• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 281
  • 142
  • 56
  • 9
  • 4
  • 1
  • Tagged with
  • 490
  • 298
  • 198
  • 198
  • 198
  • 98
  • 95
  • 74
  • 55
  • 50
  • 45
  • 39
  • 39
  • 37
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

On Safe Usage of Shared Data in Safety-Critical Control Systems

Jäger, Georg 16 September 2022 (has links)
Prognostiziert durch Konzepte der Industrie 4.0 und den Cyber-Physischen-Systemen, können autonome Systeme zukünftig dynamisch auf Datenquellen in ihrer Umgebung zugreifen. Während die gemeinsame Nutzung solcher Datenquellen ein enormes Performanzpotenzial bietet, stellt die benötigte Systemarchitektur vorherrschende Sicherheitsprozesse vor neue Herausforderungen. Die vorliegende Arbeit motiviert zunächst, dass diese nur zur Laufzeit des Systems adressiert werden könne, bevor sie daraus zwei zentrale Ziele ableitet und verfolgt. Zum einen wird ein Beschreibungsmodel für die Darstellung von Fehlercharakteristika gemeinsam genutzter Daten vorgestellt. Dieses generische Fehlermodell erlaubt es zum anderen eine Sicherheitsanalyse zu definieren, die eine spezifische, dynamische Systemkomposition zur Laufzeit mit Hinblick auf die zu erwartenden Unsicherheiten bewerten kann. Die als Region of Safety betitelte Analysestrategie erlaubt, in Kombination mit dem generischen Fehlermodell, die Sicherheit der auf gemeinsam genutzten Daten basierenden Kollisionsvermeidungsstrategie zweier Roboter noch zur Designzeit zu garantieren, obwohl die spezifischen Fehlercharakteristika der Daten erst zur Laufzeit bekannt werden.:List of Acronyms List of Theorems List of Definitions List of Figures List of Tables 1. Introduction – Safety in Future Smart Industries 1.1. The Example of Smart Warehouses 1.2. Functional Safety Standards 1.2.1. Overview of Functional Safety Standards 1.2.2. IEC 61508 1.3. Scope of this Thesis 1.3.1. Objectives 1.3.2. Contributions 1.3.3. Outline 1.4. Related Publications by the Author 1.5. Mathematical Notation 2. State of the Art 2.1. State of the Art in Run-Time Safety Assessment 2.1.1. Approaches at the Functional Level 2.1.2. Approaches at the Technical Level 2.1.3. Conclusions 2.2. State of the Art in Failure Modeling 2.2.1. The Definition of (Sensor) Failure Model 2.2.2. Interval-Based Failure Modeling 2.2.3. Distribution-Based Failure Modeling 2.2.4. Failure-Type-Based Failure Modeling 2.2.5. Conclusions 2.3. Conclusions from the State of the Art 3. Generic Failure Model 3.1. Defining the Generic Failure Model 3.1.1. Time- and Value-Correlated Random Distribution 3.1.2. A Failure Type’s Failure Amplitudes 3.1.3. A Failure Type’s State Function 3.1.4. Polynomial Representation of a Failure Type 3.1.5. Discussion on the Fulfillment of the Predefined Criteria 3.2. Converting a Generic Failure Model to an Interval 3.2.1. Converting a Time- and Value-Correlated Random Distribution 3.2.2. A Failure Type’s Interval 3.3. Processing Chain for Generating Generic Failure Models 3.3.1. Identifying Failure Types 3.3.2. Parameterizing Failure Types 3.3.3. Confidence Calculation 3.4. Exemplary Application to Artificial Failure Characteristics 3.4.1. Generating the Artificial Data Set – Manually Designing GFMs 3.4.2. Identifying Failure Types 3.4.3. Parameterizing Failure Types 3.4.4. Confidence Calculation 3.4.5. Comparison to State-of-the-Art Models 3.5. Summary 4. Region of Safety 4.1. Explicitly Modeling Uncertainties for Dynamically Composed Systems 4.2. Regions of Safety for Dynamically Composed Systems 4.2.1. Estimating Regions of Attraction in Presence of Uncertainty 4.2.2. Introducing the Concept of Region of Safety 4.2.3. Discussion on the Fulfillment of the Predefined Criteria 4.3. Evaluating the Concept of Region of Safety 4.3.1. Defining the Scenario and Considered Uncertainties 4.3.2. Designing a Control Lyapunov Function 4.3.3. Determining an Appropriate Value for λc 4.3.4. The Effect of Varying Sensor Failures on Regions of Safety 4.4. Summary 5. Evaluation and Integration 5.1. Multi-Robot Collision Avoidance 5.1.1. Assumptions 5.1.2. Design of the Circle and Navigation Scenarios 5.1.3. Kinematics 5.1.4. Control Policy 5.1.5. Intention Modeling by Model Uncertainty 5.1.6. Fusing Regions of Safety of Multiple Stability Points 5.2. Failure Modeling for Shared Data – A Marker Detection Failure Model 5.2.1. Data Acquisition 5.2.2. Failure Model Generation 5.2.3. Evaluating the Quality of the Failure Model 5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 5.3.1. Configuration for Region of Safety Estimation 5.3.2. Estimating Regions of Safety 5.3.3. Evaluation Using the Circle Scenario 5.3.4. Evaluation Using the Navigation Scenario 5.4. Summary 6. Conclusions and Future Work 6.1. Summary 6.2. Limitations and Future Work 6.2.1. Limitations and Future Work on the Generic Failure Model 6.2.2. Limitations and Future Work on Region of Safety 6.2.3. Future Work on Safety in Dynamically Composed Systems Appendices A. Defining Factors of Risk According to IEC 61508 B. Evaluation Results for the Identification Stage C. Overview of Failure Amplitudes of Marker Detection Results Bibliography / The concepts of Cyber-Physical-Systems and Industry 4.0 prognosticate autonomous systems to integrate sources of shared data dynamically at their run-time. While this promises substantial increases in their performance, the openness of the required system architecture poses new challenges to processes guaranteeing their safety. This thesis firstly motivates that these can be addressed only at their run-time, before it derives and pursues two corresponding goals. Firstly, a model for describing failure characteristics of shared data is presented. Secondly, this Generic Failure Model is built upon to define a run-time safety assessment methodology that enables analyzing dynamic system compositions integrating shared data with respect to the expected uncertainties at run-time. This analysis strategy, entitled Region of Safety, allows in combination with the generic failure model to guarantee the safety of robots sharing position data for collision avoidance already at design-time, although specific failure characteristics become available only at run-time.:List of Acronyms List of Theorems List of Definitions List of Figures List of Tables 1. Introduction – Safety in Future Smart Industries 1.1. The Example of Smart Warehouses 1.2. Functional Safety Standards 1.2.1. Overview of Functional Safety Standards 1.2.2. IEC 61508 1.3. Scope of this Thesis 1.3.1. Objectives 1.3.2. Contributions 1.3.3. Outline 1.4. Related Publications by the Author 1.5. Mathematical Notation 2. State of the Art 2.1. State of the Art in Run-Time Safety Assessment 2.1.1. Approaches at the Functional Level 2.1.2. Approaches at the Technical Level 2.1.3. Conclusions 2.2. State of the Art in Failure Modeling 2.2.1. The Definition of (Sensor) Failure Model 2.2.2. Interval-Based Failure Modeling 2.2.3. Distribution-Based Failure Modeling 2.2.4. Failure-Type-Based Failure Modeling 2.2.5. Conclusions 2.3. Conclusions from the State of the Art 3. Generic Failure Model 3.1. Defining the Generic Failure Model 3.1.1. Time- and Value-Correlated Random Distribution 3.1.2. A Failure Type’s Failure Amplitudes 3.1.3. A Failure Type’s State Function 3.1.4. Polynomial Representation of a Failure Type 3.1.5. Discussion on the Fulfillment of the Predefined Criteria 3.2. Converting a Generic Failure Model to an Interval 3.2.1. Converting a Time- and Value-Correlated Random Distribution 3.2.2. A Failure Type’s Interval 3.3. Processing Chain for Generating Generic Failure Models 3.3.1. Identifying Failure Types 3.3.2. Parameterizing Failure Types 3.3.3. Confidence Calculation 3.4. Exemplary Application to Artificial Failure Characteristics 3.4.1. Generating the Artificial Data Set – Manually Designing GFMs 3.4.2. Identifying Failure Types 3.4.3. Parameterizing Failure Types 3.4.4. Confidence Calculation 3.4.5. Comparison to State-of-the-Art Models 3.5. Summary 4. Region of Safety 4.1. Explicitly Modeling Uncertainties for Dynamically Composed Systems 4.2. Regions of Safety for Dynamically Composed Systems 4.2.1. Estimating Regions of Attraction in Presence of Uncertainty 4.2.2. Introducing the Concept of Region of Safety 4.2.3. Discussion on the Fulfillment of the Predefined Criteria 4.3. Evaluating the Concept of Region of Safety 4.3.1. Defining the Scenario and Considered Uncertainties 4.3.2. Designing a Control Lyapunov Function 4.3.3. Determining an Appropriate Value for λc 4.3.4. The Effect of Varying Sensor Failures on Regions of Safety 4.4. Summary 5. Evaluation and Integration 5.1. Multi-Robot Collision Avoidance 5.1.1. Assumptions 5.1.2. Design of the Circle and Navigation Scenarios 5.1.3. Kinematics 5.1.4. Control Policy 5.1.5. Intention Modeling by Model Uncertainty 5.1.6. Fusing Regions of Safety of Multiple Stability Points 5.2. Failure Modeling for Shared Data – A Marker Detection Failure Model 5.2.1. Data Acquisition 5.2.2. Failure Model Generation 5.2.3. Evaluating the Quality of the Failure Model 5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 5.3.1. Configuration for Region of Safety Estimation 5.3.2. Estimating Regions of Safety 5.3.3. Evaluation Using the Circle Scenario 5.3.4. Evaluation Using the Navigation Scenario 5.4. Summary 6. Conclusions and Future Work 6.1. Summary 6.2. Limitations and Future Work 6.2.1. Limitations and Future Work on the Generic Failure Model 6.2.2. Limitations and Future Work on Region of Safety 6.2.3. Future Work on Safety in Dynamically Composed Systems Appendices A. Defining Factors of Risk According to IEC 61508 B. Evaluation Results for the Identification Stage C. Overview of Failure Amplitudes of Marker Detection Results Bibliography
452

Direktprozesse zur Herstellung von funktionsintegrativen rotationsförmigen Faser-Kunststoff-Verbundbauteilen

Naumann, Mario D. 28 September 2022 (has links)
Gegenstand dieser Arbeit ist ein neuartiges Direktverarbeitungsverfahren zur Integration von Dehnungssensoren in rotationsförmige Faser-Kunststoff-Verbundbauteile mit dem Ziel einer präzisen, schnellen, robusten, kraftflussgerechten und kostengünstigen Echtzeitüberwachung des Verhaltens versagensrelevanter Strukturen. Der Fokus der Arbeit liegt dafür in der Erforschung eines metalldrahtbasierten und während der Bauteilfertigung in-situ hergestellten strukturintegrierten Sensors (AMBOS: Adapted Metal Wire Based and Fiber Oriented Sensor), dessen Position im Verbundwerkstoff mit hoher Genauigkeit der Verstärkungsfaserorientierung einer Einzelschicht entspricht. Neben der Bestimmung mechanischer Kennwerte der Drähte, dem Abzugsverhalten, einer Analyse des Sensordrahteinflusses auf die Verbundeigenschaften, der Bestimmung des Sensorauszugsverhalten sind auch die Sensorapplikation mittels Direktverarbeitung, die Untersuchung zum Schädigungsverhalten des Sensordrahtes während der Verarbeitung, die Positionierung im Verbundwerkstoff und die Isolierung des Sensordrahtes wesentlicher Forschungsgegenstand. Die Verifizierung des AMBOS-Systems erfolgt mit typischen Belastungszuständen eines Faser-Kunststoff-Verbund-Druckbehälters mit Betrachtung der Temperaturkompensation und den Wechselwirkungen des neuen Sensorsystems mit der Umgebung.:1. Einleitung 2. Stand der Forschung 3. Faserparalleler Drahtsensor für Wickelstrukturen 4. Charakterisierung der Drahtsensorsysteme 5. Validierung des neuen Messsystems an einem Seriendruckbehälter 6. Zusammenfassung und Ausblick / The subject of this work is a novel direct processing method for the integration of strain sensors into rotational fiber-reinforced plastic components with the goal of precise, fast, robust, load-path-adapted and cost-effective real-time monitoring of the behavior of failure-relevant structures. To this end, the focus of the work is on research into a metal wire-based structure-integrated sensor (AMBOS: Adapted Metal Wire Based and Fiber Oriented Sensor) manufactured in-situ during component manufacturing, whose position in the composite corresponds with high accuracy to the reinforcing fiber orientation of a single layer. In addition to the determination of mechanical characteristics of the wires, the pull-off behavior, an analysis of the sensor wire influence on the composite properties, the determination of the sensor pull-out behavior, the sensor application by means of direct processing, the investigation of the damage behavior of the sensor wire during processing, the positioning in the composite material and the insulation of the sensor wire are also essential objects of the research. The verification of the AMBOS system is carried out with typical loading conditions of a fiber-reinforced plastic composite pressure vessel with consideration of the temperature compensation and the interactions of the new sensor system with the environment.:1. Einleitung 2. Stand der Forschung 3. Faserparalleler Drahtsensor für Wickelstrukturen 4. Charakterisierung der Drahtsensorsysteme 5. Validierung des neuen Messsystems an einem Seriendruckbehälter 6. Zusammenfassung und Ausblick
453

Planungshinweise für Schulen – Freianlagen, Sportplätze: zu Unfallverhütung, Gesundheitsschutz und Arbeitssicherheit

11 June 2024 (has links)
Die Unfallkasse Sachsen möchte Schulträgern, Schulen sowie Planerinnen und Planern mit diesen Hinweisen, die keinen Anspruch auf Vollständigkeit haben, eine Planungshilfe an die Hand geben. Sie basiert auf dem geltenden Vorschriftenwerk, Unfallschwerpunkten und der langjährigen Beratungserfahrung der Unfallkasse. Ausgabe Mai 2022
454

Planungshinweise für Schulen – Gebäude: zu Unfallverhütung, Gesundheitsschutz und Arbeitssicherheit

11 June 2024 (has links)
Die Unfallkasse Sachsen möchte Schulträgern, Schulen sowie Planerinnen und Planern mit diesen Hinweisen, die keinen Anspruch auf Vollständigkeit haben, eine Planungshilfe an die Hand geben. Sie basiert auf dem geltenden Vorschriftenwerk, Unfallschwerpunkten und der langjährigen Beratungserfahrung der Unfallkasse. Ausgabe Mai 2022
455

Planung von Neubauten und Sanierungen im Bildungsbereich: eine Information der Unfallkasse Sachsen

11 June 2024 (has links)
No description available.
456

Planungshinweise für Kindertageseinrichtungen – Freianlagen: zu Unfallverhütung, Gesundheitsschutz und Arbeitssicherheit

11 June 2024 (has links)
Die Unfallkasse Sachsen möchte Trägern und Leitungen von Kindertageseinrichtungen sowie Planerinnen und Planern mit diesen Hinweisen, die keinen Anspruch auf Vollständigkeit haben, eine Planungshilfe an die Hand geben. Sie basiert auf dem geltenden Vorschriftenwerk, Unfallschwerpunkten und langjähriger Beratungserfahrung der Unfallkasse. Ausgabe Mai 2022
457

Planungshinweise für Kindertageseinrichtungen – Gebäude: zu Unfallverhütung, Gesundheitsschutz und Arbeitssicherheit

11 June 2024 (has links)
Die Unfallkasse Sachsen möchte Trägern und Leitungen von Kindertageseinrichtungen sowie Planerinnen und Planern mit diesen Hinweisen, die keinen Anspruch auf Vollständigkeit haben, eine Planungshilfe an die Hand geben. Sie basiert auf dem geltenden Vorschriftenwerk, Unfallschwerpunkten und langjähriger Beratungserfahrung der Unfallkasse. Ausgabe Mai 2022
458

Planungshinweise für Schulsporthallen: zu Unfallverhütung, Gesundheitsschutz und Arbeitssicherheit

11 June 2024 (has links)
Die Unfallkasse Sachsen möchte Trägern und Leitungen von Kindertageseinrichtungen sowie Planerinnen und Planern mit diesen Hinweisen, die keinen Anspruch auf Vollständigkeit haben, eine Planungshilfe an die Hand geben. Sie basiert auf dem geltenden Vorschriftenwerk, Unfallschwerpunkten und langjähriger Beratungserfahrung der Unfallkasse. Ausgabe Mai 2022
459

Patienten- und Bürgerbeteiligung im Gesundheitswesen Deutschlands, Finnlands und Polens / Patient and Citizen Participation in Different Health Care Systems / The Cases of Germany, Finland and Poland

Rega, Insa Mareike 19 December 2005 (has links)
No description available.
460

WORKSHOP "MOBILITÄT"

Anders, Jörg 12 June 2001 (has links)
Gemeinsamer Workshop von Universitaetsrechenzentrum und Professur "Rechnernetze und verteilte Systeme" der Fakultaet fuer Informatik der TU Chemnitz. Workshop-Thema: Mobilitaet

Page generated in 0.0608 seconds