71 |
Renormalization group flow of scalar models in gravityGuarnieri, Filippo 15 May 2014 (has links)
In dieser Doktorarbeit werden wir das Renormierungsproblem von Gravitationstheorien im Kontext der Renormierungsgruppe (RG) unter Anwendung von perturbativen und nicht-perturbativen Methoden untersuchen. Insbesondere werden wir uns auf verschiedene Gravitationsmodelle und Näherungen konzentrieren, in welchen die zentrale Rolle von einem skalaren Freiheitsgrad eingenommen wird. Wir konzentrieren uns besonders auf zwei Ansätze für Quantengravitation, die in letzter Zeit viel Aufmerksamkeit erhalten haben, nämlich den asymptotisch sicheren Fall der Gravitation und die Hořava-Lifshitz Quantengravitation. Das Prinzip der Asymptotischen Sicherheit beruht auf der Annahme, dass das hochenergetische Gravitationsregime von einem nicht-Gaußschen Fixpunkt bestimmt wird, der nicht-perturbative Renormierung und Endlichkeit der Korrelationsfunktionen sicherstellt. Wir werden die Existenz eines solchen nicht-trivialen Fixpunktes mit Hilfe der funktionalen Renormierungsgruppe untersuchen. Insbesondere werden wir den einzigen konformen Freiheitsgrad quantisieren. Die Frage nach der Existenz eines nicht-Gaußschen Fixpunktes in einem unendlich- dimensionalen Parameterraum, das heißt für eine generische f(R)-Theorie, kann jedoch nicht mit einem solchen konform reduzierten Model analysiert werden. Deshalb werden wir es untersuchen, indem wir eine skalare dynamische Äquivalentstheorie, das heißt eine generische Brans-Dicke Theorie in der lokal-Potential Näherung mit ω = 0, quantisieren. Schließlich werden wir mittels einer perturbativen RG Methode die asymptotische Freiheit der Hořava-Lifshitz Gravitationstheorie analysieren. Diese Gravitationstheorie beruht auf der Entstehung einer Anisotropie zwischen Raum und Zeit, die Newtons Konstante zu einer marginalen Koppelung werden lässt und explizit die Unitarität bewahrt. Insbesondere werden wir die Einschleifenkorrektur in 2+1 Dimensionen berechnen, indem wir nur den konformen Freiheitsgrad quantisieren. / In this Ph.D. thesis we will study the issue of renormalizability of gravitation in the context of the renormalization group (RG), employing both perturbative and non-perturbative techniques. In particular, we will focus on different gravitational models and approximations in which a central role is played by a scalar degree of freedom, since their RG flow is easier to analyze. We restrict our interest in particular to two quantum gravity approaches that have gained a lot of attention recently, namely the asymptotic safety scenario for gravity and the Hořava-Lifshitz quantum gravity. In the so-called asymptotic safety conjecture the high energy regime of gravity is controlled by a non-Gaussian fixed point which ensures non-perturbative renormalizability and finiteness of the correlation functions. We will then investigate the existence of such a non trivial fixed point using the functional renormalization group, a continuum version of the non-perturbative Wilson’s renormalization group. In particular we will quantize the sole conformal degree of freedom, which is an approximation that has been shown to lead to a qualitatively correct picture. The question of the existence of a non-Gaussian fixed point in an infinite-dimensional parameter space, that is for a generic f(R) theory, cannot however be studied using such a conformally reduced model. Hence we will study it by quantizing a dynamically equivalent scalar-tensor theory, i.e. a generic Brans-Dicke theory with ω = 0 in the local potential approximation. Finally, we will investigate, using a perturbative RG scheme, the asymptotic freedom of the Hořava-Lifshitz gravity, that is an approach based on the emergence of an anisotropy between space and time which lifts the Newton’s constant to a marginal coupling and explicitly preserves unitarity. In particular we will evaluate the one-loop correction in 2+1 dimensions quantizing only the conformal degree of freedom.
|
72 |
Estudos relativos à influência de campos gravitacionais de buracos negros sobre sistemas quânticosVieira, Horácio Santana 28 February 2014 (has links)
Made available in DSpace on 2015-05-14T12:14:11Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2344020 bytes, checksum: 1d77972a45b8beef7c3fe6631dfddaa2 (MD5)
Previous issue date: 2014-02-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this dissertation we consider the influence of gravitational fields due to the
black holes of Kerr-Newman and Kerr-Newman-de Sitter, on a massive scalar field,
with and without charge. We obtain the exact solutions of the radial Klein-Gordon
equation in the spacetime of Kerr-Newman which are given in terms of the confluent
Heun functions. In the particular case of a extreme Kerr-Newman black hole, the
solution is given in terms of double confluent Heun functions. We also investigate
the solutions close to the exterior event horizon and very far from the black hole.
For a charged scalar field, we obtain exact solutions corresponding to the
angular Klein-Gordon equation in the Kerr-Newman-de Sitter spacetime which are
given in terms of the Heun functions. Using a method due to Damour and Ruffini,
we study the Hawking radiation of massive scalar particles.
In the Kerr-Newman black hole, we obtain the exact solutions for both the
angular and radial Klein-Gordon equations, which are given in terms of the confluent
Heun functions. From the radial solution, we obtain the exact wave solutions near to
the exterior horizon of the black hole, and discuss the Hawking radiation of charged
massive scalar particles. / Nesta dissertação tratamos da influência do campo gravitacional produzido
pelos buracos negros de Kerr-Newman e Kerr-Newman-de Sitter sobre um campo
escalar massivo com e sem carga. Obtemos as soluções exatas da parte radial da
equação de Klein-Gordon em um espaço-tempo de Kerr-Newman, que são dadas
em termos das funções confluentes de Heun. No caso particular correspondente ao
buraco negro de Kerr-Newman extremo, a solução é dada em termos das funções
duplamente confluentes de Heun. Investigamos, também, as soluções nas proximidades
do horizonte de evento exterior e longe do buraco negro.
Para um campo escalar massivo carregado, obtemos as soluções exatas para a
parte angular da equação de Klein-Gordon em um espaço-tempo de Kerr-Newman-de
Sitter, que são dadas em temos das funções de Heun. Utilizando o método de Damour
& Ruffini, estudamos a radiação Hawking para partículas escalares massivas.
No buraco negro de Kerr-Newman, obtemos as soluções exatas de ambas
as partes radial e angular da equação de Klein-Gordon, que são dadas em termos
das funções confluentes de Heun. A partir da solução radial, obtemos as soluções de
ondas exatas próximas ao horizonte exterior do buraco negro e discutimos a radiação
Hawking para partículas escalares massivas carregadas.
|
73 |
Strong Cosmic Censorship and Cosmic No-Hair in spacetimes with symmetriesRadermacher, Katharina Maria January 2017 (has links)
This thesis consists of three articles investigating the asymptotic behaviour of cosmological spacetimes with symmetries arising in Mathematical General Relativity. In Paper A and B, we consider spacetimes with Bianchi symmetry and where the matter model is that of a perfect fluid. We investigate the behaviour of such spacetimes close to the initial singularity ('Big Bang'). In Paper A, we prove that the Strong Cosmic Censorship conjecture holds in non-exceptional Bianchi class B spacetimes. Using expansion-normalised variables, we further show detailed asymptotic estimates. In Paper B, we prove similar estimates in the case of stiff fluids. In Paper C, we consider T2-symmetric spacetimes satisfying the Einstein equations for a non-linear scalar field. To given initial data, we show global existence and uniqueness of solutions to the corresponding differential equations for all future times. In the special case of a constant potential, a setting which is equivalent to a linear scalar field on a background with a positive cosmological constant, we investigate in detail the asymptotic behaviour towards the future. We prove that the Cosmic No-Hair conjecture holds for solutions satisfying an additional a priori estimate, an estimate which we show to hold in T3-Gowdy symmetry. / Denna avhandling består av tre artiklar som undersöker det asymptotiska beteendet hos kosmologiska rumstider med symmetrier som uppstår i Matematisk Allmän Relativitetsteori. I Artikel A och B studerar vi rumstider med Bianchi symmetri och där materiemodellen är en ideal fluid. Vi undersöker beteendet av sådana rumstider nära ursprungssingulariteten ('Big Bang'). I Artikel A bevisar vi att den Starka Kosmiska Censur-förmodan håller för icke-exceptionella Bianchi klass B-rumstider. Med hjälp av expansions-normaliserade variabler visar vi detaljerade asymptotiska uppskattningar. I Artikel B visar vi liknande uppskattningar för stela fluider. I Artikel C betraktar vi T2-symmetriska rumstider som uppfyller Einsteins ekvationer för ett icke-linjärt skalärfält. För givna begynnelsedata visar vi global existens och entydighet av lösningar till motsvarande differentialekvationer för all framtid. I det speciella fallet med en konstant potential, en situation som motsvarar ett linjärt skalärfält på en bakgrund med en positiv kosmologisk konstant, undersöker vi i detalj det asymptotiska beteendet mot framtiden. Vi visar att den Kosmiska Inget-Hår-förmodan håller för lösningar som uppfyller en ytterligare a priori uppskattning, en uppskattning som vi visar gäller i T3-Gowdy-symmetri. / <p>QC 20171220</p>
|
74 |
Renormalisation in perturbative quantum gravityRodigast, Andreas 28 August 2012 (has links)
In dieser Arbeit berechnen wir die gravitativen Ein-Schleifen-Korrekturen zu den Propagatoren und Wechselwirkungen der Felder des Standardmodells der Elementarteilchenphysik. Wir betrachten hierzu ein höherdimensionales brane-world-Modell: Wärend die Gravitonen, die Austauchteilchen der Gravitationswechselwirkung, in der gesamten D-dimensionalen Raumzeit propagieren können, sind die Materiefelder an eine d-dimensionale Untermanigfaltigkeit (brane) gebunden. Um die divergenten Anteile der Ein-Schleifen-Diagramme zu bestimmen, entwickeln wir ein neues Regularisierungschema welches einerseits die Wardidentitäten der Yang-Mills-Theorie respektiert anderseits sensitiv für potenzartige Divergenzen ist. Wir berechnen die gravitativen Beiträge zu den beta-Funktionen der Yang-Mills-Eichtheorie, der quartischen Selbst-Wechselwirkung skalarer Felder und der Yukawa-Wechselwirkung zwischen Skalaren und Fermionen. Im physikalisch besonders interessanten Fall einer vier-dimensionalen Materie-brane verschwinden die gravitativen Beiträge zum Laufen der Yang-Mills-Kopplungskonstante. Die führenden Beiträge zum Laufen der anderen beiden Kopplungskonstanten sind positiv. Diese Ergebnisse sind unabhängig von der Anzahl der Extradimensionen in denen die Gravitonen propagieren können. Des Weiteren bestimmen wir alle gravitationsinduzierten Ein-Schleifen-Konterterme mit höheren kovarianten Ableitungen für skalare Felder, Dirac-Fermionen und Eichbosonen. Ein Vergleich dieser Konterterme mit den höheren Ableitungsoperatoren des Lee-Wick-Standardmodells zeigt, dass die Gravitationskorrekturen nicht auf letzte beschränkt sind. Eine Beziehung zwischen Quantengravitation und dem Lee-Wick-Standardmodell besteht somit nicht. / In this thesis, we derive the gravitational one-loop corrections to the propagators and interactions of the Standard Model field. We consider a higher dimensional brane world scenario: Here, gravitons can propagate in the whole D dimensional space-time whereas the matter fields are confined to a d dimensional sub-manifold (brane). In order to determine the divergent part of the one-loop diagrams, we develop a new regularisation scheme which is both sensitive for polynomial divergences and respects the Ward identities of the Yang-Mills theory. We calculate the gravitational contributions to the beta functions of non-Abelian gauge theories, the quartic scalar self-interaction and the Yukawa coupling between scalars and fermions. In the physically interesting case of a four dimensional matter brane, the gravitational contributions to the running of the Yang-Mills coupling constant vanish. The leading contributions to the other two couplings are positive. These results do not depend on the number of extra dimensions. We further compute the gravitationally induced one-loop counterterms with higher covariant derivatives for scalars, Dirac fermions and gauge bosons. In is shown that these counterterms do not coincide with the higher derivative terms in the Lee-Wick standard model. A possible connection between quantum gravity and the latter cannot be inferred.
|
75 |
Les bulles de masse négative dans un espace de de Sitter.Mbarek, Saoussen 12 1900 (has links)
Nous étudions différentes situations de distribution de la matière d’une bulle de masse négative. En effet, pour les bulles statiques et à symétrie sphérique, nous commençons par l’hypothèse qui dit que cette bulle, étant une solution des équations d’Einstein, est une déformation au niveau d’un champ scalaire. Nous montrons que cette idée est à rejeter et à remplacer par celle qui dit que la bulle est formée d’un fluide parfait. Nous réussissons à démontrer que ceci est la bonne distribution de matière dans une géométrie Schwarzschild-de Sitter, qu’elle satisfait toutes les conditions et que nous sommes capables de résoudre numériquement ses paramètres de pression et de densité. / We study different situations of matter distribution of a negative mass bubble. For the case of static and spherically symmetric bubbles, we start with the hypothesis saying that this kind of bubble, being a solution of Einstein equations, is a deformation of scalar field. We show that this idea must be rejected and replaced by another saying that the bubble is formed by a perfect fluid. We succeed to demonstrate that this is the proper matter distribution within Schwarzschild-De Sitter geometry, that it satisfies all conditions and that we’re capable of resolving numerically its parameters of pressure and density.
|
76 |
Les bulles de masse négative dans un espace de de SitterMbarek, Saoussen 12 1900 (has links)
No description available.
|
77 |
Topological inference from measures / Inférence topologique à partir de mesuresBuchet, Mickaël 01 December 2014 (has links)
La quantité de données disponibles n'a jamais été aussi grande. Se poser les bonnes questions, c'est-à-dire des questions qui soient à la fois pertinentes et dont la réponse est accessible est difficile. L'analyse topologique de données tente de contourner le problème en ne posant pas une question trop précise mais en recherchant une structure sous-jacente aux données. Une telle structure est intéressante en soi mais elle peut également guider le questionnement de l'analyste et le diriger vers des questions pertinentes. Un des outils les plus utilisés dans ce domaine est l'homologie persistante. Analysant les données à toutes les échelles simultanément, la persistance permet d'éviter le choix d'une échelle particulière. De plus, ses propriétés de stabilité fournissent une manière naturelle pour passer de données discrètes à des objets continus. Cependant, l'homologie persistante se heurte à deux obstacles. Sa construction se heurte généralement à une trop large taille des structures de données pour le travail en grandes dimensions et sa robustesse ne s'étend pas au bruit aberrant, c'est-à-dire à la présence de points non corrélés avec la structure sous-jacente.Dans cette thèse, je pars de ces deux constatations et m'applique tout d'abord à rendre le calcul de l'homologie persistante robuste au bruit aberrant par l'utilisation de la distance à la mesure. Utilisant une approximation du calcul de l'homologie persistante pour la distance à la mesure, je fournis un algorithme complet permettant d'utiliser l'homologie persistante pour l'analyse topologique de données de petite dimension intrinsèque mais pouvant être plongées dans des espaces de grande dimension. Précédemment, l'homologie persistante a également été utilisée pour analyser des champs scalaires. Ici encore, le problème du bruit aberrant limitait son utilisation et je propose une méthode dérivée de l'utilisation de la distance à la mesure afin d'obtenir une robustesse au bruit aberrant. Cela passe par l'introduction de nouvelles conditions de bruit et l'utilisation d'un nouvel opérateur de régression. Ces deux objets font l'objet d'une étude spécifique. Le travail réalisé au cours de cette thèse permet maintenant d'utiliser l'homologie persistante dans des cas d'applications réelles en grandes dimensions, que ce soit pour l'inférence topologique ou l'analyse de champs scalaires. / Massive amounts of data are now available for study. Asking questions that are both relevant and possible to answer is a difficult task. One can look for something different than the answer to a precise question. Topological data analysis looks for structure in point cloud data, which can be informative by itself but can also provide directions for further questioning. A common challenge faced in this area is the choice of the right scale at which to process the data.One widely used tool in this domain is persistent homology. By processing the data at all scales, it does not rely on a particular choice of scale. Moreover, its stability properties provide a natural way to go from discrete data to an underlying continuous structure. Finally, it can be combined with other tools, like the distance to a measure, which allows to handle noise that are unbounded. The main caveat of this approach is its high complexity.In this thesis, we will introduce topological data analysis and persistent homology, then show how to use approximation to reduce the computational complexity. We provide an approximation scheme to the distance to a measure and a sparsifying method of weighted Vietoris-Rips complexes in order to approximate persistence diagrams with practical complexity. We detail the specific properties of these constructions.Persistent homology was previously shown to be of use for scalar field analysis. We provide a way to combine it with the distance to a measure in order to handle a wider class of noise, especially data with unbounded errors. Finally, we discuss interesting opportunities opened by these results to study data where parts are missing or erroneous.
|
78 |
Převod trojúhelníkových polygonálních 3D sítí na 3D spline plochy / 3D Triangles Polygonal Mesh Conversion on 3D Spline SurfacesJahn, Zdeněk Unknown Date (has links)
In computer graphics we can handle unstructured triangular 3D meshes which are not too usable for processing through their irregularity. In these situations it occurs need of conversion that 3D mesh to more suitable representation. Some kind of 3D spline surface can be proper alternative because it institutes regularity in the form of control points grid and that's why it is more suitable for next processing. During conversion, which is described in this thesis, quadrilateral 3D mesh is constructed at first. This mesh has regular structure but mainly the structure corresponds to structure of control points grid of resulting 3D spline surface. Created quadrilateral 3D mesh can be saved and consequently used in specific modeling applications for T-spline surface creation.
|
Page generated in 0.2494 seconds