Spelling suggestions: "subject:"schrodinger."" "subject:"schrödinger.""
21 |
Aspectos da dinamica molecular do ciclohexanol estudados por espalhamento de neutrons lentosWALDER, V.S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:50:28Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:02:42Z (GMT). No. of bitstreams: 1
00768.pdf: 4150056 bytes, checksum: 8e8c0f1f3b65b77306c6aeb1ee8f3508 (MD5) / Dissertacao (Mestrado) / IEA/D / Instituto de Fisica, Universidade de Sao Paulo - IF/USP
|
22 |
Estudo de sistemas quânticos não-hermitianos com espectro real /Santos, Vanessa Gayean de Castro Salvador. January 2009 (has links)
Orientador: Alvaro de Souza Dutra / Banca: Denis Dalmazi / Banca: Marcelo Batista Hotti / Banca: Alexandre Grezzi de Miranda Schmidt / Banca: Elso Drigo Filho / Resumo: Nesta tese procuramos veri car e aprofundar os limites de validade dos chamados sistemas quânticos com simetria PT. Nestes tem-se, por exemplo, sistemas cuja hamiltoniana é não-hermitiana mas apresenta um espectro de energia real. Tal característica é usualmente justi cada pela presença da simetria PT (paridade e inversão temporal), muito embora não haja ainda uma demonstração bem aceita na literatutra desta propriedade de tais sistemas. Inicialmente estudamos sistemas quânticos não-relativísticos dependentes do tempo, sistemas em mais dimensões espaciais, a m de veri car possíveis limites da simetria PT na garantia da realidade do espectro. Logo depois estudamos sistemas quânticos relativísticos em 1+1D que possuem simetria PT com uma mistura adequada de potenciais: vetor, escalar e pseudo-escalar, sendo o potencial vetor complexo. Em seguida trabalhamos com densidades de lagrangiana com potenciais não-hermitianos em 1+1 dimensões espaço-temporais e em dimensões mais altas. A vantagem das baixas dimensões é que alguns sistemas possuem soluções não-perturbativas exatas. Finalmente, mostramos que não somente é possível ter um modelo consistente com dois campos escalares, mas também que a introdução de um número maior de campos permite que a densidade de energia também permaneça real. / Abstract: In this thesis we verify and try to deepen the limits of validity of the so called quantum systems with PT-symmetry. These are systems whose Hamiltonians are non-Hermitian but present real energy spectra. Such characteristic usually is justi ed by the presence of PT symmetry (parity and time inversion), despite of the fact that there is no well accepted demonstration in literature of this property of such systems yet. Initially we study timedependent non-relativistic quantum systems in one spatial dimension in order to verify possible limits for which the PT symmetry grants the reality of the spectra. Soon later we study relativistic quantum systems in 1+1D that they possess symmetry PT with an convenient mixing of complex vector plus scalar plus pseudoscalar potentials is considered. After that, we work with a Lagrangian density with such features in 1+1 space-time dimensions and higher dimensions, in the context of eld theory. The advantage of working in low dimensions is that, in such dimensions, some systems possess exact nonperturbative solutions. Finally, we show that not only it is possible to have a consistent model with two scalar elds, but also that the introduction of a bigger number of elds allows that the energy density also remains real. / Doutor
|
23 |
Aspectos da dinamica molecular do ciclohexanol estudados por espalhamento de neutrons lentosWALDER, V.S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:50:28Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:02:42Z (GMT). No. of bitstreams: 1
00768.pdf: 4150056 bytes, checksum: 8e8c0f1f3b65b77306c6aeb1ee8f3508 (MD5) / Dissertacao (Mestrado) / IEA/D / Instituto de Fisica, Universidade de Sao Paulo - IF/USP
|
24 |
On eigenvalues of the Schrödinger operator with a complex-valued polynomial potentialAlexandersson, Per January 2010 (has links)
In this thesis, we generalize a recent result of A. Eremenko and A. Gabrielov on irreducibility of the spectral discriminant for the Schroedinger equation with quartic potentials. In the first paper, we consider the eigenvalue problem with a complex-valued polynomial potential of arbitrary degree d and show that the spectral determinant of this problem is connected and irreducible. In other words, every eigenvalue can be reached from any other by analytic continuation. We also prove connectedness of the parameter spaces of the potentials that admit eigenfunctions satisfying k > 2 boundary conditions, except for the case d is even and k = d/2. In the latter case, connected components of the parameter space are distinguished by the number of zeros of the eigenfunctions. In the second paper, we only consider even polynomial potentials, and show that the spectral determinant for the eigenvalue problem consists of two irreducible components. A similar result to that of paper I is proved for k boundary conditions.
|
25 |
Hamiltonian Methods in PT-symmetric SystemsChernyavsky, Alexander 11 1900 (has links)
This thesis is concerned with analysis of spectral and orbital stability of solitary wave solutions to discrete and continuous PT-symmetric nonlinear Schroedinger equations. The main tools of this analysis are inspired by Hamiltonian systems, where conserved quantities can be used for proving orbital stability and Krein signature can be computed for prediction of instabilities in the spectrum of linearization. The main results are obtained for the chain of coupled pendula represented by a discrete NLS model, and for the trapped atomic gas represented by a continuous NLS model. Analytical results are illustrated with various numerical examples. / Thesis / Doctor of Philosophy (PhD)
|
26 |
The strong coupling constant of QCD with four flavorsTekin, Fatih 13 December 2010 (has links)
In dieser Arbeit studieren wir durch numerische Simulationen die Theorie der starken Wechselwirkung Quantenchromodynamik auf einem Raumzeit-Gitter (Gitter-QCD) mit vier dynamischen Quark-Flavors. In den Anfaengen der Gitter QCD wurden die Effekte der Quark-Polarisation aufgrund von technischer Begrenzung der Rechenkapazitaet vernachlaessigt und die sogennante "quenched Approximation" angewendet. Der Grund fuer die "quenched" Approximation war, dass der numerische Aufwand um die Fermion-Determinante auszuwerten die damaligen technischen Moeglichkeiten ueberstieg. In der Tat ist dies immer noch eine grosse Herausforderung fuer die numerische Simulation der QCD aber durch neue technische und algorithmische Entwicklungen kann man heutzutage die Quark-Polarisationseffekte mit mindestens zwei Quark-Flavors beruecksichtigen. Seit einigen Jahren werden solche Simulationen in verschiedenen Kollaborationen durchgefuehrt. In unserem Projekt wird die Gitter-QCD mit vier degenerierten O(a) verbesserten Wilson Quarks im Schroedinger Funktional Schema untersucht mit dem Ziel, die Energieabhaengigkeit der starken Kopplung zu berechnen. Zu diesem Zweck bestimmen wir erst den O(a) Verbesserungskoeffizienten csw mit vier Flavors und benutzen dieses Ergebnis um die Step-Scaling Funktion der QCD zu bestimmen, die das Laufen der Kopplung ueber einen grossen Skalenbereich beschreibt. Unter Benutzung eines Finite-Size Verfahrens berechnen wir den Lambda Parameter in Einheiten von einer Skala Lmax, die eine eindeutig definierte Laenge im hadronischen Bereich darstellt. Die QCD-Kopplung alpha_SF im sogenannten Schroedinger Funktional Schema wird dann ueber einen weiten Bereich der Energie bestimmt und ein Vergleich mit 2-loop und 3-loop Stoerungstheorie sowie mit dem nicht-perturbativen Ergebnis fuer den Fall von zwei Flavors durchgefuehrt. / In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient csw with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the Lambda parameter is determined in units of a technical scale Lmax which is an unambiguously defined length in the hadronic regime. The coupling alpha_SF of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors.
|
27 |
Redes neurais artificiais e algoritmo genético no estudo de sistemas quânticos.Clóvis Caetano 18 March 2005 (has links)
Apresentamos neste trabalho um método desenvolvido com o objetivo de resolver as equações que regem o comportamento de sistemas quânticos com a utilização de Redes Neurais Artificiais. Detalhamos duas possíveis abordagens da física quântica: i) a descrição em termos da função de onda, ou representação de Schrödinger; ii) a descrição em termos da densidade eletrônica, desenvolvida a partir do modelo de Thomas-Fermi e da teoria do Funcional Densidade. Uma rede neural do tipo multicamada unidirecional com três camadas (de entrada, oculta e de saída) é utilizada para representar a função de onda ou a densidade eletrônica do sistema. Treinamos essa rede através do Algoritmo Genético, minimizando um funcional adequado a cada abordagem quântica. Esta metodologia foi aplicada à equação de Schrödinger para os seguintes sistemas de uma partícula: oscilador harmônico simples, oscilador duplo, potencial de Morse e átomo de hidrogênio. Em todos os casos, a energia do estado fundamental foi obtida com erro absoluto menor que 0,1% em relação aos valores exatos. Também resolvemos a equação de Thomas-Fermi e as equações auto-consistentes de Kohn-Sham para o átomo de Hooke e átomos de hélio, lítio e berílio. Nossos resultados foram comparados com resultados analíticos, quando disponíveis, ou com resultados obtidos por outros métodos numéricos. Para o átomo de Hooke, o erro absoluto entre o valor da energia encontrado pela rede e o resultado analítico foi de 0,6%.
|
28 |
Three-band quantum well infrared photodetector using interband and intersubband transitions.Fábio Durante Pereira Alves 26 June 2008 (has links)
This thesis presents the modeling, design, fabrication and characterization of a quantum well infrared photodetector (QWIP) capable of detecting near infrared (NIR), mid wavelength infrared (MWIR) and long wavelength infrared (LWIR), simultaneously. The NIR detection was achieved using interband transition while MWIR and LWIR were based on intersubband transition in the conduction band. The quantum-well structure was modeled by solving self-consistently the Schrödinger and Poisson equations with the help of the shooting method. A sample with three different stacks of quantum wells formed by different configurations of GaAs, AlGaAs and InGaAs, separated by n-doped GaAs contact layers was grown on a semi-insulated GaAs substrate using MBE (Molecular Beam Epitaxy). Intersubband absorption in the sample was measured for the MWIR and LWIR using Fourier transform spectroscopy (FTIR) and the measured peak positions were found at 5.3 and 8.7 ?m, respectively which are within 5% of the theoretical values, indicating the good accuracy of the self-consistent model. The test photodetectors were fabricated using a standard photolithography process with exposed middle contacts to allow separate bias and readout of signals from the three wavelength bands. A 45 degree facet was polished to allow light coupling. Performance analyses were conducted in order to obtain the I-V characteristics, responsivity and detectivity of each detection band. The background-limited infrared performance (BLIP) for the LWIR quantum wells shows an upper operating temperature of about 70 K, limiting the overall device. Photocurrent spectroscopy was performed and gave three peaks at 0.84, 5.0 and 8.5 m wavelengths with approximately 0.5, 0.03 and 0.13 A/W peak responsivities for NIR, MWIR and LWIR bands, respectively. Estimated peak detectivities, limited by the number of quantum well repetitions, are 140, 1.6 and 1.2x109 cm.Hz1/2/W for NIR, MWIR and LWIR, respectively. The overall results demonstrate the possibility of detection of widely separated wavelength bands, in a single pixel device, using interband and intersubband transitions in quantum wells.
|
29 |
Asymptotic properties of the dynamics near stationary solutions for some nonlinear Schrödinger équationsOrtoleva, Cecilia Maria 18 February 2013 (has links) (PDF)
The present thesis is devoted to the investigation of certain aspects of the large time behavior of the solutions of two nonlinear Schrödinger equations in dimension three in some suitable perturbative regimes. The first model consist in a Schrödinger equation with a concentrated nonlinearity obtained considering a {point} (or contact) interaction with strength $alpha$, which consists of a singular perturbation of the Laplacian described by a self adjoint operator $H_{alpha}$, and letting the strength $alpha$ depend on the wave function: $ifrac{du}{dt}= H_alpha u$, $alpha=alpha(u)$.It is well-known that the elements of the domain of a point interaction in three dimensions can be written as the sum of a regular function and a function that exhibits a singularity proportional to $|x - x_0|^{-1}$, where $x_0$is the location of the point interaction. If $q$ is the so-called charge of the domain element $u$, i.e. the coefficient of itssingular part, then, in order to introduce a nonlinearity, we let the strength $alpha$ depend on $u$ according to the law $alpha=-nu|q|^sigma$, with $nu > 0$. This characterizes the model as a focusing NLS with concentrated nonlinearity of power type. In particular, we study orbital and asymptotic stability of standing waves for such a model. We prove the existence of standing waves of the form $u (t)=e^{iomega t}Phi_{omega}$, which are orbitally stable in the range $sigma in (0,1)$, and orbitally unstable for $sigma geq 1.$ Moreover, we show that for $sigma in(0,frac{1}{sqrt 2}) cup left(frac{1}{sqrt{2}}, frac{sqrt{3} +1}{2sqrt{2}} right)$ every standing wave is asymptotically stable, in the following sense. Choosing an initial data close to the stationary state in the energy norm, and belonging to a natural weighted $L^p$ space which allows dispersive stimates, the following resolution holds: $u(t) =e^{iomega_{infty} t +il(t)} Phi_{omega_{infty}}+U_t*psi_{infty} +r_{infty}$, where $U_t$ is the free Schrödinger propagator,$omega_{infty} > 0$ and $psi_{infty}$, $r_{infty} inL^2(R^3)$ with $| r_{infty} |_{L^2} = O(t^{-p}) quadtextrm{as} ;; t right arrow +infty$, $p = frac{5}{4}$,$frac{1}{4}$ depending on $sigma in (0, 1/sqrt{2})$, $sigma in (1/sqrt{2}, 1)$, respectively, and finally $l(t)$ is a logarithmic increasing function that appears when $sigma in (frac{1}{sqrt{2}},sigma^*)$, for a certain $sigma^* in left(frac{1}{sqrt{2}}, frac{sqrt{3} +1}{2sqrt{2}} right]$. Notice that in the present model the admitted nonlinearities for which asymptotic stability of solitons is proved, are subcritical in the sense that it does not give rise to blow up, regardless of the chosen initial data. The second model is the energy critical focusing nonlinear Schrödinger equation $i frac{du}{dt}=-Delta u-|u|^4 u$. In this case we prove, for any $nu$ and $alpha_0$ sufficiently small, the existence of radial finite energy solutions of the form$u(t,x)=e^{ialpha(t)}lambda^{1/2}(t)W(lambda(t)x)+e^{iDeltat}zeta^*+o_{dot H^1} (1)$ as $tright arrow +infty$, where$alpha(t)=alpha_0ln t$, $lambda(t)=t^{nu}$,$W(x)=(1+frac13|x|^2)^{-1/2}$ is the ground state and $zeta^*$is arbitrarily small in $dot H^1$
|
30 |
Orbital Stability Results for Soliton Solutions to Nonlinear Schrödinger Equations with External PotentialsLindgren, Joseph B. 01 January 2017 (has links)
For certain nonlinear Schroedinger equations there exist solutions which are called solitary waves. Addition of a potential $V$ changes the dynamics, but for small enough $||V||_{L^\infty}$ we can still obtain stability (and approximately Newtonian motion of the solitary wave's center of mass) for soliton-like solutions up to a finite time that depends on the size and scale of the potential $V$. Our method is an adaptation of the well-known Lyapunov method.
For the sake of completeness, we also prove long-time stability of traveling solitons in the case $V=0$.
|
Page generated in 0.0803 seconds