Spelling suggestions: "subject:"receptor nicotínicos"" "subject:"receptor nicotinic""
1 |
Activación y modulación alostérica de receptores α7 homoméricos y heteroméricosNielsen, Beatriz Elizabeth 26 March 2020 (has links)
La acetilcolina ejerce un rol preponderante como neuromodulador en el sistema nervioso central, principalmente a nivel de los circuitos neuronales asociados a cognición, memoria, aprendizaje, atención, recompensa y procesamiento de la información sensorial, modificando su respuesta frente a estímulos internos y externos. La señalización colinérgica ocurre tanto por mecanismos de transmisión sináptica como extrasináptica, siendo estos últimos los principales involucrados en la modulación de la excitabilidad neuronal, la liberación presináptica de neurotransmisores, la plasticidad neuronal y la activación coordinada de distintos grupos de neuronas en el encéfalo.
El efecto neuromodulador de la acetilcolina depende no sólo de su sitio de liberación y de la población neuronal blanco, sino también de los receptores a través de los cuales actúa. Por lo tanto, los receptores nicotínicos ionotrópicos constituyen una pieza clave en el sistema colinérgico del encéfalo. Estos son canales iónicos pentaméricos activados por ligando que forman parte de la familia de receptores Cys-loop. Son permeables a cationes y pueden estar formados por cinco subunidades idénticas o por combinaciones de subunidades diferentes, dando lugar a receptores homoméricos o heteroméricos respectivamente. Cada subtipo de receptor nicotínico presenta una estequiometría definida, es decir, una composición y un arreglo espacial de subunidades particular, responsable de las propiedades biofísicas, farmacológicas y funcionales del canal, que se encuentran íntimamente asociadas a su rol fisiológico diferencial.
Una de las subunidades de receptor nicotínico más abundantes en el sistema nervioso central es α7, tradicionalmente reconocida por su capacidad para formar receptores homoméricos de origen evolutivo más ancestral. Sin embargo, evidencias recientes demostraron que también posee la habilidad de coensamblarse con otras subunidades para generar receptores heteroméricos, tales como el novedoso subtipo α7β2. Numerosos desórdenes neurológicos, psiquiátricos, inflamatorios y neurodegenerativos se presentan acompañados de una deficiente señalización colinérgica, por lo que estos receptores nicotínicos conformados por subunidades α7 constituyen un promisorio blanco terapéutico. En el presente trabajo de tesis se descifraron las bases moleculares de la activación y modulación de los receptores nicotínicos α7 homoméricos y heteroméricos, utilizando principalmente técnicas electrofisiológicas, con el fin de comprender el impacto diferencial de ambos subtipos en la señalización colinérgica del sistema nervioso central.
El capítulo I fue dividido en tres partes y se centró en el estudio de la función molecular del receptor α7 homomérico a nivel macroscópico y microscópico. Este receptor exhibe propiedades cinéticas y farmacológicas particulares que lo tornan óptimo en la mediación de procesos de transmisión extrasinápticos, incluyendo su elevada permeabilidad a los iones calcio y su capacidad para transformar respuestas ionotrópicas transitorias en eventos de señalización metabotrópica sostenidos.
En la parte I se analizaron los mecanismos moleculares de activación y modulación del receptor α7 homomérico. En presencia de acetilcolina el receptor se activó y desensibilizó con una cinética rápida, evocando mayoritariamente aperturas aisladas breves. Por el contrario, la activación alostérica presentó un mecanismo molecular radicalmente diferente, con un enlentecimiento de la cinética de desensibilización, que permitió la prolongación de las aperturas individuales y su agrupación en episodios de activación sostenidos de muy larga duración. Asimismo, se evaluó la potenciación por compuestos prototipo previamente reportados como moduladores alostéricos positivos (PAMs), clasificados como tipo I o II en base a sus efectos a nivel de corrientes macroscópicas. Si bien ambos incrementaron el pico de la corriente, los PAMs tipo I produjeron mínimos o nulos cambios en la velocidad de desensibilización del receptor, mientras que los PAMs tipo II disminuyeron dicha velocidad notoriamente e incrementaron la reactivación de receptores desde el estado desensibilizado. Para descifrar el origen molecular de dichos efectos se exploró la potenciación a nivel de corrientes unitarias. Se demostró que los PAMs no afectaron la amplitud máxima del canal, incrementaron el tiempo de estado abierto e indujeron la aparición de episodios de activación sostenidos, modificando así la cinética del receptor en los dos casos. Mientras que los PAMs tipo I promovieron episodios de activación con una duración moderada denominados bursts, los PAMs tipo II generaron clusters de muy larga duración, conformados por varios bursts agrupados. La potenciación por ambos tipos de PAMs también fue diferencialmente afectada por la temperatura, siendo los PAMs tipo II los más sensibles, con una actividad potenciadora significativamente menor a temperatura fisiológica en comparación con el accionar a temperatura ambiente. Esta información resulta muy relevante dado que usualmente la caracterización de los PAMs in vitro es llevada a cabo a temperatura ambiente, pero para su potencial uso terapéutico es indispensable el conocimiento de sus efectos a temperaturas fisiológicas. Además, se comprobó que los determinantes estructurales transmembrana influyen en la potenciación por los dos tipos de PAMs, principalmente en los PAMs tipo II, mientras que los PAMs tipo I resultan menos sensibles. Sin embargo, también se identificaron algunos PAMs tipo I notablemente influenciados por los determinantes transmembrana, con un comportamiento intermedio, más semejante al de los PAMs tipo II. En conjunto, estos resultados aportan información esencial para la implementación de agonistas y PAMs de α7 como agentes terapéuticos en desórdenes donde exista una señalización colinérgica deficiente.
En la parte II se reveló una conexión entre los efectos benéficos comunes ejercidos por los flavonoides y el receptor α7 homomérico en el sistema nervioso central, ya que estos compuestos naturales presentaron actividad α7-PAM. Se evaluaron prototipos de las tres principales clases de flavonoides: genisteína, quercetina y 5,7-dihidroxi-4-fenilcumarina como neoflavonoide. Se demostró que todos ellos potenciaron las corrientes macroscópicas y microscópicas evocadas por la acetilcolina y no recuperaron receptores desde el estado desensibilizado. Dicha caracterización funcional permitió clasificarlos como PAMs tipo I. Utilizando receptores α7 mutantes y quiméricos se comprobó que los flavonoides comparten determinantes estructurales de potenciación transmembrana con otros PAMs. Estos compuestos polifenólicos no sólo aumentaron la respuesta ionotrópica del receptor α7, sino también la metabotrópica. Se verificó que los mismos potenciaron la disminución de la generación de especies reactivas de oxígeno intracelulares ejercida por la activación de α7, en forma independiente de su efecto antioxidante intrínseco. Tanto es así que la actividad α7-PAM de los flavonoides se propone como un mecanismo adicional por el cual estos compuestos naturales ejercerían su acción antioxidante y su efecto neuroprotector mediado por receptor.
En la parte III se sintetizó una novedosa serie de compuestos sintéticos derivados de 1,2,3-triazol 1,4-disustituidos con grupos arilo y fosfonato, que presentaron actividad α7-PAM. El compuesto de mayor eficacia fue el derivado funcionalizado con el grupo fosfonato de metilo, el cual se comportó como PAM tipo I, potenciando las corrientes macroscópicas y microscópicas evocadas por la acetilcolina de forma compatible con su clasificación. La potenciación por este compuesto fue influenciada por los determinantes estructurales transmembrana, compartidos también por los PAMs tipo II. Además, se aplicaron diversas estrategias de relación estructura-actividad para obtener derivados más eficaces, como modificaciones en la longitud de las cadenas carbonadas, variación del grupo aromático e inversión de la geometría del triazol. Esta última fue la única que permitió conservar el accionar α7-PAM del derivado con fosfonato de metilo. Por lo tanto, estos hallazgos permiten proponer a este compuesto como un novedoso farmacóforo de interés, que no sólo exhibe actividad potenciadora por sí mismo, sino que también resulta útil como plataforma para el desarrollo de nuevos agentes potencialmente terapéuticos.
El capítulo II se centró en el estudio de la función molecular del receptor α7 heteromérico, particularmente del receptor α7β2, cuya presencia ha sido confirmada en cerebro anterior basal, corteza e hipocampo. Para descifrar el impacto de la incorporación de subunidades β2 en el pentámero de subunidades α7, se generaron receptores con estequiometrías definidas y controladas mediante dos estrategias: la tecnología de concatámeros y la técnica de electrical fingerprinting, que utilizan subunidades covalentemente unidas y no enlazadas respectivamente. Se determinó que las estequiometrías conteniendo una, dos y tres subunidades β2 dieron lugar a receptores α7β2
funcionales. En relación a la activación ortostérica, a medida que el número de subunidades β2 aumentó en el arreglo pentamérico, la amplitud y la conductancia unitaria permanecieron constantes, mientras que la duración de las aperturas y de los episodios de activación sostenidos se prolongaron significativamente, debido a una disminución en la velocidad de desensibilización. La activación en episodios sostenidos o bursts constituyó la marca o huella cinética distintiva del receptor heteromérico α7β2 con respecto al receptor α7 homomérico. Además, la subunidad β2 no aportó su cara complementaria al sitio ortostérico de unión, sino que la activación eficaz por acetilcolina ocurrió únicamente a través de interfaces α7/α7. En relación a los PAMs, originalmente desarrollados como selectivos para el receptor α7 homomérico, se observó que también ejercieron modulación alostérica positiva sobre el receptor α7β2 heteromérico, pero de forma diferencial. Los PAMs tipo I fueron más selectivos para el receptor homomérico, ya que su actividad potenciadora disminuyó con la presencia de subunidades β2 en el pentámero hasta ser prácticamente nula. En cambio, los PAMs tipo II no resultaron selectivos, dado que potenciaron por igual a los receptores α7 homoméricos y heteroméricos, enmascarando sus diferencias cinéticas intrínsecas. Lo mismo ocurrió con la activación alostérica por agonistas alostéricos, que además poseen la capacidad de actuar como PAMs tipo II. Por lo tanto, este estudio constituye la primera caracterización a nivel de canal único de receptores α7 heteroméricos, demostrando las posibles estequiometrías que dan origen a receptores funcionales y la huella cinética de cada uno. Estos resultados contribuyen al entendimiento del rol distintivo de este nuevo receptor y a su identificación funcional en sistemas nativos, ya que por el momento no existen ligandos selectivos. Además, dado que los PAMs de α7 también potenciaron a α7β2, se propone a la selectividad diferencial como un parámetro importante a considerar para el diseño y desarrollo de moduladores más específicos.
También se generaron receptores heteroméricos α7β4 con estequiometrías definidas, para comparar el impacto diferencial de la presencia de distintas subunidades β en el arreglo pentamérico. Las estequiometrías conteniendo una y dos subunidades β4 dieron lugar a receptores α7β4 funcionales. En la activación ortostérica de los mismos por acetilcolina, se observó que a mayor número de subunidades β4 en el pentámero la amplitud de las corrientes unitarias aumenta, a diferencia de lo ocurrido con β2; mientras que las duraciones de las aperturas y de los episodios de activación se incrementan de forma similar a lo ocurrido con β2, pero más notoriamente, con una alta frecuencia. De este modo, la funcionalidad de los receptores α7β4 en el sistema de expresión heterólogo empleado, junto con otras evidencias experimentales, sustentan la potencial existencia de otros receptores α7 heteroméricos in vivo, además del subtipo α7β2 ya identificado en el sistema nervioso central.En conjunto, el presente trabajo de tesis permitió descifrar los mecanismos moleculares de activación y modulación alostérica de los receptores homoméricos α7 y heteroméricos α7β2, los cuales exhibieron propiedades y perfiles funcionales particulares. Esto sugiere que ambos subtipos de receptores α7 podrían actuar in vivo a distinta escala temporal, pero con un patrón espacial compartido en algunas áreas del sistema de neuromodulación colinérgico, ejerciendo un impacto diferencial en los circuitos neuronales asociados a cognición y memoria. La información aportada contribuye entonces no sólo a la dilucidación del rol fisiológico distintivo de los receptores α7 homoméricos y heteroméricos con sus respectivas implicancias fisiopatológicas, sino también al diseño, desarrollo y optimización de nuevos agentes terapéuticos más selectivos. / Acetylcholine plays a major role as neuromodulator in the central nervous system, mainly at the level of neural circuits associated to cognition, memory, learning, attention, reward and sensory gating, by modifying the response to internal and external inputs. Cholinergic signaling occurs by synaptic and extrasynaptic transmission, the latter being the main mechanism involved in the modulation of neuronal excitability, presynaptic neurotransmitter release, neuronal plasticity and coordinated firing of groups of neurons in the brain.
The effect of acetylcholine as a neuromodulator depends not only on the site of release and the target neuron, but also on the receptors through which acetylcholine acts. In this regard, the ionotropic nicotinic receptors are a key piece in the brain cholinergic system. They are pentameric ligand-gated ion channels, members of the Cys-loop receptor family. Nicotinic receptors are permeable to cations and can be formed by five identical subunits or different subunit combinations, giving place to homomeric or heteromeric receptors, respectively. Each nicotinic receptor subtype has a defined stoichiometry, which means a particular composition and spatial arrangement of subunits, that is responsible for the biophysical, pharmacological and functional properties of the channel and it is intimately related to the differential physiological role.
One of the most abundant nicotinic subunits in the central nervous system is α7, traditionally known by its ability to form homomeric receptors due to its ancestral evolutionary origin. However, recent evidence demonstrated that α7 has also the ability to co-assemble with other subunits to generate heteromeric receptors, for instance the novel α7β2 subtype. Several neurological, mental, inflammatory and neurodegenerative disorders are accompanied by a defective cholinergic signaling, therefore, α7 nicotinic receptors are promising therapeutic targets. In this thesis, by using electrophysiological techniques, we deciphered the molecular basis of the activation and modulation of α7 homomeric and heteromeric nicotinic receptors, with the final aim of elucidating the differential impact of both subtypes in the cholinergic signaling in the central nervous system.
Chapter I was divided into three parts and was focused on the study of the molecular function of α7 homomeric receptor at the macroscopic and microscopic level. This receptor exhibits particular kinetic and pharmacological properties that make it ideal for mediating extrasynaptic transmission processes, including high permeability to calcium ions and the ability to transform transient ionotropic responses into sustained metabotropic signaling events.
In Part I, the molecular mechanisms of activation and modulation of α7 homomeric receptor were analysed. In the presence of acetylcholine, the receptor activated and desensitized with rapid kinetics, mostly evoking brief isolated openings. On the contrary, allosteric activation showed a radically different molecular mechanism, with a slowdown in the desensitization kinetics that allows the prolongation of individual openings and their grouping into very long-lasting sustained activation episodes. We also evaluated the potentiation by prototype compounds, previously reported as positive allosteric modulators (PAMs) and classified as type I or II depending on their effect at the macroscopic current level. Although both types of PAMs increased the peak current, type I PAMs produced minimal or no changes in the receptor desensitization rate, whereas type II PAMs decreased notoriously that rate and increased reactivation of receptors from desensitized states. To decipher the molecular origin of these effects, potentiation was explored at the single-channel current level, and revealed that both type of PAMs did not affect the maximal channel amplitude, increased open-channel lifetime and induced sustained activation episodes, thus modifying receptor kinetics in both cases. While type I PAMs provoked activation episodes with moderate duration named bursts, type II PAMs generated very long duration clusters, consisting of several grouped bursts. We showed that potentiation by both types of PAMs was differentially affected by temperature, being type II PAMs more sensitive and less active at a more physiological temperature than at room temperature. This information is useful given that PAMs have been usually characterized in vitro at room temperature, but for their therapeutic use it is necessary to know their effects at more physiological temperatures. In addition, it was demonstrated that transmembrane structural determinants influence potentiation by both types of PAMs, mainly by type II PAMs, while type I PAMs are less sensitive. Nevertheless, some type I PAMs significantly influenced by transmembrane determinants were also identified, with an intermediate behaviour, more similar to that of type II PAMs. Overall, these results provide important information required for the implementation of α7 agonists and PAMs as therapeutic tools for disorders with a defective cholinergic signaling.
In Part II, a link between the common beneficial effects exerted by flavonoids and α7 homomeric receptor in the central nervous system was revealed, since these natural compounds showed α7-PAM activity. We evaluated prototypes from the three main flavonoids classes: genistein, quercetin and 5,7-dihydroxy-4-phenylcoumarin as a neoflavonoid. All flavonoids enhanced macroscopic and microscopic currents elicited by acetylcholine and did not recover receptors from the desensitized state, thus allowing us to classify them as type I PAMs. By using mutant and chimeric α7 receptors, we demonstrated that flavonoids share transmembrane structural determinants with other PAMs. These polyphenolic compounds not only increased the receptor ionotropic response, but also the metabotropic one, further reducing the generation of intracellular reactive oxygen species elicited by α7 activation, independently of their direct antioxidant activity. Thus, we propose α7-PAM activity of
flavonoids as an additional mechanism by which these natural compounds might exert their receptor-mediated antioxidant action and neuroprotective effect.
In Part III, a novel series of synthetic compounds derived from 1,2,3-triazoles 1,4-disubstituted with aryl and phosphonate groups that exhibited α7-PAM activity was synthetized. The most effective compound was the methyl phosphonate-functionalized derivative, which behaves as type I PAM, enhancing the macroscopic and microscopic currents elicited by acetylcholine, in a manner compatible with its classification. Potentiation was influenced by transmembrane structural determinants, also shared by type II PAMs. In addition, several structure-activity relationship strategies were applied to obtain more effective derivatives, for instance modifications of the carbon chains lengths, variation of the aromatic group and inversion of the triazole geometry. The last one allowed the compound to preserve the α7-PAM activity of the methyl phosphonate derivative. Therefore, these results propose this compound not only as a novel pharmacophore with intrinsic PAM activity, but also as a scaffold for the development of new potential therapeutic agents.
Chapter II was focused on the study of the molecular function of α7 heteromeric receptors, particularly α7β2 receptor, whose presence has been confirmed in basal forebrain, cortex and hippocampus. To decipher the impact of β2 subunits incorporation into the pentamer of α7 subunits, receptors with fixed and controlled stoichiometries were generated by two approaches: concatemeric technology and electrical fingerprinting technique, which use concatenated and unlinked subunits respectively. It was determined that stoichiometries containing one, two and three β2 subunits gave place to functional α7β2 receptors. Regarding orthosteric activation, as the number of β2 subunits increased in the pentameric arrangement, the amplitude and the single-channel conductance remained constant, while durations of openings and sustained activation episodes were significantly prolonged, due to a decrease in the desensitization rate. Activation in sustained episodes or bursts conforms the kinetic signature of α7β2 heteromeric receptors with respect to α7 homomeric receptor. Moreover, β2 subunit did not provide the complementary face of the orthosteric binding site, so the efficacious activation by acetylcholine occurred only through α7/α7 interfaces. Originally developed as selective for α7 homomeric receptors, we showed that PAMs also exerted positive allosteric modulation on α7β2 heteromeric receptors, but in a differential manner. On the one hand, type I PAMs were more selective for the homomeric receptor, since their potentiating activity decreased with the presence of β2 subunits in the pentamer up to be practically null. On the other hand, type II PAMs were not selective, because they enhanced equally all α7 homomeric and heteromeric receptors, masking their intrinsic kinetic differences. The same occurred with the allosteric activation by allosteric agonists, which also have the capacity to act as type II PAMs. This study constitutes the first single-channel characterization of α7 heteromeric receptors, revealing the stoichiometries that may result in
functional receptors and the kinetic signature of each one. These results contribute to the understanding of the distinctive role of this novel receptor and will help to its functional identification in native systems because no selective ligands are available to date. Since α7 PAMs also potentiated α7β2 receptors, we propose the differential selectivity as an important parameter to consider for the design and development of more specific modulators.
Furthermore, α7β4 heteromeric receptors with fixed stoichiometry were generated in order to compare the differential impact of distinct β subunits presence into the pentameric arrangement. Stoichiometries containing one and two β4 subunits gave place to functional α7β4 receptors. Regarding orthosteric activation by acetylcholine, it was observed that as the number of β4 subunits in the pentamer increases, the single-channel amplitude rises unlike what occurred with β2, whereas durations of openings and sustained activation episodes increase similarly to what occurred with β2 subunits, but more significantly, with a higher frequency. The functionality of α7β4 receptors in the heterologous expression system used, together with other experimental evidences, support the potential existence of other α7 heteromeric receptors in vivo, besides the α7β2 subtype already identified in central nervous system.
On the whole, this thesis work allowed to decipher the molecular mechanisms of activation and allosteric modulation of α7 homomeric and α7β2 heteromeric receptors, which exhibited particular functional profiles and properties. It suggests that both α7 receptors subtypes could act in vivo at distinct temporal scale, but with a shared spatial pattern in some areas of the neuromodulation cholinergic system, exerting a differential impact at the neural circuits associated to cognition and memory. The provided information not only contributes to elucidating the physiological role of α7 homomeric and heteromeric receptors with their respective pathophysiological implications, but also to the design, development and optimization of novel more selective therapeutic agents.
|
2 |
"Farmacología molecular de receptores pentaméricos de neurotransmisores"Bartos, Mariana 09 April 2010 (has links)
El cerebro humano está formado por una compleja red de células nerviosas que utilizan diversas señales para comunicarse entre ellas. La propagación de señales tiene lugar en la sinapsis química en donde el neurotransmisor liberado por la neurona presináptica interacciona con un receptor postsináptico específico. Los canales iónicos activados por ligandos (LGIC) median respuestas rápidas en dichas sinapsis. El rol vital de los mismos es convertir una señal química en un impulso eléctrico. Para generar una respuesta adecuada los LGIC deben ser capaces de activarse en presencia del neurotransmisor y cerrarse en su ausencia. Estos receptores están involucrados en el aprendizaje, la memoria, el movimiento y en enfermedades genéticas, y son blancos de numerosos fármacos.
Los receptores pentaméricos Cys-loop son LGIC que intervienen en sinapsis químicas rápidas. La duración, amplitud y frecuencia de una respuesta sináptica es gobernada por la cinética de apertura, cierre y desensibilización del canal. Los mecanismos moleculares de estos procesos no se conocen todavía. Los receptores poseen un dominio extracelular, unidor del neurotransmisor, y una región transmembranal, formadora del poro iónico. Uno de los
objetivos de este trabajo de Tesis fue dilucidar el rol funcional de la interfase entre ambos dominios. Con este fin utilizamos receptores homopentaméricos con interfases con secuencias de 7 y 5-HT3A en los diferentes loops que las componen y evaluamos los tiempos de apertura y desensibilización de los receptores formados. Esta estrategia nos permitió determinar la contribución de cada loop y las consecuencias funcionales de la interacción entre ellos. Determinamos que la interacción entre los distintos loops de la interfase permite el acoplamiento de la unión del agonista con la apertura del poro iónico y gobierna la cinética de apertura y desensibilización de los receptores Cys-loop, controlando de esta manera la
duración de la respuesta sináptica y el período refractario.
Los nematodos parásitos tienen importancia médica y veterinaria ya que afectan la salud del hombre y del animal. Los fármacos antihelmínticos son esenciales para controlar los nematodos parásitos. Los agentes levamisol, pirantel, morantel y oxantel, ejercen su acción actuando sobre los nAChRs de los helmintos. En los últimos años se ha demostrado que la acción de estos fármacos depende del subtipo de receptor nACh. Exploramos las bases
estructurales de dichas diferencias estudiando cómo estos agentes activan a los receptores nACh muscular y 7 de mamífero utilizando la técnica electrofisiológica de Patch-clamp. Encontramos que todas estas drogas son agonistas débiles del receptor nACh muscular adulto
de mamífero. Por el contrario, pirantel y morantel cambian su comportamiento a agonistas completos y más potentes que la ACh en el receptor 7. Determinamos que la posición 57, localizada en el lado complementario del sitio de unión de agonistas, es responsable de la diferente activación de los receptores nACh muscular y 7 por morantel y pirantel. Esta posición no altera la activación de ACh o de los fármacos oxantel y levamisol. El
conocimiento de la activación de los nAChRs por antihelmínticos contribuirá al diseño de terapias más selectivas contra los parásitos y a comprender como éstos desarrollan resistencia a estos fármacos. / The human brain is a vast and complicated network, where billions of nerve cells use signals to communicate with each other. At chemical synapses, neurotransmitters are released from the presynaptic cell. They interact with ligand-gated ion channels (LGIC) at the postsynaptic cell that convert signals from chemical to electrical in less than one millisecond. The channels close as the neurotransmitter dissociates to terminate the synaptic event. These
receptors are involved in learning, memory, movement and disease processes, and are targets for clinically relevant drugs. The pentameric Cys-loop receptors are LGIC involved in fast chemical synapsis. Following the neurotransmitter release and binding to Cys-loop receptors, the post-synaptic response is governed by the kinetics of channel activation, deactivation and desensitization. The molecular mechanisms of these processes are still unknown. Cys-loop receptors have an extracellular domain, which contains the agonist binding sites, and a transmembrane domain where the ion pore is located. One of the goals of this Thesis was to determine the functional
role of the interfacial region between extracellular and transmembrane domains. We generated homomeric chimeric receptors carrying sequences of 7 or 5-HT3A at the different loops of the interface and evaluated the open channel lifetime and rate of desensitization. This strategy allowed us to determine the functional contribution of each loop and the consecuences of structural mismatching among them. We concluded that the network of loops at the binding-pore interface of homomeric receptors is essential for coupling agonist
binding to channel opening and also for dictating the kinetics of gating and desensitization.
Thus, this region controls the duration of the refractory period and the synaptic response. Parasitic nematodes are of medical and veterinary importance, affecting human and animal health. Anthelmintic drugs are essential to control nematode parasites. These agents, such as levamisol, pyrantel, morantel and oxantel, exert their action at nAChRs in nerve and muscle of nematodes. In the last years, it has been demonstrated that the actions of these drugs depend on nAChR subtypes. To understand the structural basis of the differential activation of anthelmintics among nAChR subtypes, we studied the activation of mammalian muscle and 7 nAChRs by these agents at the single-channel and macroscopic-current levels.
We showed that anthelminitic agents are low efficacious agonists of mammalian muscle AChRs. By contrast, morantel and pyrantel are high-efficacious and more potent agonists than ACh of 7 receptor. Also, we determined that position 57, located at the complementary
face of the binding site, is a main determinant of the differential activation of mammalian muscle and 7 nAChRs by morantel and pyrantel. This position is not involved in ACh, oxantel or levamisol activation. These results provide new information for further progress in
drug design and help to understand how parasites develop resistance to these drugs.
|
3 |
Modulación molecular de la función del receptor neuronal α7Lasala, Matías 20 May 2019 (has links)
El sistema nervioso está formado por una compleja red de billones de neuronas que utilizan señales específicas para comunicarse entre sí. La sinapsis química es una unión funcional entre neuronas en la que el neurotransmisor liberado por una de ellas interactúa específicamente con proteínas de membrana de la otra, los receptores postsinápticos.
Los receptores de la familia cys-loop, que incluye al receptor nicotínico de acetilcolina (nAChR, nicotinic acetylcholine receptor), son miembros de la superfamilia de los canales pentaméricos activados por ligando (pLGICs, pentameric ligand-gated ion channels). Están formados por cinco subunidades iguales - receptores homoméricos - o diferentes - receptores heteroméricos -. Los receptores poseen un dominio extracelular, que contiene los sitios de unión al agonista localizados entre dos subunidades adyacentes; un dominio transmembrana, que forma el canal y contiene sitios alostéricos para la acción de moduladores; y un dominio intracelular, de importancia en la conductancia del canal y en su modulación intracelular.
El receptor α7 es el prototipo de receptor homopentamérico de la familia de los nAChRs. Es uno de los nAChRs más abundantes en el sistema nervioso, aunque también se encuentra presente en otros tejidos. En neuronas modula la liberación de neurotransmisores e induce respuestas estimulatorias, contribuyendo a la cognición, el procesamiento de la información sensorial y la memoria. En tejidos no neuronales está involucrado en inmunidad, inflamación y neuroprotección. Debido a sus múltiples funciones, emerge actualmente como nuevo blanco terapéutico para desórdenes neurológicos e inflamatorios.
En el primer capítulo de este trabajo de tesis exploramos el rol funcional de una subunidad truncada del receptor α7 específica de humanos, dupα7. Dicha subunidad, que carece de una región del dominio N-terminal extracelular que comprende parte del sitio de unión al ligando, se encuentra asociada con desórdenes neurológicos e inmunomodulación. Utilizando expresión heteróloga en células de mamífero en conjunto con microscopía de fluorescencia y registros de electrofisiología mediante la técnica de patch clamp, determinamos que: i) dupα7 no es capaz de formar homopentámeros funcionales activables por acetilcolina o por un agonista alostérico; ii) La subunidad dupα7 puede combinarse con la subunidad α7 para formar heteropentámeros de diferentes estequiometrías, con características cinéticas similares a las del receptor α7; iii) Es necesaria la presencia de al menos dos subunidades α7 ubicadas en forma consecutiva en el heteropentámero para que los receptores sean funcionales; iv) La expresión conjunta de dupα7 y α7 disminuye la disponibilidad de sitios de unión al agonista, reduciendo la sensibilidad de los receptores. En forma global, nuestros resultados muestran que la subunidad dupα7 posee un rol modulador negativo sobre la actividad del receptor α7.
En el segundo capítulo, se evaluó la modulación de los péptidos β-Amiloide 1-40 y 1-42 sobre el receptor α7. Dichos péptidos poseen un rol fundamental en la enfermedad de Alzheimer, dado que su acumulación excesiva en el cerebro provoca la formación de placas seniles, a partir de las cuales se desarrolla un proceso de neurodegeneración e inflamación. Sin embargo, evidencias más recientes sugieren que son las formas oligoméricas de β-Amiloide las especies más neurotóxicas. Empleando estudios espectrofluorimétricos y la técnica de patch clamp demostramos que: i) Los oligómeros β-Amiloide provocan cambios conformacionales en el receptor α7 que pueden ser detectados por la sonda conformacional cristal violeta; ii) Los oligómeros de péptidos β-Amiloide son capaces de activar al receptor α7 en concentraciones del orden picomolar o nanomolar bajo; iii) Los oligómeros β-Amiloide reducen la potenciación de α7 por moduladores alostéricos positivos (PAMs, positive allosteric modulators) a concentraciones del orden nanomolar o micromolar bajo; iv) La reducción de la potenciación causada por los péptidos β-Amiloide no es específica del tipo de modulador alostérico positivo. Estos resultados demuestran un rol dual, dependiente de la concentración, de los oligómeros de β-Amiloide como agonistas y como moduladores negativos de α7. El efecto inhibitorio podría contribuir al deterioro cognitivo asociado a la enfermedad de Alzheimer.
Por último, en el tercer capítulo se evaluó la acción del ion Ca2+ como modulador alostérico positivo de α7. Existen reportes sobre cationes divalentes que actúan como moduladores de los pLGICs, variando su efecto según el tipo de receptor. Sobre α7, el ion Ca2+ actúa como un PAM, pero la base mecanística de esta acción no ha sido explorada. Combinando registros de corrientes macroscópicas y de canal único en las configuraciones cell-attached e inside-out de la técnica de patch clamp demostramos que: i) La presencia del ion Ca2+ extracelular potencia la respuesta macroscópica a acetilcolina y a colina dependiendo de la concentración de agonista; ii) La ausencia de Ca2+ en la solución extracelular disminuye la frecuencia de apertura del canal y aumenta levemente la corriente unitaria; iii) El mecanismo por el cual el ion Ca2+ potencia la respuesta al agonista es compatible con el aumento de la probabilidad de apertura del canal. De este modo, identificamos el mecanismo asociado a la acción moduladora de calcio sobre el receptor α7.
Nuestros resultados contribuyen al entendimiento de la modulación del receptor α7 por una subunidad proteica asociada con enfermedades neurológicas, por péptidos amiloides producidos en patologías neurodegenerativas y por el catión Ca2+, todos procesos de relevancia en la señalización colinérgica en el sistema nervioso central. / The nervous system is formed by a complex net of billions of individual neurons that use specific signals to communicate with each other. The chemical synapse is a functional union between neurons in which the neurotransmitter released by one neuron interacts specifically with integral membrane proteins of the other neuron: the postsynaptic receptors.
The receptors of the cys-loop family, that includes the nicotinic acetylcholine receptor (nAChR), are members of the superfamily of the pentameric ligand-gated ion channels family (pLGICs). They are formed by five identical - homopentameric receptors - or different subunits – heteropentameric receptors -. The receptors have an extracellular domain, which contains the agonist binding sites that are located between two adjacent subunits; a transmembrane domain that forms the channel and contains allosteric sites for the action of modulators; and an intracellular domain, important for the conductance of the channel and modulation.
The α7 receptor is a homopentamer of the nAChRs family. It is one of the most abundant nAChRs in the nervous system and is also present in cells of other tissues. In neurons, it modulates the neurotransmitters release and induces stimulatory responses, thus contributing to cognition, sensory information processing and memory. In non-neuronal tissues, it is involved in immunity, inflammation and neuroprotection. Because of its multiple functions, it is emerging as a new therapeutic target for neurologic and inflammatory disorders.
In the first chapter of this thesis we evaluated the functional role of a human-specific truncated subunit of the α7 receptor, dupα7. This subunit, which lacks part of the N-terminal extracellular ligand-binding domain, is associated with neurological disorders and immunomodulation. Using heterologous expression of heteropentamers in mammalian cells combined with fluorescence microscopy and patch clamp recordings, we determined that: i) dupα7 is not able to form functional receptors activated by acetylcholine or an allosteric agonist; ii) dupα7 subunits can combine with α7 subunits to form heteropentamers of different stoichiometries, with similar kinetic properties to those of α7; iii) the presence of at least two α7 subunits located consecutively in the heteropentamer forming an agonist binding site is necessary for functional heteropentamers; iv) the co-expression of dupα7 and α7 decreases the availability of agonist binding sites, reducing the sensibility of the receptors. Overall, our results show that dupα7 has a negative modulatory role on the activity of the α7 receptor.
In the second chapter, we evaluated the modulation of α7 receptor by Amyloid- β 1-40 and 1-42 peptides. These peptides play a fundamental role in Alzheimers’ disease since their excessive accumulation in the brain causes the formation of senile plaques, from which a process of neurodegeneration and inflammation develops. More recent evidence suggests that the oligomeric forms of amyloid- β are the most neurotoxic species. Using spectrofluorimetric and electrophysiological studies we demonstrated that: i) The amyloid-β peptides cause conformational changes on the α7 receptor that can be sensed by the crystal violet conformational probe; ii) The oligomers of the amyloid-β peptide are capable of activating the α7 receptor at picomolar or low nanomolar concentrations; iii) The oligomers of the amyloid-β peptide reduce α7 potentiation by positive allosteric modulators (PAMs) at nanomolar or low-micromolar concentrations; iv) The reduction in the potentiation caused by the amyloid-β peptides is not specific of the PAM type. Our results demonstrate a dual role of the amyloid- β oligomers as agonists and negative modulators of α7, depending on the concentration. The inhibitory effect could contribute to the cognitive impair associated to Alzheimer’s disease.
Last, in the third chapter we evaluated the action of the Ca2+ cation as a PAM of α7. Divalent cations have been reported to modulate different pLGICs, varying their effects with the receptor type. On α7, Ca2+ acts as a PAM, but the mechanistic basis of this action has not been explored yet. Combining macroscopic and single-channel current recordings in the cell-attached and inside-out patch clamp configurations, we demonstrated that: i) Extracellular Ca2+ potentiates the macroscopic responses to ACh and choline and the level of potentiation is dependent on the agonist concentration; ii) The absence of extracellular calcium diminishes the frequency of channel opening and slightly increases the unitary current; iii) The mechanism by which Ca2+ enhances the response to the agonist is compatible with an increase of the channel opening probability.
Our results contribute to the understanding of the molecular actions at α7 of a truncated protein subunit associated with neurological diseases, of amyloid peptides produced in neurodegenerative pathologies and of the Ca2+ cation, which are all relevant modulatory processes of the cholinergic pathway at the central nervous system.
|
4 |
Modulación del receptor nicotínico de acetilcolina por lidocaína y análogos estructuralesAlberola-Die, Armando 02 March 2012 (has links)
No description available.
|
5 |
Modulación de las funciones ionotrópica y metabotrópica del receptor nicotínico de acetilcolina α7 humanoChrestia, Juan Facundo 10 July 2023 (has links)
La supervivencia de los organismos superiores depende de que sus células se
organicen y actúen de manera sincronizada para cumplir funciones específicas, para lo
cual es fundamental la comunicación intercelular. Este proceso es básico para la vida de
todas las células, pero es la razón de ser en las neuronas que están especializadas en
recibir información, procesarla y comunicarla a otras células. En el sistema nervioso, la
principal forma de comunicación se realiza a través de la sinapsis química, en la que una
neurona libera un mensajero químico, el neurotransmisor, que es reconocido por un
receptor presente en otra célula permitiéndole responder al mensaje.
La acetilcolina es uno de los principales neurotransmisores utilizados por las
neuronas, y sus receptores, tanto metabotrópicos como ionotrópicos, están expresados
en muchos tipos celulares. Los receptores ionotrópicos de acetilcolina, llamados
receptores nicotínicos, son canales catiónicos pentaméricos que pertenecen a la familia
de receptores Cys-loop.
El receptor nicotínico de acetilcolina α7 es un homopentámero que exhibe
propiedades funcionales particulares fundamentales para su rol neuromodulador,
incluyendo la elevada permeabilidad al Ca2+ y la capacidad para transformar respuestas
ionotrópicas transitorias en eventos más sostenidos de señalización metabotrópica. Es
uno de los receptores nicotínicos más abundantes en el sistema nervioso, aunque también
se encuentra presente en otros tejidos. En el sistema nervioso central cumple un rol
importante en procesos de cognición, atención y memoria, al regular la liberación de
neurotransmisores, mediar la transmisión sináptica rápida y modular la excitabilidad
neuronal. Una disminución de su actividad se ha asociado con diversos desórdenes
neurológicos y neurodegenerativos, incluyendo esquizofrenia, autismo y enfermedad de
Alzheimer. El receptor α7 también se expresa en células no neuronales, tales como -entre
otras-, los astrocitos, la microglía, los linfocitos B y T, las células epiteliales, los
macrófagos, cumpliendo un rol importante en inmunidad, inflamación y neuroprotección.
Las acciones neuromoduladoras, neuroprotectoras y antinflamatorias sistémicas
del receptor nicotínico de acetilcolina α7 junto a sus propiedades únicas de activación,
desensibilización, permeabilidad al Ca2+ y rol dual ionotrópico-metabotrópico, lo han
convertido en un blanco farmacológico emergente muy importante en diversos
desórdenes neurológicos, neurodegenerativos e inflamatorios.
Este trabajo de tesis se basó en el estudio de los aspectos moleculares relacionados
a diferentes tipos de modulación de las funciones ionotrópicas y metabotrópicas del
receptor nicotínico de acetilcolina α7 humano. Para ello se utilizaron principalmente
técnicas electrofisiológicas a nivel de canal único y de corrientes macroscópicas, en
conjunto con análisis de proteínas por western blot y ensayos de movimiento de Ca2+
intracelular.
El capítulo I se centró en el estudio de la modulación de las funciones ionotrópicas y
metabotrópicas del receptor α7 por eventos de fosforilación/desfosforilación. Se
demostró que favorecer el estado desfosforilado de las tirosinas del dominio intracelular
de α7 potencia la actividad ionotrópica del receptor. A nivel de corrientes unitarias, el
efecto potenciador involucró un aumento en la frecuencia y duración de los episodios de
activación, mientras que a nivel de corrientes macroscópicas se manifestó por una
disminución en la velocidad de decaimiento de la corriente, y un aumento en la tasa de
recuperación desde el estado desensibilizado. Por el contrario, la desfosforilación de las
tirosinas tuvo un efecto negativo en la actividad metabotrópica del receptor, estudiada
por western blot a partir de la vía de ERK 1/2. Además, a diferencia de lo observado para
las tirosinas, las alteraciones en el estado de fosforilación de serinas y treoninas del
dominio intracelular no ocasionaron cambios importantes en la actividad ionotrópica de
α7 en las condiciones experimentales aquí utilizadas. En síntesis, los resultados
presentados en este capítulo ponen en evidencia que la fosforilación de las tirosinas, si
bien es absolutamente necesaria para la actividad metabotrópica de α7 mediada por la
vía ERK 1/2, actúa como un modulador negativo de la actividad ionotrópica del receptor.
El capítulo II abordó el estudio de la asociación funcional entre un fragmento
peptídico de la glicoproteína S del SARS-CoV-2 (Y674-R685) y el receptor nicotínico de
acetilcolina α7 humano. La asociación entre SARS-CoV-2 y los receptores nicotínicos fue
propuesta en forma de hipótesis al comienzo de la pandemia. Más adelante, simulaciones
de dinámica molecular mostraron que el fragmento Y674-R685 no solo tiene afinidad por
α7, sino que penetra profundamente en el bolsillo de unión a agonista del receptor. En
este capítulo, en primer lugar, se demostró que el fragmento Y674-R685 actúa como un
agonista silente de α7, ya que es capaz de provocar corrientes unitarias y macroscópicas
del receptor, pero solo en presencia de un modulador alostérico positivo. Por otro lado,
se demostró que Y674-R685 también ejerce una modulación negativa de α7, que se
evidenció por una profunda disminución, dependiente de la concentración, en la duración
de los episodios de activación de los canales potenciados y en la amplitud de las
respuestas macroscópicas provocadas por la acetilcolina. De esta manera, utilizando
distintos enfoques electrofisiológicos, se develó la existencia de una interacción funcional
entre el fragmento Y674-R685 de la glicoproteína S del SARS-CoV-2 y el receptor α7 que
proporciona las bases moleculares para seguir explorando la participación de los
receptores nicotínicos en la fisiopatología de la COVID-19.
El capítulo III se basó en el estudio del receptor α7 como blanco del cannabidiol, lo
cual resulta de gran interés debido al uso expandido de este fitocannabinoide para tratar
diferentes condiciones patológicas gracias a sus propiedades terapéuticas y a la ausencia
de efectos psicoactivos. Para ello se exploró el efecto del cannabidiol en las funciones
ionotrópicas y metabotrópicas de α7 mediante técnicas electrofisiológicas y ensayos de
movimiento de Ca2+ intracelular. En lo que respecta a las funciones ionotrópicas, se
demostró que el cannabidiol produce una rápida disminución de la actividad del canal a
nivel de corrientes unitarias evidenciada por la reducción en la frecuencia de los episodios
de activación. Este efecto fue dependiente de la concentración y se dio con una CI50 en el
rango submicromolar, lo que indica una potente modulación negativa. Por otra parte, el
cannabidiol también produjo una modulación negativa en la función metabotrópica de α7
que se evidenció por una marcada disminución en las respuestas de Ca2+ intracelular tras
la activación del receptor. Estos resultados demuestran que el cannabidiol ejerce una
modulación negativa de α7 de relevancia farmacológica que debe tenerse en cuenta a la
hora de evaluar los posibles usos terapéuticos del fitocannabinoide.
En conjunto, los resultados presentados en esta tesis amplían el entendimiento de
los aspectos moleculares relacionados con la modulación de las funciones ionotrópicas y
metabotrópicas del receptor nicotínico de acetilcolina α7 en distintas condiciones, a
saber, fisiológicas (eventos de fosforilación/desfosforilación), patológicas (fragmento
peptídico derivado de la glicoproteína S del SARS-CoV-2) y terapéuticas (cannabidiol). / The survival of higher organisms depends on the ability of their cells to be well
organized and to behave in a synchronized manner to fulfill specific functions for which
intercellular communication is of pivotal importance. This process is basic for the life of
all cells, but it is the raison d'être in neurons that are specialized in receiving information,
processing it, and communicating it to other cells. In the nervous system, the main form
of communication is carried out via the chemical synapse, in which a neuron releases a
chemical messenger, the neurotransmitter, which is identified by a receptor present in
another cell, allowing it to respond to the message.
Acetylcholine is one of the main neurotransmitters used by neurons, and its
receptors, both metabotropic and ionotropic, are expressed in many cell types. Ionotropic
acetylcholine receptors, called nicotinic receptors, are pentameric cation channels
belonging to the Cys-loop receptor family.
The α7 nicotinic acetylcholine receptor is a homopentamer with particular
functional properties critical to its neuromodulatory role, including high Ca2+
permeability and the ability to transform transient ionotropic responses into more
sustained metabotropic signaling events. It is one of the most abundant nicotinic
receptors in the nervous system, although it is also present in other tissues. In the central
nervous system, it plays an important role in cognition, attention, and memory, by
regulating the release of neurotransmitters, mediating rapid synaptic transmission, and
modulating neuronal excitability. A decrease in α7 activity has been associated with
various neurological and neurodegenerative disorders, such as schizophrenia, autism,
and Alzheimer's disease. The α7 receptor is also expressed in non-neuronal cells; namely,
astrocytes, microglia, B and T lymphocytes, epithelial cells, and macrophages, and plays
an important role in immunity, inflammation, and neuroprotection.
The neuromodulatory, neuroprotective, and systemic anti-inflammatory actions of
α7, together with its unique activating, desensitizing, Ca2+ permeability, and dual
ionotropic-metabotropic properties, have made the receptor a very important emerging
drug target in various neurological, neurodegenerative, and inflammatory disorders.
This P.D. thesis work was based on the study of molecular aspects related to
different types of modulation of the ionotropic and metabotropic functions of the human
α7 nicotinic acetylcholine receptor. To this end, electrophysiological techniques at the
single channel and macroscopic current levels were mainly used, as well as protein
analysis by western blot and intracellular Ca2+ movement assays.
Chapter I focused on the study of α7 receptor ionotropic and metabotropic function
modulation by phosphorylation/dephosphorylation events. It was shown that favoring
the dephosphorylated state of α7 intracellular domain tyrosine residues potentiates its
ionotropic activity. At the single-channel level, this potentiating effect involved an
increase in the frequency and duration of activation episodes, while at the macroscopic
level it was manifested by a decrease in the rate of current decay and by an increase in the
rate of recovery from the desensitized state. In contrast, tyrosine dephosphorylation had
a negative effect on receptor metabotropic activity, studied by western blot from ERK 1/2
pathway. In addition, unlike what was observed for tyrosine residues, alterations in the
phosphorylation status of serine and threonine residues present in the intracellular
domain did not cause any significant changes in α7 ionotropic activity under the
experimental conditions used. Summing up, the results collected in this chapter show that
tyrosine phosphorylation, although it is absolutely necessary for α7 metabotropic activity
mediated by ERK 1/2 pathway, acts as a negative modulator of receptor ionotropic
activity.
Chapter II focused on the study of the functional association between a peptide
fragment of SARS-CoV-2 S glycoprotein (Y674-R685) and human α7 nicotinic
acetylcholine receptor. The association between SARS-CoV-2 and nicotinic receptors was
hypothesized at the beginning of the pandemic. Later, molecular dynamics simulations
showed that the Y674-R685 fragment not only has affinity for α7 but also penetrates deep
into its agonist-binding pocket. In this chapter, it was firstly stated that the Y674-R685
fragment acts as a silent α7 agonist, since it is capable of triggering single-channel and
macroscopic currents, but only in the presence of a positive allosteric modulator. On the
other hand, it was shown that Y674-R685 also exerts α7 negative modulation, which was
evidenced by a profound concentration-dependent decrease in the duration of
acetylcholine-induced activation episodes from potentiated channels and macroscopic
responses. In this way, using different electrophysiological approaches, the existence of
functional interaction between SARS-CoV-2 S glycoprotein Y674-R685 fragment and α7
receptor was revealed, which provides the molecular bases to further explore nicotinic
receptor participation in COVID-19 pathophysiology.
Chapter III was based on the study of the α7 receptor as a target of cannabidiol,
which is of great interest due to the expanded use of this phytocannabinoid to treat
different pathological conditions thanks to its therapeutic properties and the absence of
psychoactive effects. To this end, the effect of cannabidiol on α7 ionotropic and
metabotropic functions was explored using electrophysiological techniques and
intracellular Ca2+ movement assays. Regarding ionotropic functions, it was shown that
cannabidiol produces a rapid decrease in single-channel activity evidenced by the
reduction in activation episodes frequency. This concentration-dependent effect occurred
with an IC50 in the submicromolar range, indicating a potent negative modulation. On the
other hand, cannabidiol also produced a negative modulation in α7 metabotropic function
that was evidenced by a marked decrease in intracellular Ca2+ responses after receptor
activation. These results demonstrate that cannabidiol exerts α7 negative modulation of
pharmacological relevance that must be taken into account when evaluating possible
therapeutic uses of the phytocannabinoid.
Taken together, the results presented in this thesis broaden the understanding of
molecular aspects related to the modulation of α7 nicotinic acetylcholine receptor
ionotropic and metabotropic functions under different conditions, namely physiological
(phosphorylation/dephosphorylation events), pathological (SARS-CoV-2 S glycoprotein
fragment) and therapeutic (cannabidiol).
|
6 |
Efeito do tratamento com PNU-282987, agonista do receptor colinérgico nicotínico alfa7, na resposta inflamatória e de remodelamento brônquico em modelo experimental de asma / Effects of PNU-282987 treatment, an agonist of ?7 nicotinic receptor, in inflammatory response and airway remodeling in an experimental model of asthmaMiranda, Claúdia Jeane Claudino de Pontes 17 November 2016 (has links)
Introdução: A inflamação constitui um dos fatores mais importantes da fisiopatologia da asma brônquica, caracterizada por uma resposta eosinofílica com produção de citocinas de perfil Th2. A persistência desta inflamação induz no pulmão um processo de reparo associado à redução progressiva da função pulmonar, que nem sempre é revertida pelos tratamentos disponíveis. O sistema colinérgico anti-inflamatório é descrito como um mecanismo neural que suprime a resposta imune e controla a inflamação principalmente pelo efeito da acetilcolina em receptores nicotínicos do tipo alfa7 (alfa7nAChR) encontrados em células do sistema imune. A acetilcolina (ACh) exerce um importante efeito na asma e recentemente demonstramos que a redução parcial da liberação da acetilcolina induz per se a inflamação pulmonar. Embora se saiba que os receptores muscarínicos (mAChRs) exercem um efeito pró-inflamatório e broncoconstritor na asma, a ativação de receptores nicotínicos (nAChRs) poderia ter um efeito benéfico reduzindo a inflamação pulmonar, fato demonstrado em modelos de inflamação sistêmica e aguda. O efeito da ativação do alfa7nAChR na fisiopatologia da asma ainda não está claramente elucidado. Objetivo: Investigar o efeito do tratamento com PNU-282987 (PNU), um agonista específico do alfa7nAChR, em um modelo murino de inflamação alérgica crônica das vias aéreas. Metodologia: Camundongos BALB/c foram submetidos ao protocolo de indução alérgica crônica das vias aéreas com ovoalbumina (OVA) ou salina intraperitoneal (i.p.) e posterior desafios inalatórios. A partir do 22° dia, os animais receberam diariamente tratamento com PNU ou veículo (Ve) até o 28° dia. Foram testadas três doses de PNU (0,5, 1,0 e 2,0 mg/Kg). A fim de evidenciar se o efeito obtido no tratamento com PNU era dependente do receptor alfa7nAChR, um grupo de animais foi tratado com MLA (antagonista do alfa7nAChR), previamente ao tratamento com PNU. No 29° dia do protocolo, os animais foram eutanasiados e foram avaliados o número de células inflamatórias no lavado broncoalveolar (LBA) e no sangue, os níveis de citocinas no LBA, a expressão do alfa7nAChR e mAchRs do tipo 3 (M3) e a ativação do fator de transcrição nuclear kB (NF-kB) no pulmão. O remodelamento brônquico foi avaliado por morfometria. As análises estatísticas foram realizadas por meio do programa SigmaStat (Jandel Scientific, San Rafael, CA), onde um P < 0,05 foi considerado estatisticamente significativo. Resultados: Houve expressão do alfa7nAChR e M3 no homogenato de pulmão de animais controle e sensibilizados. Determinamos por meio da redução de eosinófilos que a dose de 0,5 mg/Kg do tratamento com PNU foi a mais efetiva. Assim, observamos que o tratamento com PNU0,5 nos animais sensibilizados reduziu o número de células totais, eosinófilos, neutrófilos, macrófagos e linfócitos no LBA, assim como número de eosinófilos no sangue periférico e ao redor das vias aéreas. O tratamento com PNU reduziu os níveis de IgE no sangue e as citocinas IL-4, IL-13 e IL-17 no LBA. Todos estes efeitos foram revertido com o pré-tratamento com MLA, exceto para a citocina IL-17. Alem disso, o tratamento com PNU reduziu o remodelamento brônquico (área de edema, de epitélio e de músculo liso e deposição de fibras colágenas) assim como o número de células positivas para MMP-9 e TIMP-1 ao redor das vias aéreas. No pulmão a expressão do p-65-NF-kB, STAT3 fosforilado e o SOCS3 foram inibidas pelo PNU. Conclusão: Estes dados claramente demonstram que o alfa7nAChR está envolvido no controle da resposta inflamatória pulmonar alérgica e de remodelamento brônquico em modelo experimental de asma alérgica e portanto é um novo alvo com potencial terapêutico a ser explorado na fisiopatologia da asma brônquica / Background: Inflammation is one of the most important features in asthma pathophysiology, characterized by eosinophilic response with production of Th2 cytokine profile. The persistence of this inflammation can induce a lung repair process associated with a progressive reduction in lung function, which is not always reversed by available treatments. The anti-inflammatory cholinergic system was described as a neural mechanism that suppresses the immune response and controls inflammation mainly by the activaction of acetylcholine alfa7 nicotinic receptors (alfa7nAChR) found on immune cells. Acetylcholine (ACh) is an important mediator in asthma and we recently demonstrated that partial reduction on ACh release induced lung inflammation per se. Although it is known that muscarinic receptors (mAChRs) has a pro-inflammatory action and causes bronchoconstriction in asthma, the activation of nicotinic receptors (nAChRs) could have a beneficial effect reducing pulmonary inflammation as demonstrated in models of acute and systemic inflammation. The effects of alfa7nAChR activation in the pathophysiology of asthma have not been clearly elucidated. Aim: To investigate the effects of PNU- 282987 (PNU) treatment, a specific alfa7nAChR agonist, in a murine model of chronic allergic airway inflammation. Methods: BALB/c mice were subjected to a protocol of chronic allergic inflammation induced by intraperitoneal ovalbumin (OVA) or saline and subsequent challenges with inhalation. From the 22th day, the animals daily received PNU or vehicle (Ve) until the 28th day. PNU were tested in three differents doses (0.5, 1.0 and 2.0 mg/kg). In order to demonstrate that the effects obtained by PNU treatment was dependent on alfa7nAChR, a group of animals was treated with MLA (antagonist of alfa7nAChR) prior to the PNU treatment. On the 29th day of the protocol, the animals were euthanised and the number of inflammatory cells in the bronchoalveolar lavage fluid(BALF) fluid and blood, cytokine levels in BALF, the expression of alfa7nAChR and mAChRs type 3 (M3), and activation of nuclear transcription factor kB (NF-kB) in the lung were evaluated. Bronchial remodeling was assessed by morfometric methods. Statistical analyses were performed using the SigmaStat (Jandel Scientific, San Rafael, CA) and P < 0.05 is considered statistically significant. Results: ?7nAChR and M3 expression was detected in control and sensitized lung homogenate. The most effective dose of PNU treatment was 0.5 mg/kg evaluated by the effects on eosinophil reduction. Thus, we observed that treatment with PNU0,5 reduced the number of total cells, eosinophils, neutrophils, macrophages and lymphocytes in BALF, as well as number of eosinophils in peripheral blood and around the airways of sensitized animals. The treatment with PNU also reduced IgE levels in the blood, and cytokines IL-4, IL-13 and IL-17 in BALF. All these effects were reversed by pretreatment with MLA, except for IL-17 cytokine. Furthermore, treatment with PNU reduced bronchial remodeling (edema, epithelium and smooth muscle area and airway collagen deposition) as well as the number of positive cells for MMP-9 and TIMP-1 around the airways. The lung p-65-NF-kB, phosphorylated STAT3 and the SOCS3 expression were inhibited by PNU-282987. Conclusion: These data clearly demonstrate that the alfa7nAChR is involved in the control of allergic pulmonary inflammatory response and in bronchial remodeling in an experimental model of allergic asthma and it can be a new target with therapeutic potential to be explored in the pathophysiology of asthma
|
7 |
Efeito do tratamento com PNU-282987, agonista do receptor colinérgico nicotínico alfa7, na resposta inflamatória e de remodelamento brônquico em modelo experimental de asma / Effects of PNU-282987 treatment, an agonist of ?7 nicotinic receptor, in inflammatory response and airway remodeling in an experimental model of asthmaClaúdia Jeane Claudino de Pontes Miranda 17 November 2016 (has links)
Introdução: A inflamação constitui um dos fatores mais importantes da fisiopatologia da asma brônquica, caracterizada por uma resposta eosinofílica com produção de citocinas de perfil Th2. A persistência desta inflamação induz no pulmão um processo de reparo associado à redução progressiva da função pulmonar, que nem sempre é revertida pelos tratamentos disponíveis. O sistema colinérgico anti-inflamatório é descrito como um mecanismo neural que suprime a resposta imune e controla a inflamação principalmente pelo efeito da acetilcolina em receptores nicotínicos do tipo alfa7 (alfa7nAChR) encontrados em células do sistema imune. A acetilcolina (ACh) exerce um importante efeito na asma e recentemente demonstramos que a redução parcial da liberação da acetilcolina induz per se a inflamação pulmonar. Embora se saiba que os receptores muscarínicos (mAChRs) exercem um efeito pró-inflamatório e broncoconstritor na asma, a ativação de receptores nicotínicos (nAChRs) poderia ter um efeito benéfico reduzindo a inflamação pulmonar, fato demonstrado em modelos de inflamação sistêmica e aguda. O efeito da ativação do alfa7nAChR na fisiopatologia da asma ainda não está claramente elucidado. Objetivo: Investigar o efeito do tratamento com PNU-282987 (PNU), um agonista específico do alfa7nAChR, em um modelo murino de inflamação alérgica crônica das vias aéreas. Metodologia: Camundongos BALB/c foram submetidos ao protocolo de indução alérgica crônica das vias aéreas com ovoalbumina (OVA) ou salina intraperitoneal (i.p.) e posterior desafios inalatórios. A partir do 22° dia, os animais receberam diariamente tratamento com PNU ou veículo (Ve) até o 28° dia. Foram testadas três doses de PNU (0,5, 1,0 e 2,0 mg/Kg). A fim de evidenciar se o efeito obtido no tratamento com PNU era dependente do receptor alfa7nAChR, um grupo de animais foi tratado com MLA (antagonista do alfa7nAChR), previamente ao tratamento com PNU. No 29° dia do protocolo, os animais foram eutanasiados e foram avaliados o número de células inflamatórias no lavado broncoalveolar (LBA) e no sangue, os níveis de citocinas no LBA, a expressão do alfa7nAChR e mAchRs do tipo 3 (M3) e a ativação do fator de transcrição nuclear kB (NF-kB) no pulmão. O remodelamento brônquico foi avaliado por morfometria. As análises estatísticas foram realizadas por meio do programa SigmaStat (Jandel Scientific, San Rafael, CA), onde um P < 0,05 foi considerado estatisticamente significativo. Resultados: Houve expressão do alfa7nAChR e M3 no homogenato de pulmão de animais controle e sensibilizados. Determinamos por meio da redução de eosinófilos que a dose de 0,5 mg/Kg do tratamento com PNU foi a mais efetiva. Assim, observamos que o tratamento com PNU0,5 nos animais sensibilizados reduziu o número de células totais, eosinófilos, neutrófilos, macrófagos e linfócitos no LBA, assim como número de eosinófilos no sangue periférico e ao redor das vias aéreas. O tratamento com PNU reduziu os níveis de IgE no sangue e as citocinas IL-4, IL-13 e IL-17 no LBA. Todos estes efeitos foram revertido com o pré-tratamento com MLA, exceto para a citocina IL-17. Alem disso, o tratamento com PNU reduziu o remodelamento brônquico (área de edema, de epitélio e de músculo liso e deposição de fibras colágenas) assim como o número de células positivas para MMP-9 e TIMP-1 ao redor das vias aéreas. No pulmão a expressão do p-65-NF-kB, STAT3 fosforilado e o SOCS3 foram inibidas pelo PNU. Conclusão: Estes dados claramente demonstram que o alfa7nAChR está envolvido no controle da resposta inflamatória pulmonar alérgica e de remodelamento brônquico em modelo experimental de asma alérgica e portanto é um novo alvo com potencial terapêutico a ser explorado na fisiopatologia da asma brônquica / Background: Inflammation is one of the most important features in asthma pathophysiology, characterized by eosinophilic response with production of Th2 cytokine profile. The persistence of this inflammation can induce a lung repair process associated with a progressive reduction in lung function, which is not always reversed by available treatments. The anti-inflammatory cholinergic system was described as a neural mechanism that suppresses the immune response and controls inflammation mainly by the activaction of acetylcholine alfa7 nicotinic receptors (alfa7nAChR) found on immune cells. Acetylcholine (ACh) is an important mediator in asthma and we recently demonstrated that partial reduction on ACh release induced lung inflammation per se. Although it is known that muscarinic receptors (mAChRs) has a pro-inflammatory action and causes bronchoconstriction in asthma, the activation of nicotinic receptors (nAChRs) could have a beneficial effect reducing pulmonary inflammation as demonstrated in models of acute and systemic inflammation. The effects of alfa7nAChR activation in the pathophysiology of asthma have not been clearly elucidated. Aim: To investigate the effects of PNU- 282987 (PNU) treatment, a specific alfa7nAChR agonist, in a murine model of chronic allergic airway inflammation. Methods: BALB/c mice were subjected to a protocol of chronic allergic inflammation induced by intraperitoneal ovalbumin (OVA) or saline and subsequent challenges with inhalation. From the 22th day, the animals daily received PNU or vehicle (Ve) until the 28th day. PNU were tested in three differents doses (0.5, 1.0 and 2.0 mg/kg). In order to demonstrate that the effects obtained by PNU treatment was dependent on alfa7nAChR, a group of animals was treated with MLA (antagonist of alfa7nAChR) prior to the PNU treatment. On the 29th day of the protocol, the animals were euthanised and the number of inflammatory cells in the bronchoalveolar lavage fluid(BALF) fluid and blood, cytokine levels in BALF, the expression of alfa7nAChR and mAChRs type 3 (M3), and activation of nuclear transcription factor kB (NF-kB) in the lung were evaluated. Bronchial remodeling was assessed by morfometric methods. Statistical analyses were performed using the SigmaStat (Jandel Scientific, San Rafael, CA) and P < 0.05 is considered statistically significant. Results: ?7nAChR and M3 expression was detected in control and sensitized lung homogenate. The most effective dose of PNU treatment was 0.5 mg/kg evaluated by the effects on eosinophil reduction. Thus, we observed that treatment with PNU0,5 reduced the number of total cells, eosinophils, neutrophils, macrophages and lymphocytes in BALF, as well as number of eosinophils in peripheral blood and around the airways of sensitized animals. The treatment with PNU also reduced IgE levels in the blood, and cytokines IL-4, IL-13 and IL-17 in BALF. All these effects were reversed by pretreatment with MLA, except for IL-17 cytokine. Furthermore, treatment with PNU reduced bronchial remodeling (edema, epithelium and smooth muscle area and airway collagen deposition) as well as the number of positive cells for MMP-9 and TIMP-1 around the airways. The lung p-65-NF-kB, phosphorylated STAT3 and the SOCS3 expression were inhibited by PNU-282987. Conclusion: These data clearly demonstrate that the alfa7nAChR is involved in the control of allergic pulmonary inflammatory response and in bronchial remodeling in an experimental model of allergic asthma and it can be a new target with therapeutic potential to be explored in the pathophysiology of asthma
|
8 |
Mecanismos de Modulación de Receptores Nicotínicos por Anestésicos Locales con Grupos AminoCobo Velacoracho, Raúl 09 September 2019 (has links)
La tetracaína (Ttc), cuyas moléculas en solución fisiológica se encuentran mayoritariamente (97 %) en forma protonada, bloquea la corriente (IACh) evocada por acetilcolina (ACh) en ovocitos a los que se ha microtrasplantado receptores nicotínicos de acetilcolina (nAChRs) de la electroplaca de Torpedo marmorata. El bloqueo del nAChRm por Ttc fue muy potente, en el rango submicromolar (IC50= 0.5 μM) y reversible, recuperándose las respuestas a valores control tras un periodo de varios minutos. A concentraciones tan bajas como 0.1 μM, la Ttc ejerció un bloqueo que fue dependiente de voltaje, indicando que ejerce un bloqueo a canal abierto. El sitio de unión se pudo determinar en el interior del canal mediante técnicas de acoplamiento molecular. A concentraciones mayores (0.7 μM) se pudo observar un mecanismo de bloqueo distinto, a canal cerrado, que es independiente de voltaje y que se puede explicar por la unión de la Ttc a lugares situados en el ECD del nAChRm, que fueron determinados en los experimentos de docking virtual. Además, a esta concentración la Ttc aceleró la cinética de desensibilización de la IACh, cuando las células se mantuvieron en presencia sostenida del agonista. Esta se evocó cuando se co-aplicó la Ttc junto a la ACh a potenciales negativos. Por el contrario, cuando solamente se pre-aplicó la Ttc (aplicación previa a la de ACh), o cuando se co-aplicó a potenciales positivos, no se modificó la cinética de desensibilización, a pesar de que sí hubo una cierta inhibición de la IACh. Estos experimentos permitieron determinar que el sitio de unión de la Ttc que acelera la desensibilización se encuentra en el interior del canal. El ensayo de docking permitió localizar los residuos a los que su une la Ttc dentro del canal a altas concentraciones (con menor afinidad), que es más superficial que el implicado en el bloqueo a canal abierto. El lugar de unión determinado por anclaje virtual incluye la interacción de Ttc con αE262, γN224, γK271, y γE274, residuos que han sido previamente involucrados en el proceso de activación y desensibilización (Bouzat y cols., 2008; Forman y cols., 2007). El otro anestésico local (LA) estudiado, la benzocaína (Bzc), no posee carga al pH al que se efectúan los registros electrofisiológicos. La Bzc, al igual que la Ttc, inhibió la IACh, pero con una potencia menor, en el rango submilimolar y, a diferencia de la Ttc, su bloqueo fue independiente de voltaje. A pesar de mediar un bloqueo independiente de voltaje, la Bzc, evoca una corriente de rebote (IRb), similar a la que median moléculas que ejercen un bloqueo de canal abierto, sugiriendo que la Bzc podría estar uniéndose en el interior del canal. Otro efecto destacado de la Bzc sobre el nAChRms fue la aceleración de la desensibilización, haciéndola marcadamente más rápida incluso a potenciales positivos (a diferencia del efecto mediado por la Ttc). Además, se observó que, tras su pre-aplicación, la cinética de activación de la IACh se enlenteció y hubo un bloqueo de nAChRs, a canal cerrado, cuya recuperación fue especialmente lenta. Los efectos de ambos LAs fueron muy diferentes sobre los GABAAR. Así, la Ttc apenas tuvo efectos sobre este receptor, incluso a una concentración 10 veces superior a la IC50 determinada para el nAChRm. Por el contrario, la Bzc, aplicada a concentraciones similares a las que inhiben la IACh, aumentó la desensibilización y evocó una IRb similar a la observada en los nAChRs. Adicionalmente, la Bzc tuvo efectos sobre otros canales, como el ClC-0 y el CaCC. En relación con la Bzc, es interesante destacar que debido a su estructura química tiene una muy baja solubilidad al agua y, por tanto, debe solubilizarse en solventes como el etanol (EtOH) o el DMSO. Debido a que estos solventes pueden no ser totalmente inertes se probaron, en las mismas condiciones experimentales. No observándose efectos sobre los nAChRms.
|
9 |
Células-tronco mesenquimais derivados da geleia de Wharton na injúria cardiopulmonar e neuroimunomodulação sistêmica na sepse / Wharton\'s Jelly derived mesenchymal stem cells in sepsis-induced cardiopulmonar injury and systemic neuroimmunomodulationCóndor Capcha, José Manuel 15 May 2018 (has links)
A sepse causa uma alta taxa de mortalidade no mundo. A fisiopatologia da doença envolve uma rede complexa de mediadores inflamatórios que promovem a lesão de diversos tecidos, além de diversas alterações hemodinâmicas e disfunção do sistema nervoso autonômico (SNA). Assim sabe-se que o sistema nervoso cumpre um papel importante no controle da inflamação sistêmica mediante a via colinérgica anti-inflamatória (VCA) através do receptor nicotínico de acetilcolina alfa7 (alfa7nAChR). O uso das células-tronco mesenquimais (CTM) tem mostrado efeitos benéficos em diversos ensaios clínicos de doenças inflamatórias. Neste contexto, as células-tronco mesenquimais derivadas da geleia de Wharton do cordão umbilical (CTM-GW) tornam-se promissórias, uma vez que essas células são reconhecidas pela regulação da resposta imunológica, reparação neural, efeito anti-apoptose, assim como a melhora da sobrevida na sepse, em modelos experimentais. Nossa hipótese foi de que as CTM-GW poderiam cumprir um papel neuroimunomodulador através da VCA e atenuar a disfunção de múltiplos órgãos em um modelo animal de sepse de ligadura e punção do ceco (LPC). Inicialmente células da matriz do cordão umbilical foram isoladas e caracterizadas de acordo com o consenso internacional vigente. Ratos Wistar machos adultos foram subdivididos em grupos: 1) sham (operação simulada); 2) LPC; 3) LPC+CTM-GW (injetado 106 CTM-GW via intraperitoneal, i.p. 6 h após LPC) e 4) LPC+MLA+CTM-GW (MLA: Metillicaconitine, antagonista do alfa7nAChR, i.p., 5:30 h após LPC e 106 CTM-GW 6h após). Às 24 horas após LPC, foram avaliadas a função cardiovascular, hemodinâmica assim como os outros parâmetros. Interessantemente, o tratamento com CTM-GW na sepse atenuou a disfunção diastólica e protegeu a sensibilidade baroreflexa. Além disso, as CTM-GW estimularam a atividade autonômica, simpática e parassimpática no coração. Observamos que o tratamento celular induziu uma regulação da expressão do receptor alfa7nAChR e TLR4 no baço e no coração, assim como a redução da relação p-STAT3TYR705 e STAT3 total no baço. Outros efeitos importantes e adicionais foram a diminuição da infiltração de leucócitos e a regulação das citocinas pró-inflamatórias pelas células. O bloqueio da VCA usando MLA confirmou que o receptor alfa7nAChR pode ser um provável alvo, chave da ação das CTM entre vários outros mecanismos envolvidos na resposta imune. Finalmente, as CTM-GW conseguiram reduzir a apoptose no pulmão e no baço independentemente da VAC reforçando o conceito de que as células-tronco tem efeitos diversos além da imuno-regulação. Em conclusão, as CTM-GW na sepse foram capazes de atenuar a lesão cardiopulmonar assim como modular a atividade autonômica, reduzindo a inflamação sistêmica, pelo menos em parte, através da via colinérgica anti-inflamatória. Indubitavelmente todos estes efeitos anteriormente descritos e em associação se demonstraram fundamentais no mecanismo de reparo e proteção tecidual em resposta a sepse. Mais estudos pré-clínicos e futuros testes clínicos precisam ser realizados para maior compreensão destes mecanismos bem como uma possível validação terapêutica / Sepsis induces organ dysfunction due to overexpression of the inflammatory host response, involving cardiorespiratory and autonomic dysregulation, thus increasing the associated morbidity and mortality. The cholinergic anti-inflammatory pathway (CAP) is mediated by nervous system through alpha7 nicotinic acetylcholine receptor (alpha7nAChR). This receptor has an important role in systemic inflammation control. Wharton\'s jelly-derived mesenchymal stem cells (WJ-MSCs) are known to express genes and secreted factors related to neurological and immunological protection, as well as to improve survival in experimental sepsis. We hypothesized that WJ-MSCs play a modulatory role through the CAP and attenuate sepsis-induced organ injury in a cecal ligation and puncture (CLP) model. Rats were randomly divided into 4 groups: 1) Control (sham-operated); 2) submitted to CLP without treatment; 3) submitted to CLP and treated with 106 WJ-MSCs 6 h later and 4) CLP+MLA+WJ-MSC group (MLA: Methyllycaconitine, alpha7nAChR antagonist). All experiments were performed 24 h post-surgery. Echocardiographic parameters and heart rate variability were assessed. Importantly, treatment with WJ-MSCs attenuated diastolic heart failure and recovered barorreflex sensitivity. Moreover, WJ-MSCs injection increased cardiac sympathetic and cardiovagal activity. In cardiac and splenic tissue, WJ-MSC treatment downregulated TLR4 and alpha7nAChR expression, as well as it reduced p-STAT3/Total STAT3 ratio in the spleen. In addition, WJ-MSC reduced leukocyte infiltration and pro-inflammatory cytokines, which only were abolished by MLA treatment. Finally, WJ-MSC treatment diminished apoptosis in lung and spleen tissue. Together these findings suggest that treatment with WJ-MSCs appears to protect against sepsis-induced organ injury reducing systemic inflammation, at least in part, through cholinergic anti-inflammatory pathway
|
10 |
Efeito da redução da função colinérgica na mecânica pulmonar e na histopatologia pulmonar em modelo experimental de inflamação aguda induzida por instilação de LPS em camundongos geneticamente modificados / Cholinergic function reduction effect of pulmonary mechanics and pulmonary histopathology acute inflammation model of experimental induced by LPS in mice genetically modifiedPinheiro, Nathalia Montouro 05 May 2016 (has links)
A lesão pulmonar aguda (LPA) é caracterizada por inflamação pulmonar de início súbito com recrutamento de polimorfonucleares e liberação de mediadores próinflamatórios. É uma condição grave que evolui com óbito em aproximadamente 40% dos casos. Diversos estudos que elucidaram a fisiopatologia da LPA, o tratamento ainda é insatisfatório. O sistema colinérgico anti-inflamatório foi descrito no pulmão e está relacionado a um reflexo via nervo vago que inibe a liberação de citocinas inflamatórias por efeitos relacionados a ação da acetilcolina em receptores nicotínicos. Nossa hipótese é de que a redução de VAChT, que está relacionada ao déficit na liberação de ACh, module a resposta inflamatória pulmonar em modelo de LPS. Objetivo: 1. Avaliar se a deficiência de VAChT modula a resposta pulmonar em animais geneticamente modificados; 2. Avaliar se a deficiência colinérgica induzida por redução de VAChT está envolvida na resposta pulmonar ao LPS e elucidar alguns mecanismos envolvidos; 3. Avaliar o potencial terapêutico do PNU, um agonista de alfa7nAChR nas alterações funcionais e histopatológicas em modelo de LPA em animais C57Bl6. Metodologia: Foram utilizados camundongos machos geneticamente modificados mutante (VAChT KDHOM) ou selvagem (WT) e C57BL/6. Inicialmente avaliamos a função pulmonar e a histopatologia pulmonar em animais VAChT KDHOM. Após, animais WT e VAChT KDHOM receberam instilação intranasal de LPS ou salina e a resposta inflamatória foi avaliada de 1,5h até 72 horas após. Ainda, foi avaliado a resposta pulmonar em VAChT KDHOM e WT após a instilação de LPS intraperitoneal. Por fim, animais C57BL/6 instilados com LPS intranasal, receberam tratamento prévio ou após com PNU, agonista do receptor nicotínico alfa7. Resultados: Animais mutante apresentaram maior quantidade de células recuperadas no lavado bronco alveolar (LBA) e aumento de citocinas próinflamatórias, aumento de edema peribrônquico e piora da função pulmonar. Ainda, observamos aumento da expressão de NF-kB e redução de JAK2. A deficiência de VAChT induziu aumento de células inflamatórias em animais que receberam LPS somente em 1.5h após a indução, sendo os valores iguais ao dos animais WT em 24 e 72 horas. Nos animais WT, o estimulo do receptor nicotínico melhora a inflamação, enquanto o estímulo de receptores muscarínicos parece contribuir com a piora da resposta da inflamação pulmonar. Os efeitos do PNU parecem que dependem da via colinérgica intacta, uma vez que esta droga não teve o mesmo efeito em animais mutante. Entretanto, o tratamento com PNU em animais C57BL/6 reduziu a inflamação, a produção de citocinas, a deposição de colágeno no tecido pulmonar e os níveis de MMP-2, MMP-9 e TIMP-1, melhorando a função pulmonar. Estes efeitos parecem estar associados a redução de macrófagos perfil M1, e a inibição de NF-kB. Conclusão: Estes dados claramente demonstram que o sistema colinérgico anti-inflamatório está envolvido no controle da resposta inflamatória pulmonar, seja na manutenção da homeostasia ou ainda nas fases iniciais do desenvolvimento da LPA. Ainda, está claro que o estímulo de receptores nicotínicos tem grande potencial como alvo terapêutico a ser explorado na SDRA / Acute lung injury (ALI) is characterized by acute lung inflammation with recruitment of polymorphonuclear and release of proinflammatory mediators. It is a severe condition since leads to death 40% of the cases. Several studies have elucidated the pathophysiology of ALI, however the treatment is still unsatisfactory. The anti-inflammatory cholinergic system was described in the lung and is related to a vagal nerve reflex that inhibits the release of inflammatory cytokines by the action o ACh on nicotinic receptors. Our hypothesis is that the VAChT reduction, which is related to the deficit in the release of ACh, modulates the pulmonary inflammatory response in a model of LPS. Aim: 1. To assess whether VAChT deficiency modulates the pulmonary response in genetically modified animals; 2. Assess whether cholinergic deficiency induced reduction VAChT is involved in pulmonary response to LPS and elucidate some mechanisms involved; 3. To evaluate the therapeutic potential of PNU, an agonist alfa7nAChR, in functional and histological changes in C57BL6 mice with LPA. Methods: Mutant genetically modified male mice (VAChT KDHOM) or wild (WT) and C57BL/6 were used. First, we evaluated lung function and lung histopathology in VAChT KDHOM animals. After, WT animals and VAChT KDHOM received intranasal instillation of LPS or saline and the inflammatory response was assessed 1.5 hours to 72 hours. Moreover, the pulmonary response was evaluated in WT and VAChT KDHOM after instillation of LPS intraperitoneally. Finally, C57BL6 instilled with intranasal LPS received prior or post-treatment with PNU, an alfa7 nicotinic receptor agonist. Results: Mutant animals had higher number of cells recovered in brochoalveolar lavage (BAL) and increased pro-inflammatory cytokines, peribronchial edema and worsening of lung function. Still, there was an increase of NF_kB expression and reduction of JAK2. The VAChT deficiency induced increase in inflammatory cells in animals receiving LPS only 1.5h after the LPS instilation, and the values were similar to WT in 24 and 72 hours. In WT mice, the stimulation of the nicotinic receptor improves inflammation, while the stimulation of muscarinic receptors appears to contribute to the worsening of the pulmonary inflammatory response. The effects of PNU seem to depend on the intact cholinergic pathway, since this drug had no effects on mutant animals. However, treatment with PNU in C57BL6 reduced pulmonar inflammation, cytokine production, collagen deposition in lung tissue and the levels of MMP-2, MMP-9 and TIMP-1, improving pulmonary function. These effects appear to be associated with reduced profile M1 macrophages and the inhibition of NF-kB. Conclusion: These data clearly demonstrate that the anti-inflammatory cholinergic system is involved in the control of lung inflammatory response, both to maintain the lung homeostasis or in the early stages of the development of ALI. Finally, it is clear that the stimulation of nicotinic receptors has great potential as a therapeutic target to be explored in ARDS
|
Page generated in 0.076 seconds