• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 14
  • Tagged with
  • 65
  • 40
  • 34
  • 30
  • 25
  • 17
  • 16
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Jämförelse mellan slutna matavfallssystem och säck- och kärlinsamling för biogasproduktion / A comparison between closed food waste systems and bag and vessel collection for biogas production

Fooladi, Sara January 2016 (has links)
No description available.
32

Biogaspotential vid samrötningav mikroalger och blandslam från Västerås kommunala reningsverk / Biogas potential of co-digestion with microalgae and mixed sewage sludge from the municipial wastewater treatment plant in Västerås

Forkman, Tova January 2014 (has links)
Because of the increasing trends in energy consumption and increased environmental awareness, greater focus has been placed on improvement and development of renewable energy sources. An already proven and accepted method is biogas production from anaerobic digestion at municipal wastewater treatment plants. In the waste water treatment process solid material and dissolved pollutants are separated from the water, forming a sludge. The sludge is separated from the process and stabilized during anaerobic digestion or aerobic aeration. Most often, mesophilic anaerobic digestion is used. Because of degradation by microorganisms, biogas with a high content of methane is formed during the digestion. To optimize the process different studies with co-digestion with sludge and other substrate have been made. It has been showed, in earlier research studies, that co-digestion with microalgae and sewage sludge results in a synergistic effect with increased biogas production. As the microalgae are microorganisms which use photosynthesis they contain stored energy from sun light. The stored energy will be available when the microalgae are digested in mesophilic conditions. In contrast to other biomass suitable for co-digestion microalgae have the advantage of being able to grow in waste water and reduce the pollutants in the water phase. Cultivation of microalgae will therefore not compete with the cultivation of food production and at the same time has the possibility to decrease the electricity- and heat consumption at the wastewater treatment plants. The aim of this study was to investigate how a possible synergetic effect between microalgae and sewage sludge effects the biogas production and the process stability. The microalgae was cultivated in municipal waste water from the WWTP in Umeå (Sweden) and the sludge was collected from the WWTP in Västerås (Sweden). The fermenters used was of the type DOLLY© and the active volume was 5 dm3. The temperature in the fermenters was kept at 37 °C and the study was divided into two periods. During the first period the hydraulic retention time was 15 days and the organic loading rate 2.4 g VS dm-3 d-1. During the second period the hydraulicretention time was kept at 10 days and the organic loading rate was 3.5 g VS dm-3 d-1. The result showed an increase with 54.6 % in methane production per reduced VS in the fermenter with co-digestion compared to the fermenter where only sludge was digested. Period one showed the highest increase. The result also showed a good process stability for both fermenters during the whole experiment. This study shows that there are reasons for continued investigations about co-digestion with microalgae and sewage sludge for an increased biogas production. / På grund av ökande el- och värmeförbrukning och ökat miljöengagemang har större fokus lagts på förbättring och utveckling av förnyelsebara källor för el- och värmeproduktion. En redan beprövad och accepterad metod för framställning av förnyelsebar energi är från biogasproduktion vid kommunala reningsverk. Vid rening av avloppsvatten avskiljs fasta partiklar och lösta föroreningar och bildar ett slam som separeras från vattnet. Slammet kan sedan stabiliseras anaerobt genom rötning eller aerobt genom luftning. En ofta använd metod vid konventionella reningsverk är mesofil anaerob rötning. Vid rötningen bryts material ner av mikroorganismer och genererar biogas som framförallt innehåller metan och koldioxid. För att optimera en sådan process och därmed kunna utvinna mer gas har det tidigare undersökts hur samrötning med olika material påverkar biogasproduktionen. Det har visat sig i forskningsförsök att samrötning med mikroalger och orötat blandslam ger en synergieffekt och mer biogas produceras. Mikroalgerna innehåller lagrad energi från solljus, då de är fotosyntesiserande organismer. Den lagrade energin har visat sig bli tillgänglig vid mesofil anaerob nedbrytning. Till skillnad från annan biomassa som undersökts för samrötning kan mikroalgerna odlas på avloppsreningsverken och fungera som en del av reningsprocessen då mikroalgerna tar upp näringsämnen ur vattnet de växer i. På det sättet undviks konkurrens om odlingsmark för livsmedel och så blir reningsprocessen på avloppsreningsverken mer el- och värmeeffektiv. Syftet med studien var att undersöka om eventuell synergieffekt mellan mikroalgerna och slammet påverkar biogasproduktionen och processtabiliteten vid mesofil anaerob rötning. Mikroalgerna som användes var odlade på mekaniskt renat spillvatten från Umeås reningsverk och slammet som användes hämtades ifrån Västerås reningsverk. Rötkamrarna som användes var av modellen DOLLY© med en aktiv volym på 5 dm3. Temperaturen i rötkamrarna hölls kring 37°C och studien var uppdelad i två perioder. Under period ett var den hydrauliska uppehållstiden 15 dygn och den organiska belastningen 2,4 g VS dm-3 d-1, medan period två hade en hydraulisk uppehållstid på 10 dygn och en organisk belastning på 3,5 g VS dm-3 d-1. Resultaten visade att metangasproduktionen per tillförd mängd organiskt material var lägre vid samrötning jämfört med rötning av enbart slam. Metangasproduktionen per reducerad mängd organiskt material ökade med upp till 54,6 % vid samrötningen jämfört med rötning av enbart slam. Period ett gav upphov till den största ökningen. Processen hölls stabil även vid inblandning av mikroalger, under både period ett och två. Studien visar att det finns ett underlag för fortsatta studier kring samrötning av mikroalger och slam för en ökad biogasproduktion.
33

Verktyg för uppskattning av bioenergipotential i kommuner i mellersta och södra Sverige / Bio-energy potential estimation tool for counties of middle and southern Sweden

Vega Norell, Pia Carola January 2009 (has links)
<p>Detta examensarbete utförs på uppdrag av Länsstyrelsen i Östergötland och Avdelningen för Teknik och Miljö vid Linköpings Universitet med syfte att skapa ett verktyg för att synliggöra de möjligheterna till den årliga bioenergitillförseln i olika kommuner i södra och mellersta Sverige. Avsikten är att bidra till den kommunala planeringen och effektiviseringen av miljöarbetet just inom energisektorn. Verktyget består av en handbok och ett beräkningsprogram. Den första innehåller information om kartlagda biobränsleresurser som är uppdelade i tre kategorier; Åkerbränslen, trädbränslen samt avfalls- och restprodukter. För varje biobränsleresurs finns information om: faktorer som kan påverka den mängd biobränsleresurser som man kan räkna med till bioenergiproduktion; allmän data om resurserna som energiråvaror; data som kommunen kommer att behöva mata in i beräkningsprogrammet, och information om och förslag på datakällor.</p><p>Handboken verkar främst som grund inför användningen av beräkningsprogrammet och bedömning av dess resultat. Beräkningsprogrammet är ett lättanvänt Excel dokument som omvandlar inmatade data till Megawattimme (MWh). De data som har använts som beräkningsunderlag till kalkylerna kommer delvis från den genomsnittliga mängden (ton/ha) på normskördar i Östergötland 2004-2007. Avsikten har varit att ha en representativ region att relatera och jämföra resultaten till. Resultaten ska ses som vägledande men inte absoluta. Kartläggningen av biobränsleresurser samt information kring dessa har genomförts utifrån ämnesrelevanta hemsidor såsom miljöportaler, myndigheter och universitet, samt via samtal med aktörer inom miljö- och energibranschen. Följaktligen har verktyget validerats innan det provtestats av Norrköpings miljöstrateg Enver Memic som bidragit med sina synpunkter om handbokens tydlighet och beräkningsprogrammet praktiska användning genom att mata in ungefärliga siffror. Förutom detta har man läst en artikel om miljöbeslut samt identifierat andra liknande beräkningsverktyg. Dessa synpunkter och jämförelser har använts som underlag till diskussionen och avslutande reflektion. Man har kommit fram till att verktyget kan bidra till den kommunala planeringen och effektiviseringen av miljöarbetet inom energisektorn så länge nämnda avgränsningar uppmärksammas. Slutsatser:</p><p>- Det utformade verktyget är en stödjande del i processen om att fatta beslut inom energisektorn. På grund av sitt relativt lättförståeligt innehåll anses det kunna öka möjligheter till större deltagande i beslutsprocesser</p><p><strong>- </strong>Handboken är ett informativt underlag med förståeligt innehåll som underlättar användningen av ett lättanvänt beräkningsprogram. Å andra sidan kan handbokens stora omfattning hindra en mer djupgående studie om varje biobränsleresurs. Verktyget avses främst för människor som är insatta i miljöfrågor och som kan hitta sätt att dra maximal nytta av beräkningsresultaten</p><p><strong>- </strong>Ett sådant verktyg skulle vara ännu effektivare om det skapades för de kommunerna i varje enskilt län. Ett beräkningsprogram med regionalstatistik som beräkningsunderlag skulle bidra till mer objektiva resultat. Resultaten skulle fortfarande vara vägledande. Kommunerna är fortfarande ansvariga för att eventuellt effektivisera data insamling och databassystem</p><p><strong>- </strong>Avfalls- och restprodukter omfattar ett flertal avfallskategorier, lagar som rör dess användning, aktörer som tar hand om det samt svår tillgängliga data. Det rekommenderas en specifik undersökning av området för att sedan skapa ett verktyg som räknar ut den mängd energi i MWh som kan utvinnas från det</p><p><strong>- </strong>Den metod som har använts för att ta fram detta verktyg kan användas igen som mall till effektivisering eller ny utformning av liknande verktyg</p> / <p>This master thesis is made by commission of Östergötlands County Administrative Board and the Department for Techniques and Environment at the University of Linköping with the purpose of creating a tool which shows the possibilities for the annual bioenergy production in municipalities located in the south and middle of Sweden. This is intended to contribute to the municipal planning and efficiency development of the environmental work within the energy sector. The tool consists of a handbook and a calculation programme. The first one contains information about surveyed biofuel resources which are organized in three categories; field biofuels; forest biofuels and waste fuels and rest products. For each biofuel resource is there information about factors that might  affect the available quantity biofuels for energy production; General information about these resources as sources of energy; Data that has to be fed into the calculation programme; Information about and ideas for data sources</p><p>The handbook is mainly a foundation preliminary to use of the calculation programme and the assessment of its results.  The calculation programme is an easy-to-use Excel document which transforms data into megawatt per hour (MWh).  The calculation programme is partly based on the average amounts (ton/ha) of vintages in Östergötland 2004-2007.  The purpose has been to have a representative region to relate and compare the results with. The results are to be considered rather as guidance than as absolute numbers.</p><p>The survey on biofuels and the information about these has been performed on the basis of subject relevant internet homepages such as environmental portals, public authorities and universities as well as conversations with actors within the environmental and energy sector.</p><p>As next step has the calculation programme been validated before being tested by Norrköpings environmental strategist Enver Memvic who commented the legibility of the handbook and the practical usage of the calculation programme. For this, he typed in rough numbers.  Moreover, an article about tools for environmental decision making has been read as well as three similar calculation tools have been identified. These commentaries and comparisons have been used as basis for the discussion and final reflection. It has been concluded that the created tool can contribute to the municipal planning and efficiency development of the environmental work within the energy sector as long as the mentioned limitations are considered. Conclusions:</p><p>- The created tool is a supportive part of the decision making process within the energy sector. Due to its understandable content, it is considered to increase the possibilities of participation in decision making.</p><p>- The handbook is an informative foundation with an understandable content which simplifies the usage of the easy-to-use calculation programme. On the other side might the handbook's broad extent hinder a more detailed study of each biofuel. The tool is mainly intended to be used by people who deal with the environmental problematic and who are capable of finding ways to take the best advantage from the calculation results.</p><p>- A tool such as this one would be more effective if it was created for the municipalities of each county. A calculation programme with regional statistics as basis for calculations would contribute with more objective results. These results would still be as guidance. The municipalities would still be responsible for eventually developing the collection of data/ database system.</p><p>-  Waste- and rest-products are not yet considered suitable to be included in such a tool due to the big range of involved actors, waste categories, waste treatments, end-uses that there is a lack of sufficient data for. Such a tool is most suitable for field and forest biofuels resources.</p><p>- The used method for creating this tool can be used again as a pattern for developing the efficiency of it or creating a similar one.</p>
34

Pretreatment technologies to increase the methane yields by anaerobic digestion in relation to cost efficiency of substrate transportation

Borgström, Ylva January 2011 (has links)
Med ett växande energibehov i världen, sinande energikällor i form av fossila bränslen och en miljö som vi under en längre tid har förorenat behövs det nya energiformer som är mer långsiktiga och framförallt miljövänliga. En sådan energiform är biogas. Biogasprocessen är dock inte helt optimerad. Flera av de substrat som används idag tar lång tid att röta och bryts bara ner till viss del i processen eller innehåller onödigt mycket vatten, vilket ger höga transportkostnader. Med syfte att göra biogasprocessen mer ekonomisk lönsam utvärderas i denna rapport på uppdrag från E.ON några olika förbehandlingstekniker: Ångexplosion, extrusion, avvattning och kalkbehandling. Förhoppningen är att dessa ska kunna öka lönsamheten för storskalig biogasproduktion och kanske möjliggöra biogasproduktion från tidigare obrukbara substrat som fjädrar och halm.  För att jämföra och utvärdera förbehandlingsteknikerna utfördes batchrötningsförsök i 330 ml flaskor med obehandlade och förbehandlade substrat. De flesta förbehandle substraten gav snabbare nedbrytning och några gav även högre metanutbyte än de obehandlade. Fjädrar och halm, som från början hade ett lågt utbyte, påverkades mest av förbehandlingen. Ångexploderade fjädrar gav efter 44 dagars rötning 141% högre metanutbyte och extruderad halm gav 22% högre metanutbyte än obehandlad.  För ekonomiska beräkningarna användes en referensanläggning med en förutbestämd substratmix: 12500 ton majs och 11500 ton hästgödsel. Att tillgå för referensanläggningen finns dessutom fjädrar. Cambis THP-anläggning för ångexplosion visade sig vara alldeles för dyr för referensanläggningen. En THP-anläggning kräver en större biogasanläggning där en större mängd svårnedbrytbara substrat rötas för att bli lönsam. En extruder skulle kunna vara lönsam för för refernsanläggningen om hästgödseln som de har tillgång till innehåller halm som strömaterial. En investering i en extruder bara för att förbehandla majsensilage visade sig inte lönsam.  Avvattning av gödsel gav signifikant lägre utbyte av biogas per torrvikt men signifikant högre utbyte per våtvikt. Avvattningsutrustningen från Splitvision, som testades, var för dyr för att bli lönsam. Först när gården låg 4 mil från biogasanläggningen blev det billigare att avvattna gödsel och transportera den jämfört med att transportera den obehandlad. Andra avvattningsutrustningar i studien var billigare i drift så det finns möjligheter att tekniken kan bli lönsam med någon av dessa. / The world needs new energy sources that are durable for long time and which not affect the environment negatively. Biogas fulfills those demands. The biogas process is however not completely optimized. Several of the substrates used today for biogas production are slowly degraded and only partly digested in the process. Other substrates consist of unnecessarily much water which makes transportation costly. To optimize the process and make the biogas process more profitable, several pretreatment techniques are evaluated by direction of E.ON in this report: steam explosion, extrusion, lime treatment and dewatering. The hope is that one of those could increase the profitability and hopefully also enable substrates that not are working today like feathers and straw. To compare and evaluate the different pretreatment batch digester, experiments were carried out during 31-44 days for untreated and pretreated substrates. Most pretreated substrates were faster degraded than untreated and some also gave a higher methane yield. Chicken waste feathers and wheat straw, which had low methane yields untreated, were affected most by pretreatment. Steam exploded feathers gave after 44 days of digestion 141% higher methane yield and extruded straw gave 22% higher methane yield than untreated samples of the same substrate. A reference plant with a substrate mixture of 12500 tonnes of maize silage and 11500 tons of horsemanure annually was used to make economical calculations. Additionally, chicken waste feathers waste could be included. Obtainable for the reference plant were also chicken waste feathers. Steam explosion appeared to be too expensive for a plant in the size of the reference plant. Its large capacity could probably make it profitable for a much larger biogas plant running on a lot of hard digestible substrates. An extruder could be a profitable investment for the reference plant if the plant gets horse manure with straw as bedding material. To just use the extruder to pretreat maize silage could not make the investment profitable. Dewatering of manure gave significantly lower methane yield per dry weight but significantly higher methane yield per wet weight. The increase in methane yield per wet weight makes the substrate better for transportation. The dewatering equipment from Splitvision tried in this study had too high operational costs and was too expensive to make dewatering particularly profitable. Only when the farm was situated farther away than 40km from the biogas plant it was cheaper to dewater the manure before transport than to transport the manure without any pretreatment. Other dewatering equipments evaluated in this study had much lower operational costs and among those an equipment that makes dewatering profitable might therefore be found. The world needs new energy sources that are durable for long time and which not affect the environment negatively. Biogas fulfills those demands. The biogas process is however not completely optimized. Several of the substrates used today for biogas production are slowly degraded and only partly digested in the process. Other substrates consist of unnecessarily much water which makes transportation costly. To optimize the process and make the biogas process more profitable, several pretreatment techniques are evaluated by direction of E.ON in this report: steam explosion, extrusion, lime treatment and dewatering. The hope is that one of those could increase the profitability and hopefully also enable substrates that not are working today like feathers and straw. To compare and evaluate the different pretreatment batch digester, experiments were carried out during 31-44 days for untreated and pretreated substrates. Most pretreated substrates were faster degraded than untreated and some also gave a higher methane yield. Chicken waste feathers and wheat straw, which had low methane yields untreated, were affected most by pretreatment. Steam exploded feathers gave after 44 days of digestion 141% higher methane yield and extruded straw gave 22% higher methane yield than untreated samples of the same substrate. A reference plant with a substrate mixture of 12500 tonnes of maize silage and 11500 tons of horsemanure annually was used to make economical calculations. Additionally, chicken waste feathers waste could be included. Obtainable for the reference plant were also chicken waste feathers. Steam explosion appeared to be too expensive for a plant in the size of the reference plant. Its large capacity could probably make it profitable for a much larger biogas plant running on a lot of hard digestible substrates. An extruder could be a profitable investment for the reference plant if the plant gets horse manure with straw as bedding material. To just use the extruder to pretreat maize silage could not make the investment profitable. Dewatering of manure gave significantly lower methane yield per dry weight but significantly higher methane yield per wet weight. The increase in methane yield per wet weight makes the substrate better for transportation. The dewatering equipment from Splitvision tried in this study had too high operational costs and was too expensive to make dewatering particularly profitable. Only when the farm was situated farther away than 40km from the biogas plant it was cheaper to dewater the manure before transport than to transport the manure without any pretreatment. Other dewatering equipments evaluated in this study had much lower operational costs and among those an equipment that makes dewatering profitable might therefore be found.
35

Optimeringsunderlag för anaerob rötning av flytgödsel från nötkreatur / Basis for optimization of anaerobic digestion with cattle manure

Gregeby, Erik January 2009 (has links)
Produktions- och optimeringspotentialen vid anaerob rötning av flytgödsel från nötkreatur granskades. Detta genom att, i laboratoriemiljö, undersöka förändringar i processtabilitet, gasproduktion och metanhalt vid tillsats av kycklinggödsel och pH-buffert med flytgödsel från nötkreatur som grundsubstrat. Tillsatsen av pH-buffert underlättade tillväxtfasen för mikroorganismerna, snabbare ökning i metanhalt och den totala metangasproduktionen ökade. Skillnaden var som störst under tillväxtfasen och avtog från stationärfas och framåt. Tillsats av kycklinggödsel har i detta fall inhiberat processen, möjligtvis på grund av ammoniakinhibering vid tillsats av det kväverika substratet som kycklinggödsel är. / Production potential and basis for optimization of anaerobic digestion with cattle manure was reviewed by examining process stability, gas production and methane content in a laboratory environment via addition of pH buffer and chicken manure with slurry from cattle manure as basic feedstock. Addition of pH buffer facilitated the growth of microorganisms by more rapid increase in methane content and greater quantities of produced methane gas. The effects were high during the growth stage but decreased, during and after, the stationary phase. Addition of chicken manure caused inhibition of the process, probably caused by ammonia inhibition from high nitrogen content in chicken manure.
36

Optimeringsunderlag för anaerob rötning av flytgödsel från nötkreatur / Basis for optimization of anaerobic digestion with cattle manure

Gregeby, Erik January 2009 (has links)
<p>Produktions- och optimeringspotentialen vid anaerob rötning av flytgödsel från nötkreatur granskades. Detta genom att, i laboratoriemiljö, undersöka förändringar i processtabilitet, gasproduktion och metanhalt vid tillsats av kycklinggödsel och pH-buffert med flytgödsel från nötkreatur som grundsubstrat. Tillsatsen av pH-buffert underlättade tillväxtfasen för mikroorganismerna, snabbare ökning i metanhalt och den totala metangasproduktionen ökade. Skillnaden var som störst under tillväxtfasen och avtog från stationärfas och framåt. Tillsats av kycklinggödsel har i detta fall inhiberat processen, möjligtvis på grund av ammoniakinhibering vid tillsats av det kväverika substratet som kycklinggödsel är.</p> / <p>Production potential and basis for optimization of anaerobic digestion with cattle manure was reviewed by examining process stability, gas production and methane content in a laboratory environment via addition of pH buffer and chicken manure with slurry from cattle manure as basic feedstock. Addition of pH buffer facilitated the growth of microorganisms by more rapid increase in methane content and greater quantities of produced methane gas. The effects were high during the growth stage but decreased, during and after, the stationary phase. Addition of chicken manure caused inhibition of the process, probably caused by ammonia inhibition from high nitrogen content in chicken manure.</p>
37

Systematic Assessment of Straw as Potential Biogas Substrate in Co-digestion with Manure / Systematisk utvärdering av halm som potentiellt biogassubstrat i samrötning med gödsel

Duong, Sutina January 2014 (has links)
This work was carried out at Biogas Research Center (BRC) and the company Biogas in Vadstena. The aim was to systematically evaluate new substrates for biogas production. In particular, this case investigated the potential of straw in co-digestion with manure and slurry from pig, chicken and dairy. Straw is interesting to evaluate since it is second generation biomass and available in a large quantity. Also, anaerobic digestion (AD) of manure is beneficial because it deals with the spontaneous methane emission and leads to a better manure handling. Goals within the EU as well as in Sweden have been set up to reduce greenhouse gas emissions from fossil fuel and to produce more renewable energy. The methodology used is outlined by BRC in which a number of key areas, such as description of biomass, amount biomass, gas yield, technology, economy, environmental performance and energy system, competing interests and institutional factors, have been evaluated through literature studies and case study Biogas in Vadstena. Based on the results an overall judgment is done to determine the potential of straw. The result shows that straw is not appropriate to digest solely because of high TS, high carbon content and lack of nutrients. Straw also has lignocellulosic structures, which are difficult to break down. Especially lignin limits the biodegradability. Mechanical, thermal, chemical and biological pretreatments can increase the availability and biodegradability in the straw. In some cases pretreatment can also increase the methane potential. However, straw works well as a carbon complement in co-digestion with manure, which is a nitrogen-rich substrate. There are technologies available for AD of straw and manure for the whole biogas process, from transportation and pretreatment to digestion and upgrading. Although, there is space for further development of pretreatment and upgrading technology. The economic calculations show that it is profitable to use straw with manure in a farm-based biogas plant for vehicle gas production. Furthermore, the calculations of the energy show that biogas production is energy efficient with energy input/output ratio of 18-23%. Besides production of biogas, the digestate could be used as an environmentally friendly fertilizer. In summary, it is possible to produce biogas from straw together with manure, and this is beneficial from both an environmental and economic perspective. / Detta examensarbete har utförts i samarbete med Biogas Research Center (BRC) och företaget Biogas i Vadstena. Målet med examensarbetet var att systematiskt utvärdera nya substrat för biogasproduktion. Specifikt för det här fallet var att undersöka potentialen för halm i samrötning med gödsel och flyt från svin, höns och nöt. Halm är intressant att utvärdera då det tillhör andra generationens biomassa och finns tillgängligt i stor mängd. Även rötning av gödsel är givande då den spontana metanemissionen uteblir och det ger en bättre gödselhantering. Det har satts upp mål inom såväl EU som i Sverige att mer förnybart bränsle bör produceras för att minska växthusgasutsläppen från fossila bränslen. Metodiken som använts har framarbetats av BRC. Det innebär att substrat granskas utifrån ett flertal nyckelområden, såsom beskrivning och mängd biomassa, gasutbyte, synergieffekter, teknik, ekonomi, miljöpåverkan och energisystem, konkurrerande intressen och institutionella faktorer. Dessa har utvärderats genom litteraturstudier och studie av fallet Biogas i Vadstena. Utifrån resultatet görs en övergripande bedömning av substratet. Resultatet visar att halm inte är lämpligt att röta enskilt på grund av högt TS-värde, högt kolinnehåll och att den är näringsfattig. Halm består även till stor del av lignocellosa-strukturer som är svåra att bryta ned, i synnerhet lignin. Mekaniska, termiska, kemiska och bioglogiska förbehandlingar kan öka tillgängligheten och nedbrytbarheten av halm. Det kan även öka metanpotentialen i vissa fall. Däremot fungerar halm bra som ett komplement i samrötning med gödsel som är ett kväverikt substrat. Det finns teknik för rötning av halm för hela biogasprocessen, från transport, förbehandling och rötning till uppgradering. Dock finns utrymme för tekniken att utvecklas ytterligare. De ekonomiska beräkningarna visar att det är lönsamt att använda halm tillsammans med gödsel i en jordbruksbaserad biogasanläggning för fordonsgasproduktion. Vidare visar beräkningar för energisystemet att biogasproduktion är energieffektiv med energi input/output-kvot på 18-23%. Förutom fordonsgas produceras även biogödsel som är ett miljövänligt alternativ till konstgjord gödsel. Sammanfattningsvis, det är möjligt att producera biogas av halm tillsammans med gödsel och det är fördelaktigt ur en såväl miljömässigt som ekonomiskt perspektiv.
38

Utilization of Biomethane in Decarbonising India´s Energy Mix

Ravindra Kunkulol, Niraj January 2023 (has links)
This thesis investigates the potential of biomethane production in India, the impact of its integration into the energy mix, and the corresponding Greenhouse Gases (GHG) emission and potential reduction. India, with its huge population and being an agriculturally rich country, produces gigantic amounts of biodegradable waste from various sources such as Municipal Solid Waste (MSW),agricultural waste, animal husbandry, sugar industry, etc. Three different end-use scenarios: electricity generation, cooking fuel, and transportation fuel—are assessed in order to determine the decree to which current fossil fuels may be replaced and the net amount of greenhouse gas emissions that are saved by using this biomethane. The total biomethane generation potential according to the study conducted by the Ministry of New and Renewable Energy (MNRE) is 25.6 Billion Metric Standard Cubic Meters (BMSCM) and with the most efficient upgrading technology available (3-stage membrane filtration) the useful potential is 25.4 BMSCM. The electricity that can be produced from the biomethane potential available is 159.1 TWh, which corresponds to the optimistic value of GHG emission reduction of 89million tons. When used as a cooking fuel, biomethane can contribute immensely to satisfying the final thermal needs of India. It can satisfy more than half the combined total thermal energy from Compressed Natural Gas (CNG) and Liquefied Petroleum Gas (LPG) consumed in India and, at the same time, reduce 46.2 million tons of GHG emissions caused by it. The transportation sectoris the most suited and easy to adapt as an end-use application for biomethane. It was observed that biomethane as a replacement for Petrol for road transportation fuel presents the best scenario, since biomethane can reduce more than 71% of its consumption and respectively reduce more than 57 million tons of GHG emission, which is the second highest after electricity production. This thesis puts up a strong case to look at biomethane as a very important fuel towards India’starget to be net zero by 2070 and its plans to be self-reliant. Moreover, biomethane production usingthe path of anaerobic digestion provides not only a renewable source of energy but also food security with digestate being used as fertilizer and an opportunity to address the impact of climate change by preventing the emission of methane in the atmosphere which has a global warming potential of28 and burning of agricultural waste in the open field. Eventually, the production of biomethane prevents soil, air and water pollution. / Denna avhandling undersöker potentialen för biometanproduktion i Indien, effekterna av dess integration i energimixen och motsvarande utsläpp och potential för växthusgaser (GHG). minskning. Indien, med sin enorma befolkning och är ett jordbruksrikt land, producerar gigantiska mängder biologiskt nedbrytbart avfall från olika källor som kommunalt fast avfall (MSW), jordbruksavfall, djurhållning, sockerindustri, etc. Tre olika slutanvändningsscenarier: el produktion,matlagningsbränsle och transportbränsle – utvärderas för att fastställa till vilket dekret nuvarande fossila bränslen får ersättas och nettomängden växthusgasutsläpp som sparas genom att använda denna biometan. Den totala biometangenereringspotentialen enligt studien utförd av ministeriet för ny och förnybarenergi (MNRE) är 25,6 miljarder metriska standardkubikmeter (BMSCM) och med den mest effektiva uppgraderingstekniken som finns tillgänglig (3-stegs membranfiltrering) är den användbara potentialen 25,4 BMSCM. Den el som kan produceras från den tillgängliga biometanpotentialen är 159,1 TWh medan det optimistiska värdet av växthusgasutsläpp som är möjligt med användning av biometan för elproduktion är 89 miljoner ton. När biometan används som matlagningsbränsle kan det bidra oerhört mycket för att tillfredsställa Indiens slutliga termiska behov. Det kan tillfredsställa mer än halva finalen termisk energi som förbrukas i Indien och samtidigt samma miljon ton i utsläpp av växthusgaser som orsakas av den. Transportsektorn är den mest lämpade och lätta att anpassa som slutanvändningsprogram för biometan. Det observerades att biometan som ersättning för bensin som transportbränsle är det bästa scenariot eftersom biometan kan minskamer än 71 % av sin förbrukning och respektive minska mer än 57 miljoner ton växthusgasutsläpp, vilket är det näst högsta efter elproduktion. Den här avhandlingen ger ett starkt argument för att se biometan som ett mycket viktigt bränslemot Indiens mål att vara nettonoll år 2070 och dess planer på att vara självförsörjande. Dessutom ger biometanproduktion genom att använda vägen för anaerob rötning inte bara en förnybar energikälla utan också livsmedelssäkerhet med rötgas som används som gödningsmedel och en möjlighet att ta itu med effekterna av klimatförändringar genom att förhindra utsläpp av metan i atmosfären som har en global uppvärmningspotential på 28 och förbränning av jordbruksavfall på det öppna fältet. Så småningom förhindrar produktionen av biometan mark-, luft- och vattenföroreningar.
39

Biogödsel från gårdsnära biogasproduktion : Klassificering och Tillåtlighet

Lindström, Johanna January 2008 (has links)
<p>Sedan 1996 står biogas för över hälften av den använda fordonsgasen i Sverige. Det blir således allt mer angeläget att framställa biogas. Biogasprojektet Biogas i Brålanda har för avsikt att framställa biogas genom rötning av naturgödsel/stallgödsel och, eller slakterirester.</p><p>Materia från en eller flera rötas för att producerar biogas och efter rötningen återstår ett högkvalitativt gödselmedel, biogödsel. Biogödseln skall användas som gödsel på de till projektet anslutna åkrarna. Uppsatsens huvudfråga är huruvida biogödseln från projektet Biogas i Brålanda får användas som gödsel på de till projektet anslutna åkrarna. Även klassificering av biogödsel, krav på hygienisering och användning på ekologiska åkrar har utretts. Uppsatsens utredning har framförallt rört sig mellan rättsområdena miljörätt och offentligrätt och har behandlat såväl svensk som EG-rättslig lagstiftning.</p><p>Spridning av biogödsel är inte tillstånds- eller anmälningspliktig, men biogödsel får likväl inte spridas hur som helst. Biogödselns klassificering som t.ex. avfall eller farligt avfall samt klassificering av rötningsmaterian påverkar huruvida materialen bl.a. måste hygieniseras innan de får användas.</p><p>Slutligen har uppsatsen utrett huruvida biogödsel som innehåller konventionell gödsel, slakterirester och gödsel från industriell djurhållning får används på ekologiska och KRAV-anslutna åkrar.</p>
40

Inom vilka områden behövs framtida biogassatsningar? : Future support to biogas production in Sweden

Gillgren, Maria January 2010 (has links)
<p>Energimyndigheten har från Regeringen blivit tilldelad 100 miljoner kronor att fördela som investeringsstöd för att främja en effektiv och utökad produktion, distribution samt användning av förnybara gaser såsom biogas. Myndigheten har samtidigt fått i uppdrag att utveckla en sektorsövergripande biogasstrategi och föreslå åtgärder som på kort och lång sikt kan bidra till ökad användning av biogas. Denna strategi ska också tjäna som ett underlag för fördelning av olika former av stöd inom sektorn.</p><p>Syftet med detta examensarbete är att sammanställa information som kan bidra som underlag vid upprättandet av den sektorsövergripande biogasstrategin. Ett annat syfte är att bidra med underlag för Energimyndighetens bedömning av var ett investeringsstöd kan ge störst effekt för den fortsatta utvecklingen inom biogasområdet. Detta stöd avser den senaste, ovan nämnda, utlysning som Energimyndigheten gjort inom området. Examensrapporten innehåller bland annat en sammanställning av gjorda insatser inom forskningsområdet biogas de senaste åren, finansierat av framför allt Energimyndigheten, men även en inblick i vilka biogassatsningar som är gjorda av andra nationella aktörer. Ett antal personer från bland annat branschorganisationer har intervjuats för att ta del av deras syn på den framtida biogasmarknaden, vilka satsningar som bör göras och vilka hinder som har störst inverkan. Organisationerna är valda utifrån kriteriet att de ska representera olika delar av biogasbranschen och att olika synvinklar därigenom ska framkomma. Rapporten innehåller slutsatser som dragits av tidigare biogassatsningar hos Energimyndigheten och identifiering av biogasområden där det föreligger stort behov av framtida satsningar för utökad produktion, distribution och användning. </p><p>Ett område som i detta examensarbete har identifierats ha stort behov av framtida biogassatsningar är bland annat framtagande av alternativa rötningssubstrat, eftersom mängden tillgängligt substrat nuläget inte är tillräcklig. Detta utgör idag en begränsning för biogasproduktionen. Det bör även satsas mer på förbehandling av substrat innan rötning, vilket ökar gasproduktionen och förbättrar substratutnyttjandet i större utsträckning. Mer satsningar behövs också kring hur biogasprocessens slutprodukt, rötresten, kan bli en mer attraktiv produkt så att återcirkulering av växtnäring kan ske i större grad genom rötrestspridning på åkermark. Detta är av stor vikt eftersom en ökad volym rötningssubstrat ger upphov till större mängd rötrester som ska hanteras. Andra områden som är i behov av framtida stöd är utveckling av befintliga anläggningar för att öka och effektivisera produktionen. För att optimera processerna bör framför allt mer medel satsas på kunskapsuppbyggnad och spridning av den vetenskap som finns tillgänglig. Att länka samman universitet, högskolor och naturbruksgymnasium med anläggningar i drift kan vara det mest effektiva sättet att nå ut med relevant information och kunskap. Ur ett samhällsekonomiskt perspektiv bör mer medel läggas på att öka gödselrötning då detta minskar metanläckage.</p> / <p>Swedish Energy Agency has been allocated SEK 100 million from the government to distribute as investment grant to promote efficient and expanded production, distribution and use of renewable gases such as biogas. The Agency has also been given the task to develop a multidisciplinary strategy for biogas and propose measures which can contribute to increased use of biogas in the short and long term. This strategy will also serve as a basis for the allocation of various forms of support in the biogas sector. </p><p>The purpose of this study is to compile information which can be used as input for the establishment of the multidisciplinary strategy for biogas. Another purpose is to provide information to support the Swedish Energy Agency in the assessment of which areas an investment grant will have the greatest impact for the future development of biogas. This grant refers to the latest call of Swedish Energy Agency in the sector. This report includes a summary of what areas grants have been given for research of biogas in recent years, mainly financed by the Swedish Energy Agency, but also an insight into efforts made by other national operators. A number of people from professional biogas organizations have been interviewed to share their views on the future biogas market. Which efforts should be made and the main obstacles to be overcome are other questions discussed. The report contains conclusions from the experience of previous support from the Swedish Energy Agency as well as identification of areas in which there is great need for future efforts in order to expand the production, distribution and use of biogas.</p><p>Some areas which have been identified in this thesis for need of future efforts in the biogas sector is for example the development of alternative substrates for anaerobic digestion, because the amount of available substrate is at present not sufficient. This is currently a limitation for the biogas production. There is also a need to further develop the pre-treatment of the substrate before digestion, in order to increase the gas production and improve substrate utilization to a greater extent. More focus are also needed on how the end product from the biogas process, the digestion residues, can become a more attractive product to the recycling of plant nutrients by use as a bio fertilizer on farmland. This is of great importance because larger volume of digestion will result in greater volume of digestion residues to be managed. Other areas in need of future investments are the development of existing facilities to increase and optimize the production. In order to optimize the production processes, more resources should be devoted to capacity building and dissemination of the available knowledge. Linking universities and colleges together with operating biogas plants could be the most effective way to reach out with relevant information and knowledge. From a socioeconomic perspective more resources should be spent on increasing the volume of manure digestion then it is today, which also will result in reduced methane leaks.</p>

Page generated in 0.4576 seconds