• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 46
  • 18
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 243
  • 243
  • 65
  • 65
  • 63
  • 50
  • 50
  • 47
  • 45
  • 42
  • 42
  • 30
  • 28
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Reconstruction de la distribution et de l'abondance historiques des mammifères marins : établir un niveau de référence pour comprendre le passé, renseigner le présent et planifier l'avenir / Reconstruction of marine mammals’ historical distribution and abundance : setting a baseline to understand the past, inform the present and plan the future

Monsarrat, Sophie 07 May 2015 (has links)
La mise en place d'objectifs de conservation adéquats repose sur la définition d'états de référence appropriés pour la distribution et l'abondance des espèces. Cependant, l'étendue des impacts cumulés de l'homme sur les écosystèmes est aujourd'hui largement sous-estimée. Dans ce projet, je m'intéresse aux opportunités qu'offre l'utilisation de données historiques combinées à différentes méthodes analytiques pour définir ces états de référence ainsi qu'aux défis posés par ce type d'approche. Des données de présence ont été recueillies pour sept espèces de cétacés et trois espèces de pinnipèdes à partir de sources archéologiques, historiques et industrielles, révélant des réductions dans la distribution et l'abondance des espèces depuis la préhistoire à nos jours. Des modèles de distribution d'espèces ont été développés pour cinq espèces de cétacés, combinant des données de chasse baleinière du 19ème siècle à des variables environnementales afin d'estimer la distribution historique des espèces avant qu'elles n'aient été chassées. J'ai obtenu pour la baleine franche de l'Atlantique Nord (Eubalena glacialis) une estimation détaillée de sa distribution et de son abondance avant qu'elle ne soit exploitée, en extrapolant des connaissances sur la distribution et l'abondance d'une espèce congénérique, la baleine franche du Pacifique Nord (E. japonica). Ces résultats suggèrent que la baleine franche de l'Atlantique Nord occupe une portion réduite de sa distribution historique, et que son abondance actuelle ne représente qu'une infime portion (<5%) de son abondance passée. Plus généralement, ces résultats soulignent l'importance de considérer des données historiques pour comprendre le niveau d'impact par l'homme sur les espèces, évaluer leur niveau de déplétion et renseigner leur potentiel de rétablissement dans l'avenir. / Relevant baselines on the historical distribution and abundance of species are needed to support appropriate conservation targets for depleted species, but the full scale of cumulative human impacts on ecosystems is highly underestimated. In this project, I investigated the challenges and opportunities of combining historical data with analytical methods to improve these historical baselines. Occurrence data from archaeological, historical and industrial sources were reviewed for seven cetacean and three pinniped species, revealing range contractions and population depletions from prehistorical times to today. For five whale species, I used species distribution modelling to combine 19th Century whaling records with environmental data, to estimate pre-whaling distributions. For the highly depleted North Atlantic right whale, (Eubalaena glacialis), I obtained a detailed estimate of pre-whaling distribution and abundance by inferring from the historical distribution and abundance of its congeneric North Pacific right whale (E. japonica). These results suggest that the North Atlantic right whale occupies a small fraction of its historical range and that its current population represents <5% of its historical abundance, with implications for the management, monitoring and conservation targets of this species. More generally, these results emphasize the utility of considering historical data to understand the extent to which species have been impacted by humans, assess their current level of depletion, and inform the options available for their future recovery.
132

Seeking the Leviathan, the General Will and the Invisible Hand in Rural Guinea, West Africa: A Science of Human Nature

Bösch, Lukas 26 August 2019 (has links)
The dissertation builds a bridge from the social-philosophical works of Hobbes, Rousseau, and Smith to current game theoretical models explaining social order to two empirical applications in a rural region of Guinea. The work focuses on the central role of natural resources for human societies and uses two empirical studies to test general hypotheses on the drivers of the sustainable exploitation and the equitable distribution of natural resources. The work strictly follows a quantitative empirical approach. After discussing the methodological foundations of statistical causal analysis in a first step, the various approaches are evaluated in a simulation study. Finally, the most successful of these approaches finds its application in the analysis of the empirical data, which was collected during field research in Guinea. In the observational study, socioeconomic data are combined with environmental data to model the influence of humans on the occurrence of wild species that are exploited for economic purposes in the study area. In the experimental study, socioeconomic data is linked to experimental data from a resource distribution game to identify factors affecting the people’s behavior when sharing a common natural resource. Both the exploitation of wild species and the sharing of a natural resource show that the social context is crucial for the understanding of human behavior, as postulated by Hobbes, Rousseau, and Smith: reputation, market integration, inequality and homogeneity of the population, as well as the salience of moral norms and property rights are essential dimensions. / Die Dissertation widmet sich der zentralen Rolle von natürlichen Ressourcen für menschliche Gesellschaften. Anhand zweier empirischer Studien werden allgemeine Hypothesen zu den Determinanten der nachhaltigen Ausbeutung und gerechten Verteilung von natürlichen Ressourcen getestet. Dabei wird in der Arbeit eine Brücke von den Werken der Sozialphilosophen Hobbes, Rousseau und Smith, über aktuelle spieltheoretische Modelle zur Erklärung sozialer Ordnung, hin zu zwei empirischen Anwendungen in einer ländlichen Region Guineas geschlagen. Die Arbeit folgt strikt einem empirischen quantitativen Ansatz. Nach der Erörterung der methodischen Grundlagen der statistischen Kausalanalyse werden die verschiedenen Ansätze im Rahmen einer Simulationsstudie evaluiert. Schließlich findet der erfolgreichste dieser Ansätze in der Auswertung der Daten, die bei der Feldforschung in Guinea erhoben wurden, Anwendung. In der Beobachtungsstudie werden sozioökonomische Daten mit ökologischen Daten verknüpft, um den Einfluss der Menschen auf das Vorkommen von wilden Arten, die zu ökonomischen Zwecken ausgebeutet werden, im Untersuchungsgebiet zu modellieren. In der Experimentalstudie werden sozioökonomische Daten mit Experimentaldaten aus einem Ressourcenverteilungsspiel verknüpft, um Faktoren zu identifizieren, welche sich auf das Verhalten von Menschen beim Teilen einer gemeinsamen natürlichen Ressource auswirken. Sowohl für die Ausbeutung der wilden Arten, wie auch für das gemeinsame Teilen einer natürlichen Ressource gilt, dass der soziale Kontext für das Verhalten der Menschen von großer Relevanz ist, wie von Hobbes, Rousseau und Smith postuliert: Reputation, Marktintegration, Ungleichheit und Homogenität der Bevölkerung sowie die Salienz moralischer Normen und Eigentumsrechte sind entscheidende Dimensionen.
133

Informing the transition to evidence-based conservation planning for western chimpanzees

Heinicke, Stefanie 13 November 2019 (has links)
Large-scale land-use change across the tropics has led to the decline of animal populations and their habitat. With large investments into mining, hydropower dams and industrial agriculture this trend is likely to continue. Consequently, there is a need for systematic land-use planning to set aside areas for protection and allocate scarce conservation funding effectively. Even though primates are relatively well studied, data-driven systematic planning is still rarely implemented. The overall aim of this dissertation was to investigate population parameters needed for evidence-based conservation planning for the critically endangered western chimpanzee (Pan troglodytes verus) in West Africa. To this end, I compiled density datasets covering the entire geographic range of this taxon from the IUCN SSC A.P.E.S. database and modeled chimpanzee densities as a function of 20 social-ecological variables. I found that western chimpanzees seemingly persist within three social-ecological configurations: rainforests with a low degree of anthropogenic threats, steep areas that are less likely to be developed and are harder to access by humans, and areas with a high prevalence of cultural taboos against hunting chimpanzees. The third configuration of reduced hunting pressure is not yet reflected in commonly implemented conservation interventions, suggesting a need for designing new approaches aimed at reducing the threat of hunting. Based on the modeled density distribution, I estimated that 52,811 (95% CI 17,577-96,564) western chimpanzees remain in West Africa, and identified areas of high conservation value to which conservation interventions should be targeted. These results can be used to inform the expansion of the protected area network in West Africa, to quantify the impact of planned industrial projects on western chimpanzees, and to guide the systematic allocation of conservation funding. In addition, this thesis highlights the unique position of taxon-specific databases of providing access to high-resolution data at the scale needed for conservation planning. Data-driven conservation planning has the potential to enable conservationists to respond more proactively to current and emerging threats, and ultimately improve conservation outcomes.
134

Understanding current and potential distribution of Australian acacia species in southern Africa

Motloung, Rethabile Frangenie 06 1900 (has links)
This dissertation presents research on the value of using different sources of data to explore the factors determining invasiveness of introduced species. The research draws upon the availability of data on the historical trial plantings of alien species and other sources. The focus of the study is on Australian Acacia species as a taxon introduced into southern Africa (Lesotho, South Africa and Swaziland). The first component of the study focused on understanding the factors determining introduction outcome of species in historical trial plantings and invasion success of Australian Acacia species using Species Distribution Models (SDMs) and classification tree techniques. SDMs were calibrated using the native range occurrence records (Australia) and were validated using results of 150 years of South African government forestry trial planting records and invaded range data from the Southern African Plant Invaders Atlas. To understand factors associated with survival (‘trial success’) or failure to survive (‘trial failure’) of species in historical trial plantings, classification and regression tree analysis was used. The results indicate climate as one of the factors that explains introduction and/or invasion success of Australian Acacia species in southern Africa. However, the results also indicate that for ‘trial failures’ there are factors other than climate that could have influenced the trial outcome. This study emphasizes the need to integrate data on whether the species has been recorded to be invasive elsewhere with climate matching for invasion risk assessment. The second component of the study focused on understanding the distribution patterns of Australian Acacia species that are not known as invasive in southern Africa. The specific aims were to determine which species still exist at previously recorded sites and determine the current invasion status. This was done by collating data from different sources that list species introduced into southern Africa and then conducting revisits. For the purpose of this study, revisits means conducting field surveys based on recorded occurrences of introduced species. The known occurrence data for species on the list were obtained from different data sources and various invasion biology experts. As it was not practical to do revisits for all species on the list, three ornamental species (Acacia floribunda, A. pendula and A. retinodes) were selected as part of the pilot study for the conducted revisits in this study. Acacia retinodes trees were not found during the revisits. The results provided data that could be used to characterize species based on the Blackburn et al., (2011) scheme. However, it is not clear whether observed Acacia pendula or A. floribunda trees will spread away from the sites hence the need to continuously monitor sites for spread. The methods used in this research establish a protocol for future work on conducting revisits at known localities of introduced species to determine their population dynamics and thereby characterize the species according to the scheme for management purposes. / Dissertation (MSc)--University of Pretoria, 2014. / National Research Foundation (NRF) / Zoology and Entomology / MSc (Zoology) / Unrestricted
135

Evaluating the Ecological Status of the Introduced Nile Monitor (Varanus niloticus) in Florida: Forecasting Presence and Population Expansion Using Computational Geographic Information Systems

Cohen, Noah G 17 November 2017 (has links)
The Nile monitor (Varanus niloticus) is a large, carnivorous lizard that has become a notorious invasive species in Florida, USA. Initially released in the 1980s from the pet trade, the species has since established at least three breeding populations and spread throughout much of southern Florida. While current control efforts have failed to eradicate V. niloticus, it is important to attain a better understanding of its invasive dynamics to guide and inform better control strategies. In this study, available georeferenced records of V. niloticus in Florida were compiled and linked to a habitat classification map to evaluate ecotype preferences. Factored with bioclimatic data, the regional spread of V. niloticus was modelled for contemporary and projected (i.e., in the year 2050) presence using Maxent and Mahalanobis Distance models. Study results indicate that V. niloticus maintains a strong presence in eastern Lee County on the southwestern coast. Populations in Palm Beach and Miami-Dade counties on the southeastern coast may be interconnected, contrary to current descriptions that they are separated from each another. Model forecasts of conditions for the year 2050 identify widespread expansion of V. niloticus in Florida, particularly northward with the establishment of a new population center in Pasco County in the western central peninsula. This is the first known modelling study of V. niloticus in Florida and identifies regions at greater risk for future population expansion.
136

Uncovering the Mechanisms that Lead to Spatial Patterning of Population Sex Ratios in Gynodioecious Plants

Miller, John Anthony 24 April 2023 (has links)
No description available.
137

Descriptions, Ecological Associations and Predictive Species Distribution Models of New Species of Psilochalcis Kieffer (Hymenoptera; Chalcididae) Occurring in Utah's Eastern Great Basin

Petersen, Mark J. 18 April 2023 (has links) (PDF)
The genus Psilochalcis, of the Family Chalcididae, was originally described in 1905 by Kieffer. Mainly considered an Old-World taxon, the first North American Psilochalcis were not identified until 1981 by Grissell and Schauff. Little is known about the species distributions, biologies and ecological relationships of these parasitic wasps. This dissertation describes research conducted in central Utah setting arrays of Malaise traps in 4 different habitat types common to the Great Basin at three separate locations. A result of this sampling revealed a high abundance of multiple species of Psilochalcis wasps, particularly from one location and two habitat types. Chapter 1 describes three new species of Psilochalcis wasps namely; P. adenticulata Petersen, P. minuta Petersen, and P. quadratis Petersen. A review of all North American Psilochalcis species explains their distribution in Utah and throughout the surrounding western United States. A taxonomic key for all North American Psilochalcis species is given. Chapter 2 examines the seasonal abundance of P. minuta and P. quadratis and their associations with two common Great Basin habitat types. Both species show their highest abundance from late June through early August. Their peak abundance is shown to change dependent on the environmental conditions of temperature and precipitation. Psilochalcis minuta is significantly associated with pinyon/juniper (Pinus edulis or P. monophylla and Juniperus osteosperma) and P. quadratis is significantly associated with cheatgrass (Bromus tectorum). Chapter 3 describes the building of species distribution models for P. minuta and P. quadratis using a maximum entropy (Maxent) approach. Ten environmental variables were used to predict areas of optimal suitable habitat for each species. Multiple predicted sites were field sampled to test each model's effectiveness. Psilochalcis minuta occurred at nearly 90% of predicted sites, and P. quadratis occurred at 50% of predicted sites. Both species occurred at some non-predicted sites in other habitat types. Model analyses and field-testing results show the P. minuta model to be reliable in predicting areas of probable species occurrence, while the P. quadratis model is much less reliable in doing so. Aspect and fire disturbance show the highest percent contribution to both species' models. Slight differences in variable percent contribution between models suggest these species have sympatric distributions. Soil and slope are more important predictors of optimal suitable habitat for each species. Maintaining integrity between model predictions and field testing gave insights into other factors contributing to probable occurrence of Psilochalcis species.
138

Remote Sensing with Computational Intelligence Modelling for Monitoring the Ecosystem State and Hydraulic Pattern in a Constructed Wetland

Mohiuddin, Golam 01 January 2014 (has links)
Monitoring the heterogeneous aquatic environment such as the Stormwater Treatment Areas (STAs) located at the northeast of the Everglades is extremely important in understanding the land processes of the constructed wetland in its capacity to remove nutrient. Direct monitoring and measurements of ecosystem evolution and changing velocities at every single part of the STA are not always feasible. Integrated remote sensing, monitoring, and modeling technique can be a state-of-the-art tool to estimate the spatial and temporal distributions of flow velocity regimes and ecological functioning in such dynamic aquatic environments. In this presentation, comparison between four computational intelligence models including Extreme Learning Machine (ELM), Genetic Programming (GP) and Artificial Neural Network (ANN) models were organized to holistically assess the flow velocity and direction as well as ecosystem states within a vegetative wetland area. First the local sensor network was established using Acoustic Doppler Velocimeter (ADV). Utilizing the local sensor data along with the help of external driving forces parameters, trained models of ELM, GP and ANN were developed, calibrated, validated, and compared to select the best computational capacity of velocity prediction over time. Besides, seasonal images collected by French satellite Pleiades have been analyzed to address the seasonality effect of plant species evolution and biomass changes in the constructed wetland. The key finding of this research is to characterize the interactions between geophysical and geochemical processes in this wetland system based on ground-based monitoring sensors and satellite images to discover insight of hydraulic residence time, plant species variation, and water quality and improve the overall understanding of possible nutrient removal in this constructed wetland.
139

Ecological traits underlying interspecific variation in climate matching of birds

Viana, Duarte S., Chase, Jonathan M. 23 August 2023 (has links)
Aim: The abundances and distributions of some species are more closely matched to variations in climate than others. Species traits that might influence how well the distribution and abundance of a species are matched to climatic variation include life history (e.g., body size and dispersal ability), ecology (e.g., habitat specialization and territoriality) and demography (e.g., population size). Here, we used a survey of bird abundances across the USA to assess the extent to which species abundances and distributions are predicted by climate (i.e., climate matching) and how species traits relate to interspecific variation in climate matching. Location: USA. Time period: 1983–2018. Major taxa studied: Birds. Methods: Species abundances were obtained from the North American Breeding Bird Survey. Climate matching was estimated as the predictive performance of species–climate models fitted using boosted regression trees and generalized additive models and modelled as a function of species traits. Results: Species traits explained 56% of the variation in climate matching among species. Intermediate-sized species were more well matched to climate than smaller or larger species, as were species that lived primarily in forested compared with open habitats, species that were locally more abundant and species that were more territorial. Alternatively, species that were more specialized or had high variability in abundance among sites were less well matched to climate. We also found that species classified as “near threatened” were more well matched to climate, suggesting that these species might be more vulnerable to climate change. However, species classified as “vulnerable” were more decoupled from climate than those of “least concern”, possibly owing to ecological drift associated with progressive population declines. Main conclusions: Our findings provide an ecological basis for understanding the extent to which species abundances and distributions match broad climatic gradients, which can provide the groundwork to improve our ability to predict distributions under global change.
140

Future climate suitability of shade trees in cocoa agroforestry systems in West Africa and shade tree diversity’s impact on farm microclimate : A Minor Field Study / Framtida klimatlämplighet för skuggträd i kakaoskogslantbruk i Västafrika och påverkan på gårdars mikroklimat av skuggträdens diversitet : En Minor Field Study

Halonen, Jonna January 2023 (has links)
Shade trees’ implementation into cocoa agroforestry systems in tropical West Africa has proven to have a high potential in increasing farm resilience and mitigating climate change. However, no studies have yet examined the potential future climate suitability for shade trees in the region, which is important when deciding which shade trees to implement. The aim of this study was to predict the current and future climate suitability of shade trees currently used in cocoa agroforestry systems and give recommendations based on the results. It also aimed to examine how different levels of shadetree diversity can impact a farm’s microclimate and how this can be linked to climate suitability for cocoa. To assess climate suitability, a species distribution model was performed for a baseline scenario with the current climate defined as 1970-2000 and for two future scenarios, SSP126 and SSP585, for the time period 2041-2060. To measure microclimate, a microclimatic study was performed in the Ashanti region of Ghana on 16 farms during mid March to mid May 2023 measuring the maximum temperature above cocoa canopy and 15 cm above the ground for three different treatments. The results showed that three species, Khaya senegalensis, Ceiba pentandra and Albiziazygia, were predicted to have the largest habitat areas of climate suitability in West Africa for several of the scenarios. However, it was also identified that the model could be improved when it comes tothe inclusion of more bioclimatic variables, global circulation models (GCMs) and for which futures cenarios to model for. The microclimatic study showed that both farms with a low and high level of shade tree diversity have a significant possibility to buffer the maximum temperature above cocoa canopy, with low diversity farms having a larger buffering capacity. The study also showed that areaswhere several shade tree species are predicted to have a climatically suitable habitat decreased for future scenarios, which could be a risk for the possibility to mitigate climate change for cocoa with shade tree implementation in the future. / Att implementera skuggträd i kakaoskogslantbruk i tropiska Västafrika har visat sig ha en högpotential att öka resiliens på gårdar såväl som att motverka effekterna av klimatförändringar iregionen. Däremot har inga tidigare studier hittills undersökt vilka skuggträdsarter som väntas varalämpliga i framtida klimat. Syftet med den här studien var att uppskatta nutida och framtidalämplighet för skuggträd som nu används i kakaoskogslantbruk och ge rekommendationer utifrånresultaten. Studien hade också som syfte att undersöka hur olika nivåer av diversitet av skuggträd på gårdarna påverkade deras mikroklimat samt hur detta kan kopplas till klimatlämplighet för kakao. Klimatlämplighet uppskattades med en distributionsmodell (eng: “species distribution model”), med ett basscenario för nutida klimat satt som 1970-2000 samt med två framtida klimatscenarier, SSP126 och SSP585, för tidsperioden 2041-2060. Mikroklimat mättes genom en fältstudie som genomfördes på 16 gårdar i Ashantiregionen i Ghana under perioden mitten av mars till mitten av maj. Mikroklimatet mättes för den maximalt uppnådda temperaturen ovanför kakaoträdens lövverk och 15 cm ovanför marken. Resultaten visade att tre arter, Khaya senegalensis, Ceiba pentandra och Albiziazygia, hade störst område där de var lämpliga för flest klimatscenarier i Västafrika. Dessutom identifierades flera sätt att förbättra modellen, bland annat genom att inkludera fler bioklimatiska variabler, fler globala cirkulationsmodeller (GCMs) och genom att förutspå utvecklingen för fler framtida klimatscenarier. För mikroklimat visade resultaten att både en hög och låg diversitet av skuggträd resulterade i att den maximala temperaturen minskade ovanför skuggträdens lövverk, och den minskade mer där diversiteten var låg. Resultaten visade även att för framtida klimatscenarier minskar områdena där flera skuggträd är lämpliga, vilket kan vara problematiskt för möjligheten att bemöta klimatförändringar i framtiden genom skuggträdsimplementering.

Page generated in 0.0938 seconds