• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 24
  • 18
  • 12
  • 10
  • 9
  • 9
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Metodologia para a modificação de parâmetros de sistemas lineares baseada na designação de estruturas próprias por realimentação de saídas e sua aplicação na coxinização de motores de veículos de passeio / not available

Daniel José Laporte 11 June 2013 (has links)
A designação de estruturas próprias de sistemas dinâmicos com retroação completa de estados ou saídas foi objeto de estudo de muitos pesquisadores durante a segunda metade do século XX. Os trabalhos mais relevantes sobre o tema foram revisados e serviram como base para a elaboração da metodologia apresentada neste trabalho. Que consiste na designação de estruturas próprias desejadas para um sistema linear em malha aberta com a modificação de parâmetros do sistema através da pseudo retroação de saídas devidamente definidas. O método foi aplicado na coxinização de um veículo de passeio. No qual os modos de vibrar de modelos lineares com 7 e 8 graus de liberdade do veículo foram adequados com o intuito de reduzir as acelerações verticais de chassi, características do fenômeno shake de motor e câmbio (faixa de frequência entre 7 e 25 Hz). Para tanto, reduziu-se a participação do grau de liberdade vertical de chassi nos modos com grande participação dos graus de liberdade de motor e massa não suspensa. Os resultados obtidos com a aplicação da metodologia na coxinização foram valores de rigidezes, amortecimentos e características de coxins hidráulicos que resultam na redução significativa da aceleração vertical de chassi, que implica em uma melhora perceptível para o consumidor na qualidade do conforto do veículo. / Eigenstructure assignment using full state or output feedback control had been object of study of many researchers during the second half of XX century. The most important works about eigenstructure assignment were reviewed, specially some applications within aerospace industry, that was the responsible for developing all the theory concerning pole and eigenvector placement. The review of the related theory was also based on the pioneering and most expressive works and were base for the methodology developed and described in this work. Which consists basically on the assignment of some desired eigensctructure of open loop linear systems modifying some parameters of the systems by means pseudo feedback of some outputs into inputs specifically defined. This methodology was applied to a 8 DOF vehicle model, a case of study, in order to adequate the system modes changing engine mounts parameters to improve the vehicle ride comfort, mainly eigenstructures about powertrain shake range frequencies.
32

The ride comfort versus handling decision for off-road vehicles

Bester, Rudolf 25 October 2007 (has links)
Today, Sport Utility Vehicles are marketed as both on-road and off-road vehicles. This results in a compromise when designing the suspension of the vehicle. If the suspension characteristics are fixed, the vehicle cannot have good handling capabilities on highways and good ride comfort over rough terrain. The rollover propensity of this type of vehicle compared to normal cars is high because it has a combination of a high centre of gravity and a softer suspension. The 4 State Semi-active Suspension System (4S4) that can switch between two discrete spring characteristics as well as two discrete damper characteristics, has been proven to overcome this compromise. The soft suspension setting (soft spring and low damping) is used for ride comfort, while the hard suspension setting (stiff spring and high damping) is used for handling. The following question arises: when is which setting most appropriate? The two main contributing factors are the terrain profile and the driver’s actions. Ride comfort is primarily dependant on the terrain that the vehicle is travelling over. If the terrain can be identified, certain driving styles can be expected for that specific environment. The terrains range from rough and uncomfortable to smooth with high speed manoeuvring. Terrain classification methods are proposed and tested with measured data from the test vehicle on known terrain types. Good results were obtained from the terrain classification methods. Five terrain types were accurately identified from over an hour’s worth of vehicle testing. Handling manoeuvres happen unexpectedly, often to avoid an accident. To improve the handling and therefore safety of the vehicle, the 4S4 can be switched to the hard suspension setting, which results in a reduced body roll angle. This decision should be made quickly with the occupants’ safety as the priority. Methods were investigated that will determine when to switch the suspension to the handling mode based on the kinematics of the vehicle. The switching strategies proposed in this study have the potential, with a little refinement, to make the ride versus handling decision correctly. Copyright 2007, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. Please cite as follows: Bester, R 2007, The ride comfort versus handling decision for off-road vehicles, MEng dissertation, University of Pretoria, Pretoria, viewed yymmdd < http://upetd.up.ac.za/thesis/available/etd-10252007-111611 / > / Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2007. / Mechanical and Aeronautical Engineering / unrestricted
33

Investigation of active anti-roll bars and development of control algorithm

Agrawal, Harshit, Gustafsson, Jacob January 2017 (has links)
Active anti-roll bars have recently found greater acceptance among premium car manufacturers and optimal application of this technology has emerged as an important field of research. This thesis investigates the potential of implementing active anti-roll bars in a passenger vehicle with the purpose of increasing customer value. For active anti-roll bars, customer value is defined in terms of vehicle’s ride comfort and handling performance. The objective with this thesis is to demonstrate this value through development of a control algorithm that can reflect the potential improvement in ride comfort and handling. A vehicle with passive anti-roll bars is simulated for different manoeuvres to identify the potential and establish a reference for the development of a control algorithm and for the performance of active anti-roll bars. While ride is evaluated using single-sided cosine wave and single-sided ramps, handling is evaluated using standardized constant radius, frequency response and sine with dwell manoeuvres.The control strategy developed implements a combination of sliding mode control, feed forward and PI-controllers. Simulations with active anti-roll bars showed significant improvement in ride and handling performance in comparison to passive anti-roll bars. In ride comfort, the biggest benefit was seen in the ability to increase roll damping and isolating low frequency road excitations. For handling, most significant benefits are through the system’s ability of changing the understeer behaviour of the vehicle and improving the handling stability in transient manoeuvres. Improvement in the roll reduction capability during steady state cornering is also substantial. In conclusion, active anti-roll bars are undoubtedly capable of improving both ride comfort and handling performance of a vehicle. Although the trade-off between ride and handling performance is significantly less, balance in requirements is critical to utilise the full potential of active anti-roll bars. With a more comprehensive control strategy, they also enable the vehicle to exhibit different driving characteristics without the need for changing any additional hardware.
34

Modal Analysis of a Discrete Tire Model and Tire Dynamic Response Rolling Over Short Wavelength Road Profiles

Alobaid, Faisal 19 September 2022 (has links)
Obtaining the modal parameters of a deflected and rolling tire represents a challenge due to the complex vibration characteristics that cause the tire's symmetry distortion and the natural frequencies' bifurcation phenomena. The modal parameters are usually extracted using a detailed finite element model. The main issue with full modal models (FEA, for example) is the inability to integrate the tire modal model with the vehicle models to tune the suspension system for optimal ride comfort. An in-plane rigid–elastic-coupled tire model was used to examine the 200 DOF finite difference method (FDM) modal analysis accuracy under non-ground contact and non-rotating conditions. The discrete in-plane rigid–elastic-coupled tire model was modified to include the contact patch restriction, centrifugal force, Doppler, and Coriolis effects, covering a range of 0-300 Hz. As a result, the influence of the contact patch and the rotating tire conditions on the natural frequencies and modes were obtained through modal analysis. The in-plane rigid–elastic-coupled modal model with varying conditions was created that connects any two DOFs around the tire's tread or sidewall as inputs or outputs. The vertical movement of the wheel was incorporated into the in-plane rigid–elastic-coupled tire modal model to extract the transfer function (TF) that connects road irregularities as an input to the wheel's vertical movement as an output. The TF was utilized in a quasi-static manner to obtain the tire's enveloping characteristics rolling over short wavelength obstacles as a direct function of vertical wheel displacement under varying contact patch length constraints. The tire modal model was implemented with the quarter car model to obtain the vehicle response rolling over short wavelength obstacles. Finally, a sensitivity analysis was performed to examine the influence of tire parameters and pretension forces on natural frequencies. / Doctor of Philosophy / The goal of vehicle manufacturers is to predict the vehicle's behavior under various driving conditions using mathematical models and simulation. Automotive companies rely heavily on computational simulation tools instead of real-time tests to shorten the product development cycle and reduce costs. However, the interaction between the tire and the road is one of the most critical aspects to consider when evaluating automobile stability and performance. The tires are responsible for generating the forces and moments that drive and maneuver the vehicle. Tires are complex products due to their intricate design, and their characteristics are affected by many factors such as vertical load, inflation pressure, speed, and a road with an uneven surface profile. Consequently, this project aims to describe the influence of various driving circumstances and load conditions on tire properties, as well as to develop a model that can represent the vertical tire and vehicle behavior while traveling over a cleat under different vehicle loads.
35

Advanced Numerical Approaches for Analysis of Vehicle Ride Comfort, Wheel Bearings and Steering Control

Mahala, Manoj Kumar January 2015 (has links) (PDF)
Suspension systems and wheels play a critical role in vehicle dynamics performance of a car in areas such as ride comfort and handling. Lumped parameter models (LPMs) are commonly used for assessing the performance of vehicle suspension systems. However, there is a lack of clarity with regard to the relative capabilities of different LPM configurations. A comprehensive comparative study of three most commonly used LPMs of increasing complexity has been carried out in the current work. The study reported here has yielded insights into the capabilities of the considered LPMs in predicting response time histories which may be used for assessing ride comfort. A shortcoming of available suspension system models appears to be in representation of harsh situations such as jounce movement which cause full compression of springs leading to ‘jerks’ manifested as high values of rate of change of acceleration of sprung mass riding on a wheel. In the current research work, a modified nonlinear quarter-car model is proposed to account for the contact force that results in jerk-type response. The numerical solution algorithm is validated through the simulation of an impact test on a car McPherson strut in a Drop Weight Impact Testing Tower developed in CAR Laboratory, CPDM. This is followed by a detailed comparison of HCM and QCM to examine their suitability for such analysis. For decades, wheel bearings in vehicles have been designed using simplified analytical approaches based on Hertz contact theory and test data. In the present work, a hybrid approach has been developed for assessing the load bearing capacity of a wheel ball bearing set. According to this approach, the amplitude of dynamic wheel load can be obtained from a lumped parameter analysis of a suspension system, which can then be used for detailed static finite element analysis of a wheel bearing system. The finite element modelling approach has been validated by successfully predicting the load bearing capacity of an SKF ball bearing set for an acceptable fatigue life. For the first time, using a powerful commercial explicit finite element analysis tool, a detailed dynamic analysis has been carried of a deep groove ball bearing with a rotating inner race. The analysis has led to a consistent representation of complex motions consisting of rotations and revolutions of rolling elements, and generated insights into the stresses developed in the various components such as balls and races. In conclusion, a simple yet effective fuzzy logic-based yaw control algorithm has been presented in the current research. According to this algorithm, two inputs i.e. a yaw rate error and a driver steering angle are used for generating an output in the form of an additive steering angle which potentially can aid a driver in avoiding straying from an intended path.
36

Subsystemmethodik für die Auslegung des niederfrequenten Schwingungskomforts von PKW

Angrick, Christian 16 January 2018 (has links) (PDF)
Um eine zielgerichtete Ableitung von Fahrzeugeigenschaften in frühen Entwicklungsphasen zu ermöglichen, ist eine Subsystemebene erforderlich, die eine konzeptunabhängige Auslegung des Gesamtfahrzeugverhaltens zulässt. In der vorliegenden Arbeit wird daher eine neue Methodik zur Auslegung von Fahrkomfort-Kennwerten auf Basis von Subsystemeigenschaften vorgestellt. Neben der Entwicklung eines geeigneten Modellansatzes, in dem die Subsysteme des Gesamtfahrzeugs durch Greybox-Modelle ohne Komponentenbezug miteinander verknüpft werden, stehen dabei auch dessen Parametrierung sowie die Integration der Methodik im Entwicklungsprozess im Vordergrund. Zur Ableitung der damit verbundenen physikalisch-mechanischen Zusammenhänge werden statische und dynamische Achsprüfstände sowie Simulationen eingesetzt. Die Anwendung der Methodik lässt eine gezielte Eigenschaftsableitung zwischen Gesamtfahrzeug-, Subsystem- und Komponentenebene im Fahrkomfort zu, bei der die Subsystemebene als neue Referenz für die Ableitung von Komponenteneigenschaften dient. Weiterhin erlaubt das Vorgehen eine eigenschaftsbasierte Vorauswahl optimaler Komponentenkonzepte sowie detaillierte Wettbewerbsanalysen. Dadurch wird eine nachhaltige Steigerung der Effizienz im Entwicklungsprozess des Fahrkomforts ermöglicht.
37

Assessment of optimal suspension systems with regards to ride under different road profiles / Bedömning av optimala fjädringssystem med avseende på komfort vid körning på olika vägprofiler

Murali, Adithya, Vaje, Pratik Hindraj January 2021 (has links)
Passenger ride vibration comfort is a critical aspect to consider while developing any vehicle and there is a need to understand how the occupants would be affected when driving on different road profile roughness. Hence, road profile generation is critical as road profiles are used as inputs to simulation tools to investigate vehicle dynamic behaviour in depth. At the same time, the optimisation of the vehicle characteristics can be conducted on the various road profiles in order to identify a solution that can provide enhanced ride comfort and improve vehicle handling for all the investigated road profiles. The objective of this thesis is to study ride vibrational comfort and optimise the suspension system for theNational Electric Vehicle Sweden (NEVS) vehicle model for better ride comfort and road holding. Synthetic road profiles are generated by using stochastic processes according to International Organization for Standardization (ISO) 8608 standards. Further, simulations are conducted in MSC ADAMS Car software using the generated synthetic road profiles for a rigid body NEVS vehicle model to study the vertical accelerations. The analysis includes the investigations of the acceleration Power Spectral Density (PSD) and observations are made on the peaks that appear (at Front Seat Rail (FSR) which is the sprung mass of the vehicle and Wheel centre (WC) which is the un-sprung mass of the vehicle) for different road types and vehicle velocities. It is decided that the comfort objective will be used considering the weighted Root Mean Square (RMS) accelerations. Further, the suspension system of the vehicle model is optimised for three different road profiles (A, B, and C) based on the objectives of ride comfort and handling using a suitable vehicle model with the same characteristics as theNEVScar. A multi-objective optimisation technique is used and the optimised results are observed and discussed. Optimal objectives (based on a compromise between ride comfort and road holding) for the suspension system are determined for each investigated road profile. / Vibrationskomfort för passagerare är en kritisk aspekt att tänka på när man utvecklar ett fordon och det finns ett behov av att förstå hur passagerarna kan påverkas när de åker på olika vägprofiler. Därför är vägprofilgenerering avgörande eftersom vägprofiler används som input till simuleringsverktyg för att undersöka fordonets dynamiska beteende. Samtidigt kan optimeringen av fordonets egenskaper utföras på de olika vägprofilerna för att identifiera en lösning som kan ge ökad åkkomfort och förbättra fordonshanteringen för alla undersökta vägprofiler. Syftet med detta examensarbete är att studera körvibrationskomfort och optimera fjädringssystemet för NEVS fordonsmodellen för bättre åkkomfort och väghållning. Syntetiska vägprofiler genereras genom att använda stokastiska processer enligt ISO 8608 standarder. Dessutom utförs simuleringar i MSC ADAMS programvara med hjälp av de genererade syntetiska vägprofilerna för en stelkropps NEVS fordonsmodell för att studera de vertikala accelerationerna. Analysen inkluderar undersökningar av accelerations PSD och observationer görs av topparna som visas (vid FSR och WC) för olika vägtyper och fordonshastigheter. Det beslutas att komfortmålet kommer att utvärderas med hänsyn till endast de vägda RMS accelerationerna. Dessutom är fordonsmodellens hjul upphängningssystem optimerat för tre olika vägprofiler (A, B och C) baserat på målen för åkkomfort och väghållning med hjälp av en lämplig fordonsmodell med samma egenskaper som NEVS bilen. En multi-purpose optimeringsteknik används och de optimerade resultaten observeras och diskuteras. Optimala mål (baserat på en kompromiss mellan åkkomfort och väghållning) för fjädringssystemet bestäms för varje undersökt vägprofil.
38

Subsystemmethodik für die Auslegung des niederfrequenten Schwingungskomforts von PKW

Angrick, Christian 14 August 2017 (has links)
Um eine zielgerichtete Ableitung von Fahrzeugeigenschaften in frühen Entwicklungsphasen zu ermöglichen, ist eine Subsystemebene erforderlich, die eine konzeptunabhängige Auslegung des Gesamtfahrzeugverhaltens zulässt. In der vorliegenden Arbeit wird daher eine neue Methodik zur Auslegung von Fahrkomfort-Kennwerten auf Basis von Subsystemeigenschaften vorgestellt. Neben der Entwicklung eines geeigneten Modellansatzes, in dem die Subsysteme des Gesamtfahrzeugs durch Greybox-Modelle ohne Komponentenbezug miteinander verknüpft werden, stehen dabei auch dessen Parametrierung sowie die Integration der Methodik im Entwicklungsprozess im Vordergrund. Zur Ableitung der damit verbundenen physikalisch-mechanischen Zusammenhänge werden statische und dynamische Achsprüfstände sowie Simulationen eingesetzt. Die Anwendung der Methodik lässt eine gezielte Eigenschaftsableitung zwischen Gesamtfahrzeug-, Subsystem- und Komponentenebene im Fahrkomfort zu, bei der die Subsystemebene als neue Referenz für die Ableitung von Komponenteneigenschaften dient. Weiterhin erlaubt das Vorgehen eine eigenschaftsbasierte Vorauswahl optimaler Komponentenkonzepte sowie detaillierte Wettbewerbsanalysen. Dadurch wird eine nachhaltige Steigerung der Effizienz im Entwicklungsprozess des Fahrkomforts ermöglicht.

Page generated in 0.0616 seconds