21 |
High-order renormalization of scalar quantum fieldsBalduf, Paul-Hermann 19 January 2023 (has links)
Thema dieser Dissertation ist die Renormierung von perturbativer skalarer Quantenfeldtheorie bei großer Schleifenzahl. Der Hauptteil der Arbeit ist dem Einfluss von Renormierungsbedingungen auf renormierte Greenfunktionen gewidmet.
Zunächst studieren wir Dyson-Schwinger-Gleichungen und die Renormierungsgruppe, inklusive der Gegenterme in dimensionaler Regularisierung. Anhand zahlreicher Beispiele illustrieren wir die verschiedenen Größen.
Alsdann diskutieren wir, welche Freiheitsgrade ein Renormierungsschema hat und wie diese mit den Gegentermen und den renormierten Greenfunktionen zusammenhängen. Für ungekoppelte Dyson-Schwinger-Gleichungen stellen wir fest, dass alle Renormierungsschemata bis auf eine Verschiebung des Renormierungspunktes äquivalent sind. Die Verschiebung zwischen kinematischer Renormierung und Minimaler Subtraktion ist eine Funktion der Kopplung und des Regularisierungsparameters. Wir leiten eine neuartige Formel für den Fall einer linearen Dyson-Schwinger Gleichung vom Propagatortyp her, um die Verschiebung direkt aus der Mellintransformation des Integrationskerns zu berechnen. Schließlich berechnen wir obige Verschiebung störungstheoretisch für drei beispielhafte nichtlineare Dyson-Schwinger-Gleichungen und untersuchen das asymptotische Verhalten der Reihenkoeffizienten.
Ein zweites Thema der vorliegenden Arbeit sind Diffeomorphismen der Feldvariable in einer Quantenfeldtheorie. Wir präsentieren eine Störungstheorie des Diffeomorphismusfeldes im Impulsraum und verifizieren, dass der Diffeomorphismus keinen Einfluss auf messbare Größen hat. Weiterhin untersuchen wir die Divergenzen des Diffeomorphismusfeldes und stellen fest, dass die Divergenzen Wardidentitäten erfüllen, die die Abwesenheit dieser Terme von der S-Matrix ausdrücken. Trotz der Wardidentitäten bleiben unendlich viele Divergenzen unbestimmt.
Den Abschluss bildet ein Kommentar über die numerische Quadratur von Periodenintegralen. / This thesis concerns the renormalization of perturbative quantum field theory. More precisely, we examine scalar quantum fields at high loop order. The bulk of the thesis is devoted to the influence of renormalization conditions on the renormalized Green functions. Firstly, we perform a detailed review of Dyson-Schwinger equations and the renormalization group, including the counterterms in dimensional regularization. Using numerous examples, we illustrate how the various quantities are computable in a concrete case and which relations they satisfy.
Secondly, we discuss which degrees of freedom are present in a renormalization scheme, and how they are related to counterterms and renormalized Green functions. We establish that, in the case of an un-coupled Dyson-Schwinger equation, all renormalization schemes are equivalent up to a shift in the renormalization point. The shift between kinematic renormalization and Minimal Subtraction is a function of the coupling and the regularization parameter. We derive a novel formula for the case of a linear propagator-type Dyson-Schwinger equation to compute the shift directly from the Mellin transform of the kernel. Thirdly, we compute the shift perturbatively for three examples of non-linear Dyson-Schwinger equations and examine the asymptotic growth of series coefficients.
A second, smaller topic of the present thesis are diffeomorphisms of the field variable in a quantum field theory. We present the perturbation theory of the diffeomorphism field in momentum space and find that the diffeomorphism has no influence on measurable quantities. Moreover, we study the divergences in the diffeomorphism field and establish that they satisfy Ward identities, which ensure their absence from the S-matrix. Nevertheless, the Ward identities leave infinitely many divergences unspecified and the diffeomorphism theory is perturbatively unrenormalizable.
Finally, we remark on a third topic, the numerical quadrature of Feynman periods.
|
22 |
Renormalisation in perturbative quantum gravityRodigast, Andreas 28 August 2012 (has links)
In dieser Arbeit berechnen wir die gravitativen Ein-Schleifen-Korrekturen zu den Propagatoren und Wechselwirkungen der Felder des Standardmodells der Elementarteilchenphysik. Wir betrachten hierzu ein höherdimensionales brane-world-Modell: Wärend die Gravitonen, die Austauchteilchen der Gravitationswechselwirkung, in der gesamten D-dimensionalen Raumzeit propagieren können, sind die Materiefelder an eine d-dimensionale Untermanigfaltigkeit (brane) gebunden. Um die divergenten Anteile der Ein-Schleifen-Diagramme zu bestimmen, entwickeln wir ein neues Regularisierungschema welches einerseits die Wardidentitäten der Yang-Mills-Theorie respektiert anderseits sensitiv für potenzartige Divergenzen ist. Wir berechnen die gravitativen Beiträge zu den beta-Funktionen der Yang-Mills-Eichtheorie, der quartischen Selbst-Wechselwirkung skalarer Felder und der Yukawa-Wechselwirkung zwischen Skalaren und Fermionen. Im physikalisch besonders interessanten Fall einer vier-dimensionalen Materie-brane verschwinden die gravitativen Beiträge zum Laufen der Yang-Mills-Kopplungskonstante. Die führenden Beiträge zum Laufen der anderen beiden Kopplungskonstanten sind positiv. Diese Ergebnisse sind unabhängig von der Anzahl der Extradimensionen in denen die Gravitonen propagieren können. Des Weiteren bestimmen wir alle gravitationsinduzierten Ein-Schleifen-Konterterme mit höheren kovarianten Ableitungen für skalare Felder, Dirac-Fermionen und Eichbosonen. Ein Vergleich dieser Konterterme mit den höheren Ableitungsoperatoren des Lee-Wick-Standardmodells zeigt, dass die Gravitationskorrekturen nicht auf letzte beschränkt sind. Eine Beziehung zwischen Quantengravitation und dem Lee-Wick-Standardmodell besteht somit nicht. / In this thesis, we derive the gravitational one-loop corrections to the propagators and interactions of the Standard Model field. We consider a higher dimensional brane world scenario: Here, gravitons can propagate in the whole D dimensional space-time whereas the matter fields are confined to a d dimensional sub-manifold (brane). In order to determine the divergent part of the one-loop diagrams, we develop a new regularisation scheme which is both sensitive for polynomial divergences and respects the Ward identities of the Yang-Mills theory. We calculate the gravitational contributions to the beta functions of non-Abelian gauge theories, the quartic scalar self-interaction and the Yukawa coupling between scalars and fermions. In the physically interesting case of a four dimensional matter brane, the gravitational contributions to the running of the Yang-Mills coupling constant vanish. The leading contributions to the other two couplings are positive. These results do not depend on the number of extra dimensions. We further compute the gravitationally induced one-loop counterterms with higher covariant derivatives for scalars, Dirac fermions and gauge bosons. In is shown that these counterterms do not coincide with the higher derivative terms in the Lee-Wick standard model. A possible connection between quantum gravity and the latter cannot be inferred.
|
23 |
Electronic Structure of Transition Metal Dichalcogenides and Molecular SemiconductorsMa, Jie 01 December 2022 (has links)
Zweidimensionale (2D) Übergangsmetalldichalcogenide (TMDCs) gehören zu den attraktivsten neuen Materialien für optoelektronische Bauelemente der nächsten Generation. Um die überlegene Funktionalität der mit TMDCs verbundenen Bauelemente zu realisieren, ist ein umfassendes Verständnis ihrer elektronischen Struktur, einschließlich, aber nicht beschränkt auf die Auswirkungen von Defekten auf die elektronischen Eigenschaften und die Ausrichtung der Energieniveaus (ELA) an den TMDCs-Grenzflächen, unerlässlich, aber derzeit nicht ausreichend. Um einen tieferen Einblick in die elektronischen Eigenschaften von TMDCs und den damit verbundenen Grenzflächen in Kombination mit molekularen Halbleitern (MSCs) zu erhalten, untersuchen wir i) die fundamentale Bandstruktur von Monolagen (ML) TMDCs und die durch Schwefelfehlstellen (SVs) induzierte Renormierung der Bandstruktur, um eine solide Grundlage für ein besseres Verständnis der elektronischen Eigenschaften von polykristallinen dünnen Filmen zu schaffen, und ii) die optoelektronischen Eigenschaften ausgewählter MSC/ML-TMDCs-Grenzflächen. Darüber hinaus wird iii) der Einfluss des Substrats auf die elektronischen Eigenschaften einer MSC/ML-TMDC-Grenzfläche untersucht, um das Bauelementedesign zu steuern. Die Charakterisierung erfolgt hauptsächlich durch winkelaufgelöste Photoelektronenspektroskopie (ARPES), ergänzt durch Photolumineszenz (PL), Raman-Spektroskopie, UV-Vis-Absorption, Rastertransmissionselektronenmikroskopie (TEM) und Rasterkraftmikroskopie (AFM).
Unsere Ergebnisse tragen zu einem besseren Verständnis der Auswirkungen von Defekten auf ML-TMDC und verwandte Grenzflächen mit MSCs bei, wobei auch die Auswirkungen der Substrate berücksichtigt werden, und sollten dazu beitragen, unser Verständnis des elektronischen Verhaltens in TMDC-verwandten Geräten zu verbessern. / Two-dimensional (2D) transition metal dichalcogenides (TMDCs) are amongst the most attractive emerging materials for next-generation optoelectronic devices. To realize the superior functionality of the TMDCs related devices, a comprehensive understanding of their electronic structure, including but not limited to the impact of defects on the electronic properties and energy level alignment (ELA) at TMDCs interfaces, is essential but presently not sufficient. In an attempt to get a deep insight into the electronic properties of TMDCs and the related interfaces combined with molecular semiconductors (MSCs), we investigate i) the fundamental band structure of monolayer (ML) TMDCs and band structure renormalization induced by sulfur vacancies (SVs), in order to provide a solid foundation for a better understanding the electronic properties of polycrystalline thin films and ii) the optoelectronic properties of selected MSC/ML-TMDC interface. In addition, iii) the impact of the substrate on the electronic properties of the MSC/ML-TMDC interface is investigated for guiding device design. The characterization is mainly performed by using angle-resolved photoelectron spectroscopy (ARPES), with complementary techniques including photoluminescence (PL), Raman spectroscopies, UV-vis absorption, scanning transmission electron microscopy (TEM), and atomic force microscopy (AFM) measurements.
Our findings contribute to achieving a better understanding of the impact of defects on ML-TMDC and related interfaces with MSCs considering the substrates’ effect and should help refine our understanding of the electronic behavior in TMDC-related devices.
|
24 |
Renormalization of Gauge Theories and GravityPrinz, David Nicolas 22 November 2022 (has links)
Wir studieren die perturbative Quantisierung von Eichtheorien und Gravitation. Unsere Untersuchungen beginnen mit der Geometrie von Raumzeiten und Teilchenfeldern. Danach diskutieren wir die verschiedenen Lagrangedichten in der Kopplung der (effektiven) Quanten-Allgemeinen-Relativitätstheorie zum Standardmodell. Desweiteren studieren wir den zugehörigen BRST-Doppelkomplex von Diffeomorphismen und Eichtransformationen. Danach wenden wir Connes--Kreimer-Renormierungstheorie auf die perturbative Feynmangraph-Entwicklung an: In dieser Formulierung werden Subdivergenzen mittels des Koprodukts einer Hopfalgebra strukturiert und die Renormierungsoperation mittels einer algebraischen Birkhoff-Zerlegung beschrieben. Dafür verallgemeinern und verbessern wir bekannte Koprodukt-Identitäten und ein Theorem von van Suijlekom (2007), das (verallgemeinerte) Eichsymmetrien mit Hopfidealen verbindet. Insbesondere lässt sich unsere Verallgemeinerung auf Gravitation anwenden, wie von Kreimer (2008) vorgeschlagen. Darüberhinaus sind unsere Resultate anwendbar auf Theorien mit mehreren Vertexresuiden, Kopplungskonstanten und ebensolchen mit einer transversalen Struktur. Zusätzlich zeigen wir Kriterien für die Kompatibilität dieser Hopfideale mit Feynmanregeln und dem gewählten Renormierungsschema. Als nächsten Schritt berechnen wir die entsprechenden Gravitations-Materie Feynmanregeln für alle Vertexvalenzen und mit einem allgemeinen Eichparameter. Danach listen wir alle Propagator- und dreivalenten Vertex-Feynmanregeln auf und berechnen die entsprechenden Kürzungsidentitäten. Abschließend stellen wir geplante Folgeprojekte vor: Diese schließen eine Verallgemeinerung von Wigners Klassifikation von Elementarteilchen für linearisierte Gravitation ein, ebenso wie die Darstellung von Kürzungsidentitäten mittels Feynmangraph-Kohomologie und eine Untersuchung der Äquivalenz verschiedener Definitionen des Gravitonfeldes. Insbesondere argumentieren wir, dass das richtige Setup um perturbative BRST-Kohomologie zu studieren eine differentialgraduierte Hopfalgebra ist. / We study the perturbative quantization of gauge theories and gravity. Our investigations start with the geometry of spacetimes and particle fields. Then we discuss the various Lagrange densities of (effective) Quantum General Relativity coupled to the Standard Model. In addition, we study the corresponding BRST double complex of diffeomorphisms and gauge transformations. Next we apply Connes--Kreimer renormalization theory to the perturbative Feynman graph expansion: In this framework subdivergences are organized via the coproduct of a Hopf algebra and the renormalization operation is described as an algebraic Birkhoff decomposition. To this end, we generalize and improve known coproduct identities and a theorem of van Suijlekom (2007) that relates (generalized) gauge symmetries to Hopf ideals. In particular, our generalization applies to gravity, as was suggested by Kreimer (2008). In addition, our results are applicable to theories with multiple vertex residues, coupling constants and such with a transversal structure. Additionally, we also provide criteria for the compatibility of these Hopf ideals with Feynman rules and the chosen renormalization scheme. We proceed by calculating the corresponding gravity-matter Feynman rules for any valence and with a general gauge parameter. Then we display all propagator and three-valent vertex Feynman rules and calculate the respective cancellation identities. Finally, we propose planned follow-up projects: This includes a generalization of Wigner's classification of elementary particles to linearized gravity, the representation of cancellation identities via Feynman graph cohomology and an investigation on the equivalence of different definitions for the graviton field. In particular, we argue that the appropriate setup to study perturbative BRST cohomology is a differential-graded Hopf algebra.
|
Page generated in 0.0497 seconds