• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 26
  • 15
  • 6
  • 6
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 117
  • 45
  • 24
  • 24
  • 24
  • 22
  • 15
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Source and drain engineering in SiGe-based pMOS transistors

Isheden, Christian January 2005 (has links)
A new shallow junction formation process, based on selective silicon etching followed by selective growth of in situ B-doped SiGe, is presented. The approach is advantageous compared to conventional ion implantation followed by thermal activation, because perfectly abrupt, low resistivity junctions of arbitrary depth can be obtained. In B-doped SiGe layers, the active doping concentration can exceed the solid solubility in silicon because of strain compensation. In addition, the compressive strain induced in the Si channel can improve drivability through increased hole mobility. The process is integrated by performing the selective etching and the selective SiGe growth in the same reactor. The main advantage of this is that the delicate gate oxide is preserved. The silicon etching process (based on HCl) is shown to be highly selective over SiO2 and anisotropic, exhibiting the densely packed (100), (311) and (111) surfaces. It was found that the process temperature should be confined between 800 ºC, where etch pits occur, and 1000 ºC, where the masking oxide is attacked. B-doped SiGe layers with a resistivity of 5×10-4 Ωcm were obtained. Well-behaved pMOS transistors are presented, yet with low layer quality. Therefore integration issues related to the epitaxial growth, such as selectivity, loading effect, pile-up and defect generation, were investigated. Surface damage originating from reactive-ion etching of the sidewall spacer and nitride residues from LOCOS formation were found to degrade the quality of the SiGe layer. Various remedies are discussed. Nevertheless, high-quality selective epitaxial growth could not be achieved with a doping concentration in the 1021 cm-3 range. The maximum doping level resulting in a high-quality layer, with the loading effect taken into account, was 6×1020 cm-3. After this careful process optimization, a high-quality layer was obtained in the recessed areas. Finally, Ni mono-germanosilicide was investigated as a material for contact formation to the epitaxial SiGe layers in the recessed source and drain areas. The formation temperature is 550 ºC and it is stable up to 700 ºC. The observation of a recessed step and lateral growth of the silicide led to a detailed treatment of the contact resistivity of the NiSi0.8Ge0.2/Si0.8Ge0.2 interface using 2-D as well as 3-D modeling. Different values were obtained for square shaped and rounded contacts, 5.0x10-8 Ωcm2 and 1.4x10-7 Ωcm2, respectively. / QC 20101028
72

Source and drain engineering in SiGe-based pMOS transistors

Isheden, Christian January 2005 (has links)
<p>A new shallow junction formation process, based on selective silicon etching followed by selective growth of in situ B-doped SiGe, is presented. The approach is advantageous compared to conventional ion implantation followed by thermal activation, because perfectly abrupt, low resistivity junctions of arbitrary depth can be obtained. In B-doped SiGe layers, the active doping concentration can exceed the solid solubility in silicon because of strain compensation. In addition, the compressive strain induced in the Si channel can improve drivability through increased hole mobility. The process is integrated by performing the selective etching and the selective SiGe growth in the same reactor. The main advantage of this is that the delicate gate oxide is preserved. The silicon etching process (based on HCl) is shown to be highly selective over SiO<sub>2</sub> and anisotropic, exhibiting the densely packed (100), (311) and (111) surfaces. It was found that the process temperature should be confined between 800 ºC, where etch pits occur, and 1000 ºC, where the masking oxide is attacked. B-doped SiGe layers with a resistivity of 5×10-<sup>4</sup> Ωcm were obtained. Well-behaved pMOS transistors are presented, yet with low layer quality. Therefore integration issues related to the epitaxial growth, such as selectivity, loading effect, pile-up and defect generation, were investigated. Surface damage originating from reactive-ion etching of the sidewall spacer and nitride residues from LOCOS formation were found to degrade the quality of the SiGe layer. Various remedies are discussed. Nevertheless, high-quality selective epitaxial growth could not be achieved with a doping concentration in the 1021 cm-3 range. The maximum doping level resulting in a high-quality layer, with the loading effect taken into account, was 6×10<sup>20 </sup>cm-<sup>3</sup>. After this careful process optimization, a high-quality layer was obtained in the recessed areas. Finally, Ni mono-germanosilicide was investigated as a material for contact formation to the epitaxial SiGe layers in the recessed source and drain areas. The formation temperature is 550 ºC and it is stable up to 700 ºC. The observation of a recessed step and lateral growth of the silicide led to a detailed treatment of the contact resistivity of the NiSi<sub>0</sub>.<sub>8</sub>Ge<sub>0.2</sub>/Si<sub>0.8</sub>Ge<sub>0.2</sub> interface using 2-D as well as 3-D modeling. Different values were obtained for square shaped and rounded contacts, 5.0x10<sup>-8</sup> Ωcm<sup>2</sup> and 1.4x10<sup>-7</sup> Ωcm<sup>2</sup>, respectively.</p>
73

Elektrischer Transport und allgemeine Charakterisierung der halbleitenden Silicide Beta-FeSi2 und MnSi1,73

Teichert, Steffen 26 November 1996 (has links)
Die elektrische Leitfähigkeit und der Hall-Effekt der halbleitenden Silicide Beta-FeSi2 und MnSi1,73 werden im Temperaturbereich zwischen 4,2 und 300 K untersucht. In ergänzenden Untersuchungen werden strukturelle und optische Eigenschaften dieser Materialien bestimmt. Die Ergebnisse der Messungen an MnSi1,73 - Schichten werden im Rahmen der Boltzmann-Gleichung in Relaxationszeitnäherung interpretiert. Die Temperatur- abhängigkeit der elektrischen Leitfähigkeit und der Hall-Beweglichkeit der Mangansilicid-Schichten kann unter Einbeziehung der Ladungsträgerstreuung an Korngrenzen und akustischen Phononen erklärt werden. In einer kritischen Diskussion werden die Grenzen des verwendeten Transportmodells aufgezeigt. Den Schwerpunkt der Untersuchungen an Beta-FeSi2 bildet die Analyse des Hall-Koeffizienten in Abhängigkeit von der Temperatur und dem Magnetfeld. Mit einem neuen dynamischen Meßverfahren werden umfassende Ergebnisse für den Hall-Koeffizienten in dünnen Schichten und Einkristallen erhalten, die eine herkömmliche Interpretation des Hall-Effekts in Beta-FeSi2 in Frage stellen. Unter Einbeziehung eines wesentlichen Einflusses des anomalen Hall-Effekts in die Interpretation, können die Eigenschaften des Hall-Effekts in Beta-FeSi2 verstanden werden.
74

Untersuchung metallischer und isolierender amorpher Materialien mit Streumethoden

Löser, André 19 September 2005 (has links) (PDF)
In dieser Arbeit wurden elektronische Transporteigenschaften ungeordneter metallischer und isolierender Materialien untersucht. Es wurde gezeigt, dass die zugrunde liegende Vielfachstreumethode für Schichten (LKKR) auch auf isolierende Materialien angewendet werden kann. Als isolierendes Material wurde amorphes Silizium gewählt. Für die Strukturmodellierung wurde ein spezieller RMC-Algorithmus für Netzwerke entwickelt. Um eine Lücke in der elektronischen Zustandsdichte zu erhalten, wurden diese Strukturen anschließend mit einer MD-Methode relaxiert. Zur Charakterisierung der dabei auftretenden mittelreichweitigen Strukturänderungen wurde ein analytisches Modell des Strukturfaktors aufgestellt. Die Verbindung zwischen elektronischen und strukturellen Defekten beim Übergang von den metallischen Ausgangsnetzwerken zu den isolierenden amorphen Siliziumstrukturen wurde untersucht. Die Winkelschwankung, unterkoordinierte Siliziumatome und ein spezieller topologischer Defekt wurden als Ursache für elektronische Defekte bei der Fermienergie identifiziert. Für die Widerstandsberechnung wurde vom Stromfluss durch einen quasi-eindimensionalen Draht ausgegangen (Landauer-Büttiker-Ansatz). Für ein stark streuendes Modellsystem (amorphes Eisen) wurde gezeigt, dass dieser Ansatz auch bei kohärenter Vielfachstreuung einen längenproportionalen Widerstand für kleine Drahtlängen liefert. Für metallische Materialien kann die Leitfähigkeit aus der Längenabhängigkeit des Drahtwiderstandes bestimmt werden. Zwei Erweiterungen dieses Landauer-Büttiker-Ansatzes für eine unvollständige Berechnung der kohärenten Streuung wurden in dieser Arbeit abgeleitet. Der direkte Einfluss der Struktur für schwache Streuer wurde in Einfachstreunäherung untersucht. Im Grenzfall eines Mediums führt die abgeleitete Leitwertformel auf die Zimanformel für den spezifischen Widerstand. Die Widerstandsberechnung wurde außerdem auf inkohärente Streuung erweitert, so dass auch für isolierende Materialien eine Leitfähigkeit bestimmt werden kann. Im Gegensatz zu ungeordneten Metallen verschwindet die Leitfähigkeit bei verschwindender inkohärenter Streuung, so dass metallische und isolierende Materialien unterschieden werden können. Der unordnungsinduzierte Metall-Isolator-Übergang (Anderson-Übergang) wurde für amorphes Nickelsilizid betrachtet. %Die bestimmte kritische Nickelkonzentration liegt wegen der %im Vergleich zu amorphen Silizium fehlenden Relaxierung der Strukturen %unterhalb experimenteller Werte. Wegen des geringen Querschnitts der Drähte tritt metallisches und isolierendes Verhalten parallel auf. Die notwendige Mittelung führt zu einer abnehmenden Leitfähigkeit bei abnehmender inkohärenter Streuung auch für metallische Proben. Dieses Verhalten wird in dreidimensionalen Systemen mit schwacher Lokalisierung in Verbindung gebracht.
75

Silicide fuel swelling behavior and its performance in I2S-LWR

Marquez, Matias G. 21 September 2015 (has links)
The swelling mechanisms of U3Si2 under neutron irradiation in reactor conditions are not unequivocally known. The limited experimental evidence that is available suggests that the main driver of the swelling in this material would be fission gases accumulation at crystalline grain boundaries. The steps that lead to the accumulation of fission gases at these locations are multiple and complex. However, gradually, the gaseous fission products migrate by diffusion. Upon reaching a grain boundary, which acts as a trap, the gaseous fission products start to accumulate, thus leading to formation of bubbles and hence to swelling. Therefore, a quantitative model of swelling requires the incorporation of phenomena that increase the presence of grain boundaries and decrease grain sizes, thus creating sites for bubble formation and growth. It is assumed that grain boundary formation results from the conversion of stored energy from accumulated dislocations into energy for the formation of new grain boundaries.This thesis attempts to develop a quantitative model for grain subdivision in U3Si2 based on the above mentioned phenomena to verify the presence of this mechanism and to use in conjunction with swelling codes to evaluate the total swelling of the pellet in the reactor during its lifetime.
76

Thermodynamische und kinetische Untersuchungen im System Lithium-Silicium

Thomas, Daniel 10 February 2015 (has links) (PDF)
Die vorliegende Dissertation stellt die experimentelle Bestimmung von grundlegenden thermodynamischen und kinetischen Stoffdaten im System Lithium-Silicium vor. Ausgehend von der Synthese qualitativ hochwertiger Lithiumsilicide wurden Wärmekapazitäten über einen großen Temperaturbereich (2-873 K) bestimmt, die aufgrund der Ergebnisse bei tiefen Temperaturen die Ermittlung weiterer Parameter wie beispielsweise der Standardentropien bzw. der Bildungsentropien der Lithiumsilicide ermöglichte. Die Eigenschaft der Silicide, mit Wasserstoff Verbindungen einzugehen, führte zudem zur Ausdehnung der Untersuchungen auf das System Li-Si-H. Aus der Erweiterung resultierte neben der formalkinetischen Beschreibung ablaufender Gleichgewichtsreaktionen die Bestimmung von Bildungsenthalpien der Silicide. Auf Grundlage der experimentell bestimmten Stoffgrößen (Cp, S°, ∆BH°), die für theoretische und praxisrelevante Berechnungen sehr verlässliche Stoffdaten darstellen, wurden thermodynamische Modellierungen im stofflichen System durchgeführt.
77

Einfluss von Legierungselementen auf die Phasenbildung im System Co-Si

Händel, Frank 28 October 2005 (has links)
Im Rahmen dieser Diplomarbeit erfolgte die Charakterisierung von dünnen Co-Al-Si-Schichten durch elektrische Messungen, RBS, REM, TEM, AES, MOKE sowie temperaturabhängige Messungen des spezifischen elektrischen Widerstandes. Es wurde die Phasenbildung in diesem ternären System und die Beeinträchtigung der Phasenbildung im System Co-Si in Abhängigkeit des Al-Gehaltes betrachtet. Die Co-Al-Schichten wurden duch Magnetronsputtern auf Si(001)-Substraten abgeschieden und im Temperaturbereich von 500°C bis 900°C getempert (30s).
78

Struktur und Eigenschaften der Seltenerd-Übergangsmetall-Silizide

Nentwich, Melanie 29 May 2020 (has links)
Seltenerdsilizide RSi2 und deren verwandte R2TSi3-Verbindungen kristallisieren in hexagonalen AlB2- sowie tetragonalen ThSi2-ähnlichen Kristallstrukturen, unter denen es eine große strukturelle Vielfalt gibt, insbesondere im Hinblick auf die Ordnung von T- und Si-Atomen. Basierend auf einer ausführlichen Literaturrecherche mit einem Umfang von mehr als 300 Artikeln und 500 Strukturberichten wurde die kristallographische Familie eingehend charakterisiert und deren Symmetriebeziehungen herausgearbeitet. Das so entstandene Bärnighaus-Diagramm umfasst im Vergleich zu bisherigen Veröffentlichungen sechs zusätzliche Strukturtypen, deren Raumgruppen in dieser Arbeit teilweise erstmalig bestimmt wurden. Weiterhin konnten Zusammenhänge zwischen den beinhalteten Elementen der Verbindungen und deren Eigenschaften erarbeitet werden. Beispielsweise bilden sich signifikant häufiger geordneten Strukturen nach einer thermischen Behandlung. Darüber hinaus konnte hier eine Korrelation zwischen der elektronischen Struktur eines Hückel-Aromaten und der Si/T-Ordnung herausgearbeitet werden. Ergänzt wird die Arbeit durch Dichtefunktionaltheorieberechnungen, die zum einen Aufschluss über Formierungsenergien und somit über die potentielle Stabilität von bisher nicht berichteten Verbindungen geben. Zum anderen wurden die Bader-Ladungen der Atome berechnet, wodurch beispielsweise mögliche Überstrukturmodelle im tetragonalen Gitter auf nur ein plausibles Modell reduziert werden konnten. Abgerundet wird die Arbeit durch eigene Ergebnisse aus resonanten Synchrotronexperimenten, beispielhaft an dem Vertreter mit der größten Überstruktur: Ho2PdSi3. Für diese Verbindung gab es noch weitere mögliche Strukturmodelle, die jedoch dank der präsentierten Ergebnisse ausgeschlossen werden können.:Kurzfassung/Abstract 1. Einleitung 2. Grundlagen 2.1. Die Elemente 2.1.1. Aufbau 2.1.2. Bindungen 2.1.3. Atomradien 2.2. Kristallographie 2.2.1. Gliederung von Kristallstrukturen 2.2.2. Symmetrieabstieg 2.2.3. Raumgitter und reziprokes Gitter 2.2.4. Elektronen im Kristall 2.3. Resonante Röntgenbeugung 2.3.1. Röntgenabsorptionsspektroskopie 2.3.2. Röntgendiffraktion 2.3.3. Analyse der Diffraction Anomalous Fine Structure 3. Strukturelle Variationen der RSi2- und R2TSi3-Verbindungen: Charakterisierung und Ursachen 3.1. Kristallographische Übersicht der RSi2- und R2TSi3-Verbindungen 3.1.1. Vom AlB2-Typ abgeleitete Strukturen 3.1.2. Vom ThSi2-Typ abgeleitete Strukturen 3.1.3. Strukturbeschreibung 3.2. Systematisierung von Materialeigenschaften anhand von R–T-Diagrammen 3.2.1. Verteilung der Strukturtypen gemäß der Elementkombinationen 3.2.2. Gitterparameter und Si–T-Abstände 3.2.3. Thermische Behandlung 3.2.4. Elementradien und Radienverhältnis 3.2.5. Dichte und Packungsdichte 3.2.6. Elektronische Struktur 3.3. Abhängigkeiten zwischen den Materialeigenschaften 3.3.1. Korrelationen des kürzesten Si–T-Abstands d 3.3.2. Korrelationen des Quotienten c/a 3.3.3. Korrelationen des Quotienten qrad (und der Elementradien) 3.3.4. Korrelationen der thermischen Behandlung 3.3.5. Korrelationen der elektronischen Struktur 3.4. Stabilitätsanalysen basierend auf DFT-Rechnungen 3.4.1. Die Reihe der Co-Verbindungen 3.4.2. Die Reihe der Rh-Verbindungen 3.4.3. Die Reihe der Pt-Verbindungen 3.4.4. Die Gitterparameter von La2PdSi3 3.4.5. Tetragonales oder hexagonales BaSi2? 3.4.6. Orthorombisches Sr2AgSi3 3.4.7. Potentielle, tetragonale Struktur mit geordneten Si/T-Atomen 4. Überstrukturanalyse an Ho2PdSi3mit Diffraction Anomalous Fine Structure Analyse 4.1. Die Probe 4.2. Die Modelle 4.3. Durchführung 4.3.1. Details zu den Simulationen 4.3.2. Details zu den Experimenten 4.4. Auswertung 4.4.1. Die Holmium-L-Kanten 4.4.2. Die Palladium-K-Kante 5. Zusammenfassung Anhang A. Strukturparameter der RSi2- und R2TSi3-Verbindungen B. Die Strukturtypen und Wyckoff-Lagen der RSi2- und R2TSi3-Verbindungen C. Geometrische Betrachtungen der Gitter D. Hilfswerte für die DFT-Rechnungen E. Parameter der FDMNES-Simulatio F. Herleitung des Extinktionskorrekturterms G. Mittlere Fehlerquadrate der Fits an die XAFS- und DAFS-Experimente Tabellenverzeichnis Abbildungsverzeichnis Literaturverzeichnis Danksagung Eidesstattliche Erklärung
79

Analysis of solar cell cross sections with micro-light beam induced current (µLBIC)

Breitwieser, Matthias, Heinz, Friedemann D., Büchler, Andreas, Kasemann, Martin, Schön, Jonas, Warta, Wilhelm, Schubert, Martin C. 16 October 2020 (has links)
A highly resolving micro-light beam-induced current (µLBIC)-system is presented in this work. Based on the laser excitation via an optical microscope, current values can be measured with sub-micron precision. We show, that this non-destructive, light-based approach delivers superior results to a reference electron microscope based electron beam induced current method concerning contrast and robustness towards reflection differences, whereas no vacuum is needed, no charging effects can occur and equal resolution is achieved. µLBIC allows therefore mapping of pn-junctions at silicon solar cell cross sections. By combination of µLBIC with other measurement methods in the same setup, such as micro-Raman spectroscopy, complementary microscopic information about material stress or crystallinity and electronic properties at the same region of interest on the sample is revealed. By applying µLBIC for analyzing silicon solar cross sections, two characterization examples of current technological relevance are presented: enhanced dopant diffusion along grain boundaries between grains with different orientations is quantified and the impact of a nickel silicide spike on local charge collection quality is studied.
80

A Study Of Components For Lithium And Sodium Batteries And Other Storage Devices

Michaud, Xavier January 2019 (has links)
An investigation of electrochemical storage device materials has been undertaken in four parts. The bulk and interfacial resistance of Na+ beta-alumina tubes were separated using a galvanostatic charge-discharge method. Sodium silicide was characterized to better understand its synthesis. BiMn2O5 was produced using a sol-gel method and tested for pseudocapacity. Different lithium ion anode and cathode materials were deposited using a new electrophoretic deposition method. A novel galvanostatic charge-discharge method was developed for the determination of bulk and interface resistance in Na+ beta-alumina solid electrolytes [BASE]. Dense and duplex BASE tubes were tested by varying the exposed surface area. The results of dense BASE tube pairs were used to determine the bulk and interfacial resistance components, while duplex BASE tubes were tested to determine the reduction in interfacial resistance. It was found that duplex tubes had reduced the interfacial resistance by 75%, when compared to a uniformly dense electrolyte. Sodium silicide was characterized using various methods to better understand the phase and the Na-Si phase diagram. EMF experiments using Na+ BASE tubes was used to determine the activity in the silicon rich region of the phase diagram, which showed a sodium activity of 0.5 at 550°C. TGA/DSC was used to determine phase transformation temperatures, as well as the heat of formation for NaSi, which was recorded to be below 1 kJ mol-1. A sol-gel precipitation method was used to produce fine BiMn2O5 powders used for supercapacitors. The powders resulting from a consistent method were tested for pseudocapacitance using bulk and thin film electrodes. Bulk electrodes had a gravimetric capacitance of 10 F g-1, while thin film electrodes only reached 2.6 F g-1. Lithium ion battery anode (Li4Ti5O12) and cathode (LiFePO4, LiMn2O4, LiMn1.5Ni0.5O4) materials were electrophoretically deposited with the assistance of PAZO-Na and CMC-Na. Cathodes were successfully deposited on aluminium substrates, and were tested in the potential window 2 – 4.3 V. The LiFePO4 cathodes showed capacity of 146.7 mAh g-1 at C/10, while showing capacity retention of 103% after 50 cycles. / Thesis / Doctor of Philosophy (PhD) / The goal of this work is to examine materials used in different types of electrochemical storage devices. The modification of resistive properties of β-alumina electrolytes are examined for use in high temperature sodium batteries. Electrophoretic deposition methods are used to rapidly make thin electrodes for lithium ion batteries and supercapacitors. The stoichiometric compound NaSi, a potentially safer and greener method of producing hydrogen gas, is characterized for a better understanding of its properties, and therefore production.

Page generated in 0.0389 seconds