• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ricci solitons and geometric analysis

Wink, Matthias January 2018 (has links)
This thesis studies Ricci solitons of cohomogeneity one and uniform Poincaré inequalities for differentials on Riemann surfaces. In the two summands case, which assumes that the isotropy representation of the principal orbit consists of two inequivalent Ad-invariant irreducible summands, complete steady and expanding Ricci solitons have been detected numerically by Buzano-Dancer-Gallaugher-Wang. This work provides a rigorous construction thereof. A Lyapunov function is introduced to prove that the Ricci soliton metrics lie in a bounded region of an associated phase space. This also gives an alternative construction of non-compact Einstein metrics of non-positive scalar curvature due to Böhm. It is explained how the asymptotics of the Ricci flat trajectories induce Böhm's Einstein metrics on spheres and other low dimensional spaces. A numerical study suggests that all other Einstein metrics of positive scalar curvature which are induced by the generalised Hopf fibrations occur in an entirely non-linear regime of the Einstein equations. Extending the theory of cohomogeneity one steady and expanding Ricci solitons, an estimate which allows to prescribe the growth rate of the soliton potential at any given time is shown. As an application, continuous families of Ricci solitons on complex line bundles over products of Fano Kähler Einstein manifolds are constructed. This generalises work of Appleton and Stolarski. The method also applies to the Lü-Page-Pope set-up and allows to cover an optimal parameter range in the two summands case. The Ricci soliton equation on manifolds foliated by torus bundles over products of Fano Kähler Einstein manifolds is discussed. A rigidity theorem is obtained and a preserved curvature condition is discovered. The cohomogeneity one initial value problem is solved for m-quasi-Einstein metrics and complete metrics are described. L<sup>p</sup>-Poincaré inequalities for k-differentials on closed Riemann surfaces are shown. The estimates are uniform in the sense that the Poincaré constant only depends on p &GE;1, k &ge; 2 and the genus &gamma; &ge; 2 of the surface but not on its complex structure. Examples show that the analogous estimate for 1-differentials cannot be uniform. This part is based on joint work with Melanie Rupflin.
2

Variedades de Einstein e Ricci solitons com estrutura de produto torcido / Einstein manifolds and Ricci solitons with warped product structure

Sousa, Márcio Lemes de 03 July 2015 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-30T07:33:27Z No. of bitstreams: 2 Tese - Márcio Lemes de Sousa - 2015.pdf: 2626758 bytes, checksum: 1e9e1b9d216bad33d6b5919afa54a4e4 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-30T07:35:41Z (GMT) No. of bitstreams: 2 Tese - Márcio Lemes de Sousa - 2015.pdf: 2626758 bytes, checksum: 1e9e1b9d216bad33d6b5919afa54a4e4 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-11-30T07:35:41Z (GMT). No. of bitstreams: 2 Tese - Márcio Lemes de Sousa - 2015.pdf: 2626758 bytes, checksum: 1e9e1b9d216bad33d6b5919afa54a4e4 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-07-03 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis, primarily, we studied warped products semi-Riemannian Einstein manifolds. We considered the case in that the base is conformal to an n-dimensional pseudo- Euclidean space and invariant under the action of an (n 􀀀 1)-dimensional translation group. We constructed new examples of Einstein warped products with zero Ricci curvature when the fiber is Ricci-flat. In particular, we obtain explicit solutions, in the case vacuum, for Einstein field equation. Furthermore, we consider M = B f F warped product gradient Ricci solitons. We proved that the potential function depends only on the base and the fiber F is necessarily Einstein manifold. We provide all such solutions in the case of steady gradient Ricci solitons when the base is conformal to an n-dimensional pseudo-Euclidean space, invariant under the action of an (n􀀀1)-dimensional translation group, and the fiber F is Ricci-flat. / Nesta tese, primeiramente, estudamos variedades produto torcido semi-Riemannianas de Einstein, considerando-se o caso em que a base é conforme ao espaço pseudo- Euclidiano n -dimensional e invariante sob a ação de um grupo de translações (n􀀀1)-dimensional. Construímos novos exemplos de métricas produto torcido Einstein com curvatura de Ricci zero quando a fibra é Ricci -flat. Em particular, obtemos soluções explícitas, no caso de vácuo, para a equação de campo de Einstein. Em seguida, provamos que quando a variedade M = B f F é um Ricci soliton gradiente a função potencial depende apenas da base e a fibra F é necessariamente uma variedade de Einstein. Fornecemos todas as soluções, no caso de Ricci soliton gradiente steady, quando a base é conforme ao espaço pseudo- Euclidiano n -dimensional, invariante sob a ação de um grupo translações (n􀀀1) - dimensional, e a fibra F é Ricci -flat.
3

Sobre rigidez de gradiente quase Ricci Soliton / About rigidity of gradient almost Ricci Soliton

Gomes, Maria Francisca de Sousa 20 April 2017 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-05-04T20:17:22Z No. of bitstreams: 2 Dissertação - Maria Francisca de Sousa Gomes - 2017.pdf: 1138083 bytes, checksum: ec11ffa7d803dc5e840f5b216f1aaba3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-05-05T13:03:10Z (GMT) No. of bitstreams: 2 Dissertação - Maria Francisca de Sousa Gomes - 2017.pdf: 1138083 bytes, checksum: ec11ffa7d803dc5e840f5b216f1aaba3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-05-05T13:03:10Z (GMT). No. of bitstreams: 2 Dissertação - Maria Francisca de Sousa Gomes - 2017.pdf: 1138083 bytes, checksum: ec11ffa7d803dc5e840f5b216f1aaba3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-04-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work is based on [1] and aims to show a result of rigidity for gradient almost Ricci soliton. We will prove that an almost Ricci soliton gradient with nonnegative scalar curvature, where ∇ f is a non-trivial conformal field, is either a Euclidean space R n or the sphere S n . Moreover, we have that, in the Spherical case, the potential function is given by first eigenfunction of the Laplacian. Finally, we will find necessary and sufficient conditions for that a compact locally conformally flat gradient almost Ricci soliton is isometric the sphere Sn. / Este trabalho está baseado em [1] e tem por objetivo apresentar um resultado de rigidez para gradiente quase Ricci soliton. Provaremos que um gradiente quase Ricci soliton com curvatura escalar não-negativa, em que ∇ f é um campo conforme não-trivial, é ou o espaço Euclidiano R n ou a Esfera S n . Além disso, temos que no caso Esférico, a função potencial é dada pela primeira auto função do Laplaciano. Por fim, encontraremos condições necessárias e suficientes para que um gradiente quase Ricci soliton compacto localmente conformemente flat seja isométrico a esfera Sn.
4

Sólitons de Ricci Gradiente Steady Localmente Conformemente Flat / On Locally Conformally Flat Gradient Steady Ricci Solitons

Reis, Hiuri Fellipe Santos dos 22 March 2013 (has links)
Submitted by Jaqueline Silva (jtas29@gmail.com) on 2014-10-23T20:04:48Z No. of bitstreams: 2 Dissertação - Hiuri Fellipe Santos dos Reis - 2013.pdf: 1601406 bytes, checksum: f2663891a9c0968329f2f913ada41d9e (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-10-23T20:05:03Z (GMT) No. of bitstreams: 2 Dissertação - Hiuri Fellipe Santos dos Reis - 2013.pdf: 1601406 bytes, checksum: f2663891a9c0968329f2f913ada41d9e (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-10-23T20:05:03Z (GMT). No. of bitstreams: 2 Dissertação - Hiuri Fellipe Santos dos Reis - 2013.pdf: 1601406 bytes, checksum: f2663891a9c0968329f2f913ada41d9e (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-03-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we present a study on locally conformally flat gradient steady Ricci solitons which is based on a Huai Dong-Cao and Qing Chen’s article, where they was classified the n-dimensional (n ≥ 3) complete noncompact locally conformally flat gradient steady Ricci solitons. In particular, we prove that a complete noncompact non-flat locally conformally flat gradient steady Ricci soliton is, up to scaling, the Bryant soliton. / Neste trabalho apresentamos um estudo dos sólitons de Ricci gradiente steady localmente conformemente flat, baseado no trabalho de Huai-Dong Cao e Qiang Chen, onde são classificados os sólitons de Ricci gradiente steady n-dimensionais (n ≥ 3), completos, não-compactos e localmente conformemente flat. Em particular provamos que um sóliton de Ricci gradiente steady completo, não-compacto, não-flat e localmente conformemente flat é, a menos de homotetia, o sóliton de Bryant.
5

Gradiente ricci solitons e variedades de Einstein com métrica produto torcido / Ricci solitons gradient and Einstein manifolds with warped product métric

Batista, Elismar Dias 31 March 2016 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2016-06-15T19:51:42Z No. of bitstreams: 2 Dissertação - Elismar Dias Batista - 2016.pdf: 1518873 bytes, checksum: 8375db389a2056c5849ee168f5efa5ce (MD5) license_rdf: 19874 bytes, checksum: 38cb62ef53e6f513db2fb7e337df6485 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-06-28T12:21:16Z (GMT) No. of bitstreams: 2 Dissertação - Elismar Dias Batista - 2016.pdf: 1518873 bytes, checksum: 8375db389a2056c5849ee168f5efa5ce (MD5) license_rdf: 19874 bytes, checksum: 38cb62ef53e6f513db2fb7e337df6485 (MD5) / Made available in DSpace on 2016-06-28T12:21:16Z (GMT). No. of bitstreams: 2 Dissertação - Elismar Dias Batista - 2016.pdf: 1518873 bytes, checksum: 8375db389a2056c5849ee168f5efa5ce (MD5) license_rdf: 19874 bytes, checksum: 38cb62ef53e6f513db2fb7e337df6485 (MD5) Previous issue date: 2016-03-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work is based on the articles [26] and [27], where we studied Einstein manifolds and gradient Ricci soliton with twisted product structure. As a result, we prove the following: if M is an Einstein warped product space with nonpositive scalar curvature and compact base, then M is a Riemannian product space. Besides, we show that the Riemannian product Rp×F is a gradient Ricci soliton if and only if F is Ricci soliton gradient. Then, we show that the warped product R×f B is gradient Ricci solitons with f ′′ 6= 0, therefore F is Einstein. By using these results, we build nontrivial examples of gradient Ricci soliton where the fiber is either an Einstein manifold or a nontrivial gradient Ricci soliton. / Este trabalho está baseado nos artigos [26] e [27], onde estudamos Variedades de Einstein e gradiente Ricci solitons com estrutura de produto torcido. Provamos que: se M é um produto torcido Einstein com curvatura escalar não positiva e base compacta, então a função torção é constante, ou seja, o produto torcido é Riemanniano. Mostramos ainda que o produto Riemanniano Rp ×F é um gradiente Ricci soliton se e somente se F for gradiente Ricci soliton. Em seguida, mostramos que se o produto torcido R×f F for gradiente Ricci soliton com f ′′(t) 6= 0, então F é Einstein. Usando estes resultados construímos exemplos de gradiente Ricci soliton não trivial com a fibra sendo Einstein ou gradiente Ricci soliton não trivial. Finalmente consideramos o produto torcido Lorentziano sendo gradiente Ricci soliton e obtivemos critérios análogos ao Riemanniano para que F seja Einstein ou gradiente Ricci soliton.
6

A geometria das mÃtricas tipo-Einstein / The geometric of like-Einstein metrics

Ernani de Sousa Ribeiro Junior 29 August 2011 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / O objetivo deste trabalho à estudar a geometria das mÃtricas tipo-Einstein (solitons de Ricci, quase solitons de Ricci e mÃtricas quasi-Einstein). Mais especificamente, vamos obter equaÃÃes de estrutura, exemplos, fÃrmulas integrais e estimativas que permitirÃo caracterizar estas classes de mÃtricas. / The purpose of this work is study the geometric of the like-Einstein metrics (Ricci soliton, almost Ricci solitons and quasi-Einstein metrics). More specifically, we obtain structure equations, examples, integral formulae and estimates that will enable characterize these classes of metrics.
7

Géométrie à l'infini de certaines variétés riemanniennes non-compactes / Geometry at infinity of some noncompact Riemannian manifolds

Deruelle, Alix 23 November 2012 (has links)
On s'intéresse à la géométrie globale et asymptotique de certaines variétés riemanniennes non compactes. Dans une première partie, on étudie la topologie et la géométrie à l'infini des variétés riemanniennes à courbure (de Ricci) positive ayant un rapport asymptotique de courbure fini. On caractérise le cas non effondré via la notion de cône asymptotique et on donne des conditions suffisantes sur le groupe fondamental pour garantir un non effondrement. La seconde partie est dédiée à l'étude des solutions de Type III du flot de Ricci à courbure positive et aux solitons gradients de Ricci expansifs (points fixes de Type III) présentant une décroissance quadratique de la courbure. On montre l'existence et l'unicité des cônes asymptotiques de tels points fixes. On donne également des conditions suffisantes de nature algébrique et géométrique pour garantir une géométrie de révolution de tels solitons. Dans une troisième partie, on caractérise la géométrie des solitons gradients de Ricci stables à courbure positive et à croissance volumique linéaire. Puis, on s'intéresse au non effondrement des variétés riemanniennes de dimension trois à courbure de Ricci positive ayant un rapport asymptotique de courbure fini. / We study the global and asymptotic geometry of non-compact Riemannian manifolds. First, we study the topology and geometry at infinity of Riemannian manifolds with nonnegative (Ricci) curvature and finite asymptotic curvature ratio. We focus on the non-collapsed case with the help of asymptotic cones and we give sufficient conditions on the fundamental group to guarantee non-collapsing. The second part is dedicated to the study of (non-negatively curved) Type III Ricci flow solutions. We mainly analyze the asymptotic geometry of Type III self-similar solutions (expanding gradient Ricci soliton) with finite asymptotic curvature ratio. We prove the existence and uniqueness of their asymptotic cones. We also give algebraic and geometric sufficient conditions to guarantee rotational symmetry of such metrics. In the last part, we characterize the geometry of steady gradient Ricci solitons with nonnegative sectional curvature and linear volume growth. Finally, we study the non-collapsing of three dimensional Riemannian manifold with nonnegative Ricci curvature and finite asymptotic curvature ratio.
8

Sólitons de Ricci Shrinking em variedades Riemannianas completas / Complete Gradient Shrinking Ricci Soliton

LEANDRO NETO, Benedito 02 September 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:19Z (GMT). No. of bitstreams: 1 Benedito Leandro Neto.pdf: 688417 bytes, checksum: c1ac127d257e0a8d59d30de577413351 (MD5) Previous issue date: 2011-09-02 / In this work, we started with an historical study of Ricci Solitons showing that they, often, arise as a auto-similar solution for the Ricci flow. It was demonstrated, then, some basic concepts of Riemannian Geometry and a formal definition of a Ricci Solitons. To conclude the work, it was presented a study analysis of the [6] article, establishing , among other results, two theorems: the first one, an estimation for the potential function of a Gradient Shrinking Ricci Solitons, complete non-compact, and, the second one, an estimation for the volume of a Gradient Shrinking Ricci Solitons, complete non-compact. / Nesse trabalho, nós começamos com um levantamento histórico sobre os Ricci Sólitons, mostrando que, muitas vezes, eles surgem como solução auto-similar do fluxo de Ricci. Em seguida, introduzimos alguns conceitos básicos de geometria Riemanniana e definimos formalmente um Rici Sóliton. Concluimos o trabalho com um estudo aprofundado do artigo [6], do qual mostramos, dentre outros resultados, dois teoremas: uma estimativa para a função potencial de um Ricci Sóliton Gradiente Shrinking, completo e não-compacto e uma estimativa superior para o volume de um Ricci Sóliton Gradiente Shrinking, completo e não-compacto.
9

Compact almost Ricci soliton, critical metrics of the total scalar curvature functional and p-fundamental tone estimates / Compact almost Ricci soliton, critical metrics of the total scalar curvature functional and p-fundamental tone estimates

Evangelista, Israel de Sousa 04 July 2017 (has links)
EVANGELISTA, I. S. Compact almost Ricci soliton, critical metrics of the total scalar curvature functional and p-fundamental tone estimates. 2017. 75 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-07-10T12:41:32Z No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-07-10T14:06:18Z (GMT) No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5) / Made available in DSpace on 2017-07-10T14:06:18Z (GMT). No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5) Previous issue date: 2017-07-04 / The present thesis is divided in three different parts. The aim of the first part is to prove that a compact almost Ricci soliton with null Cotton tensor is isometric to a standard sphere provided one of the following conditions associated to the Schouten tensor holds: the second symmetric function is constant and positive; two consecutive symmetric functions are non null multiple or some symmetric function is constant and the quoted tensor is positive. The aim of the second part is to study the critical metrics of the total scalar curvature funcional on compact manifolds with constant scalar curvature and unit volume, for simplicity, CPE metrics. It has been conjectured that every CPE metric must be Einstein. We prove that the Conjecture is true for CPE metrics under a suitable integral condition and we also prove that it suffices the metric to be conformal to an Einstein metric. In the third part we estimate the p-fundamental tone of submanifolds in a Cartan-Hadamard manifold. First we obtain lower bounds for the p-fundamental tone of geodesic balls and submanifolds with bounded mean curvature. Moreover, we provide the p-fundamental tone estimates of minimal submanifolds with certain conditions on the norm of the second fundamental form. Finally, we study transversely oriented codimension one C 2-foliations of open subsets Ω of Riemannian manifolds M and obtain lower bounds estimates for the infimum of the mean curvature of the leaves in terms of the p-fundamental tone of Ω. / A presente tese está dividida em três partes diferentes. O objetivo da primeira parte é provar que um quase soliton de Ricci compacto com tensor de Cotton nulo é isométrico a uma esfera canônica desde que uma das seguintes condições associadas ao tensor de Schouten seja válida: a segunda função simétrica é constante e positiva; duas funções simétricas consecutivas são múltiplas, não nulas, ou alguma função simétrica é constante e o tensor de Schouten é positivo. O objetivo da segunda parte é estudar as métricas críticas do funcional curvatura escalar total em variedades compactas com curvatura escalar constante e volume unitário, por simplicidade, métricas CPE. Foi conjecturado que toda métrica CPE deve ser Einstein. Prova-se que a conjectura é verdadeira para as métricas CPE sob uma condição integral adequada e também se prova que é suficiente que a métrica seja conforme a uma métrica Einstein. Na terceira parte, estima-se o p-tom fundamental de subvariedades em uma variedade tipo Cartan-Hadamard. Primeiramente, obtém-se estimativas por baixo para o p-tom fundamental de bolas geodésicas e em subvariedades com curvatura média limitada. Além disso, obtém-se estimativas do p-tom fundamental de subvariedades mínimas com certas condições sobre a norma da segunda forma fundamental. Por fim, estudam-se folheações de classe C 2 transversalmente orientadas de codimensão 1 de subconjuntos abertos Ω de variedades riemannianas M e obtêm-se estimativas por baixo para o ínfimo da curvatura média das folhas em termos do p-tom fundamental de Ω.
10

Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial / Rigidity of the contact surfaces and characterization of Riemannian manifolds carrying a conformal vector fields or some special metric

Josà Nazareno Vieira Gomes 29 June 2012 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / FundaÃÃo de Amparo à Pesquisa do Estado do Amazonas / Esta tese està composta de quatro partes distintas. Na primeira parte, vamos dar uma nova caracterizaÃÃo da esfera euclidiana como a Ãnica variedade Riemanniana compacta com curvatura escalar constante e admitindo um campo de vetores conforme nÃo trivial que à tambÃm Ricci conforme. Na segunda parte, provaremos algumas propriedades dos quase sÃlitons de Ricci, as quais permitem estabelecer condiÃÃes de rigidez desses objetos, bem como caracterizar as estruturas de quase sÃlitons de Ricci gradiente na esfera euclidiana. ImersÃes isomÃtricas tambÃm serÃo consideradas; classificaremos os quase sÃlitons de Ricci imersos em formas espaciais, atravÃs de uma condiÃÃo algÃbrica sobre a funÃÃo sÃliton. AlÃm disso, vamos caracterizar, atravÃs de uma condiÃÃo sobre o operador de umbilicidade, as hipersuperfÃcies n-dimensionais de uma forma espacial, com curvatura mÃdia constante, tendo duas curvaturas principais distintas e com multiplicidades p e n - p. Na terceira parte, provaremos um resultado de rigidez e algumas fÃrmulas integrais para uma mÃtrica m-quasi-Einstein generalizada compacta. Na Ãltima parte, vamos apresentar uma relaÃÃo entre a curvatura gaussiana e o Ãngulo de contato de superfÃcies imersas na esfera euclidiana tridimensional,a qual permite concluir que a superfÃcie à plana, se o Ãngulo de contato for constante. AlÃm disso, deduziremos que o toro de Clifford à a Ãnica superfÃcie compacta com curvatura mÃdia constante tendo tal propriedade. / This thesis is composed of four distinct parts. In the first part, we shall give a new characterization of the Euclidean sphere as the only compact Riemannian manifold with constant scalar curvature carrying a conformal vector eld non-trivial which is also Ricci conformal. In the second part, we shall prove some properties of almost Ricci solitons, which allow us to establish conditions for rigidity of these objects, as well as characterize the structures of gradient almost Ricci soliton in Euclidean sphere. Isometric immersions also will be considered, we shall classify almost Ricci solitons immersed in space forms, through algebraic condition on soliton function. Furthermore, we characterize under a condition of the umbilicity operator, n-dimensional hypersurfaces in a space form with constant mean curvature, admitting two distinct principal curvatures with multiplicities p and n - p. In the third part, we prove a result of rigidity and some integral formulae for a compact generalized m-quasi-Einstein metric. In the last part, we present a relation between the Gaussian curvature and the contact angle of surfaces immersed in Euclidean three-dimensional sphere, which allows us to conclude that such a surface is at provided its contact angle is constant. Moreover, we deduce that Clifford tori are the unique compact surfaces with constant mean curvature having such property.

Page generated in 0.0439 seconds