettonuvärde (NPV) på omkring 1 580 000 USD och en återbetalningsperiod som är kortare än 9 år. Samtidigt skulle hushåll och miljön få fördelar av den biogasen genom att undvika de alvarliga problemer som hänger samman med traditionella biobränslen.
48

Kontinuerlig rötning med hydrokol för högre biogasutbyte / Continuous anaerobic digestion with hydrochar for higher biogas yield

Kariis, Annette January 2023 (has links)
Befolkningsökningen och därmed efterfrågan på energikällor som tillhandahålls från fossila bränslen leder till allvarliga miljöproblem på grund av utsläpp av växthusgaser. En annan utmaning är att effektivt hantera organisk avfall som till exempel matavfall som genereras världen över. Matproduktionen orsakar stora miljöproblem som övergödning, klimatpåverkan, kemikaliespridning, regnskogsavverkning och utfiskning. Det är därför viktigt att matsvinnet minskar men också att effektiva metoder används för hantering av avfallet för att inte belasta miljön ytterligare.  En lösning för att hantera organiskt avfall, och samtidigt producera en förnybar energikälla är att använda anaerob rötning för att producera biogas. Vid anaerob rötning bryts organiskt material ner i en syrefri miljö, vilket resulterar i produktion av biogas som innehåller koldioxid och energirik metangas. Biprodukten som bildas är rötrest, som kan vidare användas som gödsel.  Den anaeroba rötningsprocessen har olika utmaningar där biogasprocessen kan stabiliseras och effektiviseras genom tillsats av hydrokol. Hydrokol är ett kolrikt material framställd från hydrotermisk karbonisering av biomassa. Eftersom det finns mycket begränsad forskning på kontinuerlig anaerob rötning av matavfall med tillsats av hydrokol, och ingen forskning har utförts på hydrokol som är tillverkat från skogsindustriellt avfall, så var det viktigt och av intresse att genomföra denna studie.  Syftet med studien är att undersöka hur tillsats av hydrokol påverkar biogasproduktion, metanproduktion och stabiliteten i en kontinuerlig anaerob rötningsprocess. Vidare syftar studien till att analysera effekterna av hydrokol på rötresterna som genereras, undersöka möjligheterna av sammankoppling av en befintlig rötkammare med en HTC reaktor, samt bedöma om det är ekonomiskt försvarbart att investera i hydrokol som additiv i rötningsprocessen. Målet har varit att undersöka om tillsats av hydrokol ger högre biogasutbyte, ökad metanproduktion och en stabil rötningsprocess. Målet har även varit att analysera rötresterna, utföra en materialflödesanalys över när Karlskogas rötkammare sammankopplas med en HTC reaktor, samt utföra en livscykelkostnadsanalys för att svara på om det är ekonomiskt försvarbart att investera i en HTC anläggning, alternativt att köpa in hydrokol externt.  De laborativa försöket gjordes på Karlstads universitet där rötningen var en enstegs anaerob samrötning som gjordes i två kontinuerligt matade reaktorer. Inmatning och uttag av gas gjordes en gång om dagen där försöksserierna pågick under 68 dagars tid. Substratblandningarna eftersträvades efterlikna substratförhållandena på Biogasbolaget i Karlskoga. Inmatat material, det vill säga substratblandningen utgjorde 8,5% av ensilage, 0,6% av glycerol, och 90,9% av substrat (matavfall och flytgödsel). Detta förhållande är detsamma som på Biogasbolaget. I en av reaktorerna användes substratblandningen och i den andra substratblandningen och hydrokol. Hydrokolet blandades in med substratblandningen vid en koncentration på 8g/l. Materialflödesanalysen gjordes över Karlskogas biogasanläggning där flödena ritades ut i programmet Stan 2.5. LCC gjordes utifrån två olika scenarion, om hydrokol köps in externt alternativt att en HTC-reaktor ansluts till biogasanläggningen. Det valdes att beräkna utifrån scenarion om metanutbytet ökar med 17%, enligt resultat från studien gjord av Maria Kristoffersson eller om utbytet ökar med 53% enligt resultat från den här studien.  Resultatet visar att tillsats av hydrokol som additiv ger en ökning på 59% för biogas utbytet och 53,5% för metanutbytet. I medelvärde från rötningsdag 27 till 68 så resulterade biogasproduktionen för hydrokolsreaktorn i 533 ml/g VS. Medelvärdet för referensreaktorn resulterade i 70 ml/g VS. Det här resulterar i en procentuell ökning med 663%. Eftersom misstankar finns att referensreaktorn inte bildar biogas som den ska har biogasproduktionen jämförts med tidigare studie som har gjorts på ungefär samma substratblandning och samma utrustning. Biogasproduktionen i medelvärde för referensreaktorn för (Leijen, 2016) resulterade i 335 ml/g VS. Procentuella skillnaden i biogasproduktion resulterar då i 59% mellan referensreaktorn och hydrokolsreaktorn. Metanproduktionen i hydrokolsreaktorn resulterade i medelvärde till 367 ml/g VS, i referensreaktorn till 18 ml/g VS och i referensreaktorn i Leijens studie till 237 ml/g VS. Jämfört med Leijens resultat resulterade den procentuella ökningen i metangasproduktion till 53,5%. En stabil rötningsprocess bekräftades genom att pH på rötresterna resulterade i 7,66 under hela rötningsprocessen.  Det är möjligt att sammankoppla Karlskogas befintliga anläggning med en HTC-anläggning och återföra rötresterna för hydrokolsproduktion. Rötresterna med ett högre kol-och näringsinnehåll kan återanvändas och recirkuleras för produktion av hydrokol. Av 10 tonTS/dag rötrester som kommer ut från rötningskammaren kommer 2,46 tonTS/dag att recirkuleras för hydrokolsproduktion. Resten av rötresterna kan användas vidare som gödsel.  Det är ekonomiskt försvarbart att investera i hydrokol som additiv till rötningsprocessen. Genom att bygga en HTC-anläggning, där tillsatsen av hydrokol kan ge 17% respektive 53% högre metanproduktion resulterar nettovinsten i 363 miljoner respektive 1237 miljoner kr över en 20-årsperiod. Alternativet är att köpa in hydrokol externt, där nettovinsten uppgår till 177 miljoner respektive 1052 miljoner kr över samma tidsperiod. Livscykelkostnadsanalysen visar att det är ekonomiskt mer fördelaktigt att investera i en HTC-anläggning jämfört med att köpa hydrokol externt. / The population growth and thus the demand for energy sources provided by fossil fuels leads to serious environmental problems due to greenhouse gas emissions. Another challenge is to effectively manage organic waste such as food waste generated worldwide. Food production causes major environmental problems such as eutrophication, climate impact, chemical dispersion, rainforest deforestation and depletion. It is therefore important that food waste is reduced, but also that effective methods are used to manage the waste so as not to burden the environment further.  One solution for managing organic waste, while producing a renewable energy source, is to use anaerobic digestion to produce biogas. In anaerobic digestion, organic material is broken down in an oxygen-free environment, resulting in the production of biogas containing carbon dioxide and energy-rich methane gas. The by-product formed is digestate, which can be further used as fertilizer.  The anaerobic digestion process has various challenges, where the biogas process can be stabilized and made more efficient by adding hydrochar. Hydrochar is a carbon-rich material produced from hydrothermal carbonization of biomass. Since there is very limited research on continuous anaerobic digestion of food waste with the addition of hydrochar, and no research has been conducted on hydrochar produced from forest industry biosludge, it was important and of interest to conduct this study.  The aim of the study is to investigate how the addition of hydrochar affects biogas production, methane production and the stability of a continuous anaerobic digestion process. Furthermore, the study aims to analyze the effects of hydrochar on the digestate generated, investigate the possibilities of connecting an existing digester with an HTC reactor, and assess whether it is economically justifiable to invest in hydrochar as an additive in the digestion process. The goal has been to investigate whether the addition of hydrochar provides higher biogas yield, increased methane production and a stable digestion process. The goal has also been to analyze the digestate, perform a material flow analysis of when Karlskoga's digester is connected to an HTC reactor, and perform a life cycle cost analysis to answer whether it is economically justifiable to invest in an HTC plant, or to purchase hydrochar externally.  The laboratory experiments were carried out at Karlstad University where the digestion was a single-stage anaerobic co-digestion in two continuously fed reactors. Gas was fed and withdrawn once a day and the experimental series lasted for 68 days. The substrate mixtures sought to mimic the substrate conditions at Biogasbolaget in Karlskoga. Input material, i.e. the substrate mixture consisted of 8.5% silage, 0.6% glycerol, and 90.9% substrate (food waste and liquid manure). This ratio is the same as at Biogasbolaget. One of the reactors used the substrate mixture and the other used the substrate mixture and hydrochar. The hydrochar was mixed with the substrate mixture at a concentration of 8g/l. The material flow analysis was made over Karlskoga's biogas plant where the flows were drawn in the program Stan 2.5. LCC was made based on two different scenarios, if hydrochar is purchased externally or if an HTC reactor is connected to the biogas plant. It was chosen to calculate based on scenarios if the methane yield increases by 17%, according to results from the study made by Maria Kristoffersson or if the yield increases by 53% according to results from this study.  The results show that adding hydrochar as an additive gives an increase of 59% for the biogas yield and 53.5% for the methane yield. In average from digestion day 27 to 68, the biogas production for the hydrochar reactor resulted in 533 ml/g VS. The average value for the reference reactor resulted in 70 ml/g VS. This results in a percentage increase of 663%. Since there are suspicions that the reference reactor does not produce biogas as it should, the biogas production has been compared with previous studies that have been done on approximately the same substrate mixture and the same equipment. The biogas production in average for the reference reactor for (Leijen, 2016) resulted in 335 ml/g VS. The percentage difference in biogas production then results in 59% between the reference reactor and the hydrochar reactor. The methane production in the hydrochar reactor resulted on average to 367 ml/g VS, in the reference reactor to 18 ml/g VS and in the reference reactor in Leijen's study to 237 ml/g VS. Compared to Leijen's results, the percentage increase in methane gas production resulted in 53.5%. A stable digestion process was confirmed by the fact that the pH of the digestate resulted in 7.66 during the whole digestion process.  It is possible to interconnect the existing Karlskoga plant with an HTC plant and recycle the digestate for hydrochar production. The digestate with a higher carbon and nutrient content can be reused and recycled for hydrochar production. Out of 10 tonTS/day of digestate coming out of the digestion chamber, 2.46 tonTS/day will be recycled for hydrochar production. The rest of the digestate can be further used as fertilizer.  It is economically justifiable to invest in hydrochar as an additive to the digestion process. By building a HTC plant, where the addition of hydrochar can provide 17% and 53% higher methane production, the net profit results in 363 million and 1237 million SEK over a 20-year period. The alternative is to purchase hydrochar externally, where the net benefit amounts to SEK 177 million and 1052 million respectively over the same time period. The life cycle cost analysis shows that it is economically more advantageous to invest in an HTC plant compared to buying hydrochar externally.
49

Förbättrad biogaspotential med hydrokol som additiv : En laborativ studie om metanproduktion / Improved biogaspotential with hydrochar as an additive : A laboratory study on methane production

Kristoffersson, Maria January 2023 (has links)
Anaerob rötning är en naturlig nedbrytningsprocess av organiskt material som tar tillvara på avfall samtidigt som nyttig energi kan utvinnas. På Biogasbolaget AB i Karlskoga omvandlas substrat som matavfall, gödsel och ensilage till biogas som sedan kan uppgraderas till fordonsgas. Fordonsgasen kan användas som drivmedel till bussar i närområdet. Det bildas dessutom en rötrest som används som biogödsel, men som är kostsam för företaget. Rötkamrarna i Karlskoga är överdimensionerade i förhållande till den mängden substrat som levereras, vilket innebär att de kan ta hand om mer gas än det som bildas i dagsläget. Tidigare studier har visat att tillsats av hydrokol kan öka metangasproduktionen. Därför var syftet med studien att utvärdera ifall hydrokol kan öka metangasproduktionen i satsvis anaerob rötning. Målen var att jämföra två olika hydrokol; skogsindustriellt och kommunalt, samt att komma fram till en optimal dos. Eftersom området är relativt nytt var det också av intresse att ta reda på hur klimatpåverkan förändras vid tillsats av hydrokol genom att utföra en enkel livscykelanalys.   Utvärderingen av hydrokolets potential i anaerob rötning utfördes genom satsvis rötning i två omgångar. Substrat och ymp hämtades från Karlskogas biogasanläggning. De doserna hydrokol som testades i båda försöken var 4, 8 och 10 g/l samt referensfallet 0 g/l vilket motsvarade Karlskogas förhållanden. Det gjordes även försök med endast hydrokol för att ta reda på om det var hydrokolet i sig som producerade metangas. Den satsvisa rötningen visade att det kommunala hydrokolet med en dos på 8 g/l gav mest metangas (841 Nml/g VS) jämfört med referensen 0 g/l (435 Nml/g VS) vilket var en ökning med 93%. Det skogsindustriella hydrokolet med en dos på 8 g/l visade en ökning med 16,6% (517 Nml/g VS) jämfört med referensen 0 g/l (443 Nml/g VS). Den enkla livscykelanalysen visade att det resulterade i en större minskning av utsläpp när dieselbussar kan bytas ut mot hydrokolsbaserad biogas jämfört med vanlig biogas. Vid tillsats av kommunalt hydrokol till biogasprocessen blev besparingen 14783 ton CO2.ekv./år vid utbyte av diesel och för skogsindustriellt hydrokol motsvarade besparingen 8938 ton CO2.ekv./år. Det jämfört med biogas som produceras utan hydrokol som vid utbyte av diesel sparar 7688 ton CO2.ekv./år. Massflödesanalysen visade att det teoretiskt är möjligt att använda Karlskogas rötrest för att använda som substrat till HTC-anläggningen och därmed införa ett cirkulärt system. Däremot visade metallanalysen att det finns risk för förhöjda mängder tungmetall i rötresten, vilket skulle kunna leda till att de inte klarar de krav som finns för att certifiera biogödseln.   För Biogasbolaget AB i Karlskoga innebär resultaten att de med 8 g/l kommunalt alternativt skogsindustriellt hydrokol skulle kunna öka sin metangasproduktion med 93% respektive 16,6%. Däremot kan det leda till problem med metallhalterna i rötresten som riskerar att överstiga gränsvärdena som finns för biogödsel. / Anaerobic digestion is a natural decomposition process of organic material that utilizes waste while extracting useful energy. At Biogasbolaget AB in Karlskoga, substrates such as food waste, manure, and silage are converted into biogas, which can then be upgraded to vehicle fuel. The vehicle gas can be used as fuel for buses in the local area. Additionally, a digestate is formed, which is used as biofertilizer but is costly for the company. The digesters in Karlskoga are oversized compared to the amount of substrate delivered, which means they can handle more gas than is currently being produced. Previous studies have shown that the addition of hydrochar can increase methane gas production. Therefore, the aim of the study was to evaluate whether hydrochar can increase methane gas production in batch anaerobic digestion. The goals were to compare two different types of hydrochar: from the forestry industry and municipal sources, and to determine the optimal dosage. Since the area is relatively new, it was also of interest to determine how the climate impact changes with the addition of hydrochar by conducting a simple life cycle analysis.   The evaluation of hydrochar's potential in anaerobic digestion was carried out through batch digestion in two rounds. Substrate and inoculum were obtained from Karlskoga's biogas plant. The doses of hydrochar tested in both experiments were 4, 8, and 10 g/l, as well as the reference case of 0 g/l, which corresponded to Karlskoga's conditions. Experiments were also conducted with hydrochar alone to determine if it was the hydrochar itself that produced methane gas. The batch digestion showed that the municipal hydrochar with a dosage of 8 g/l produced the most methane gas (841 Nml/g VS) compared to the reference of 0 g/l (435 Nml/g VS), which was an increase of 93%. The forestry industry hydrochar with a dosage of 8 g/l showed an increase of 16,6% (517 Nml/g VS) compared to the reference of 0 g/l (443 Nml/g VS). The simple life cycle analysis showed that it resulted in a greater reduction in emissions when diesel buses can be replaced by hydrochar-based biogas compared to regular biogas. When municipal hydrochar was added to the biogas process, the savings amounted to 14,783 tons of CO2 equivalent per year through diesel substitution. For forest industry hydrochar the equivalent resulted in savings of 8,938 tons of CO2 equivalent per year. This is in comparison to biogas produced without hydrochar, which saves 7,688 tons of CO2 equivalent per year when substituting diesel. The mass flow analysis showed that it is theoretically possible to use Karlskoga's digestate as substrate for the HTC plant, thus introducing a circular system. However, the metal analysis revealed a potential risk of elevated levels of heavy metals in the digestate, which could prevent it from meeting the requirements for certifying the biofertilizer.   For Biogasbolaget AB in Karlskoga, the results mean that with 8 g/l of municipal or forest industry hydrochar, they could increase their methane gas production by 93% and 16.6%, respectively. However, this could lead to issues with metal levels in the digestate, which may exceed the threshold values set for  biofertilizer.
50

Thermophilic anaerobic digestion of municipal wastewater sludges: A pilot scale evaluation with model assistance / Termofil rötning av kommunala avloppsslam: En utvärdering i pilotskala med modellstöd

Lundwall, Ted January 2021 (has links)
I takt med att städerna växer ökar belastningen på de kommunala avloppsreningsverken. Käppalaförbundet förutspår att antalet anslutna personekvivalenter till Käppalaverket kommer att öka med över 160 % under de kommande tre decennierna. En ökad belastning leder till en större mängd slam som måste behandlas. Detta görs idag med stabilisering genom mesofil rötning samt efterföljande avvattning och hygienisering. Samtidigt finns ett behov av hållbara energikällor i samhället, dit avloppsreningsverken bidrar genom tillhandahålla energirik biogas som biprodukt från rötningen.  Utrötningsgraden är beroende av slammets uppehållstid i rötkammaren och uppehållstiden kommer att bli kortare i takt med att belastningen ökar. Termofil rötning har identifierats som ett möjligt alternativ till inköp av ytterligare rötkammarvolym då metoden har rapporterats ge en snabbare stabilisering och därmed ett likvärdig resultat med kortare uppehållstid. Dessutom finns indikationer för att termofil rötning kan producera en större mängd biogas per enhet organiskt material i jämförelse med mesofil rötning. För att utreda huruvida Käppalaförbundet kan åtnjuta dessa fördelar har ett termofilt rötningsförsök bedrivits i pilotskala.  Pilotanläggningen bestod av en 5 m³ rötkammare som matades semikontinuerligt med 65 mass% primärslam och 35 mass% överskottsslam. Försöket inleddes med en temperaturövergång från en mesofil ymp till termofila betingelser, följt av att processen tilläts acklimatisera. Processen drevs därefter under tre uppehållstider med en längd på 18 dygn vardera. Samtliga driftparametrar härleddes i den mån det var möjligt från fullskalig slambehandling på Käppalaverket. De experimentella resultaten jämfördes med simuleringsresultat baserade på den matematiska modellen Anaerobic Digestion Model No. 1. Temperaturövergången och acklimatiseringen utfördes med framgång. Vid referensbelastningen var utrötningsgraden 54.4 % och den specifika metanproduktionen var 0.221 Nm3 CH4/kgVS, vilket var otillräckligt för att överträffa den mesofila, fullskaliga processen. Försöket indikerade att proteiner bryts ned lättare i en termofil process. Vidare observerades avtagande processtabilitet och försämrade avvattningsegenskaper hos rötresten. / As cities grow, the load on the municipal wastewater treatment plants increases. The Käppala Association predicts that the number of population equivalents connected to the Käppala Wastewater Treatment Plant will increase by over 160 % in the coming three decades. An increased load leads to a larger amount of sludge that must be treated. This is done today with stabilization through mesophilic anaerobic digestion and subsequent dewatering and hygienization. At the same time, there is a need for sustainable energy sources in society, to which wastewater treatment plants contribute by providing energy-rich biogas as a by-product from the anaerobic digestion. The degree of digestion is dependent on the retention time of the sludge in the digester and the retention time will become shorter as the load increases. Thermophilic anaerobic digestion has been identified as a possible alternative to the investment of additional digester volume as the method has been reported to provide a faster stabilization and thus an equivalent result with a shorter retention time. In addition, there are indications that thermophilic anaerobic digestion is able to produce a larger amount of biogas per unit of organic material in comparison with mesophilic anaerobic digestion. To evaluate whether the Käppala Association can enjoy these benefits, a thermophilic anaerobic digestion experiment has been conducted on a pilot scale. The pilot plant included a 5 m³ digester which was fed semi-continuously with 65 mass% primary sludge and 35 mass% waste activated sludge. The experiment began with a temperature transition from a mesophilic inoculum to thermophilic conditions, followed by allowing the process to acclimatize. The process was operated thereafter for three retention times with a length of 18 days each. All process parameters were derived as far as possible from the full-scale sludge treatment at Käppala Wastewater Treatment Plant. The experimental results were compared with simulation results based on the mathematical model Anaerobic Digestion Model No. 1. The temperature transition and acclimatization was performed successfully. At reference load, the degree of digestion was 54.4 % and specific methane production was 0.221 Nm3 CH4/kgVS, which was not enough to overcome the mesophilic full-scale process. Indications pointed towards proteins being more easily digested in a thermophilic process. Furthermore, deteriorating process stability and dewaterability of the digestate was observed.

Page generated in 0.0675 seconds