• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 314
  • 84
  • 30
  • 19
  • 14
  • 10
  • 6
  • 5
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 570
  • 570
  • 388
  • 87
  • 81
  • 76
  • 75
  • 75
  • 69
  • 64
  • 62
  • 56
  • 50
  • 47
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Expériences de plasmonique quantique : dualité onde corpuscule du plasmon de surface et intrication entre un photon et un plasmon de surface. / Quantum Plasmonics experiments : wave-particle duality of the surface plasmon and entanglement of a photon with a surface plasmon.

Dheur, Marie-Christine 26 April 2016 (has links)
Nous présentons deux expériences de plasmonique quantique, c’est-à-dire des expériencesd’optique quantique ayant pour support des plasmons de surface. Dans la première expérience, nous montrons la dualité onde-corpuscule d’un plasmon de surface unique (1) en utilisant la démarche de l’article de Philippe Grangier, Gérard Roger et Alain Aspect (2) sur les interférences à un photon unique. Dans la deuxième expérience, nous mettons en évidence les propriétés d’intrication entre un photon et un plasmon de surface. Nous produisons des photons intriqués en polarisation et les séparons spatialement. / We present two quantum plasmonics experiments, namely quantum optics on surface plasmons. In the first experiment, we show the wave-particle duality of a single surface plasmon along the same lines as the single-photon interferences experiment of Philippe Grangier, Gérard Roger and Alain Aspect (2). In the second experiment, we bring out between a photon and a surface plasmon. We generate paires of polarization entangled photons and separate the pair photons spatially. A former photon is send to a semi-plasmonic Mach-Zehnder interferometer whose first beam splitter is a polarization beam splitter whose output are converted to plasmons and on a plasmonic beamsplitter.
432

Direct laser writing of polymeric and metallic nanostructures via optically induced local thermal effect / Étude théorique et réalisation de nanostructures polymères et métalliques par l'écriture directe du point chaud induit optiquement.

Tong, Quang Cong 13 December 2016 (has links)
Ce travail consiste à l’utilisation de la technique d'écriture directe par laser par absorption à un photon pour fabriquer des nanostructures polymères et métalliques en vue d’applications en photonique et en plasmonique. Il est démontré que la température du matériau est augmentée localement et temporellement grâce à une excitation locale d’un laser continu dont la longueur d’onde se situe dans la bande d’absorption du matériau. Un modèle théorique simple a été étudié pour expliquer l'effet photothermique local et temporel, qui est déterminé par le spot de focalisation du système d'écriture directe par laser. En utilisant une résine photosensible positive, il a été démontré que les structures photoniques 1D et 2D peuvent être réalisées avec une taille aussi petite que 57 nm et avec une périodicité aussi courte que 300 nm, ce qui sont beaucoup plus petites par rapport à la limite de diffraction du système optique utilisé. Les structures photoniques 3D ont également été fabriqués pour la première fois avec une photorésine positive, permettant d’envisager de nombreuses nouvelles applications. Les structures polymères fabriquées ont été démontrés très utiles pour obtenir des nanostructures plasmoniques par soit une combinaison de la méthode d’évaporation thermique d'un film d'or et le procédé lift-off, ou par une combinaison de la méthode de pulvérisation cathodique d'une couche d'or et la méthode de recuit thermique. Les nanostructures d'or fabriquées ont été caractérisées expérimentalement et leurs propriétés optiques ont été théoriquement confirmées par des calculs FDTD. En outre, il a été démontré que les nanostructures d'or, avec les tailles et formes contrôlables, peut être réalisées en une seule étape par la technique d’écriture directe par laser grâce à l'effet thermique optiquement induit. Certaines applications de ces nanostructures métalliques sont proposées et étudiés, par exemple, le capteur d'indice de réfraction, le stockage des données et l'impression couleur. / This work focuses on the investigation of direct laser writing technique for fabrication of desired nanostructures on positive photoresist and metallic materials. The photothermal and photochemical processes deriving from one-photon absorption mechanism, which occurs when materials are excited by a green continuous-wave laser, enabled a scalable and practical approach for producing nanostructures on demand. A simple heat model was proposed to explain the local and temporal thermal effect, induced by a tiny focusing spot of the direct laser writing system. Using a positive photoresist, it was demonstrated that 1D and 2D photonic structures can be realized with a feature size as small as 57 nm and with a periodicity as short as 300 nm, which are much smaller than the diffraction limit of the used optical system. 3D photonic structures were also fabricated for the first time with a positive photoresist, paving the way to numerous applications. The fabricated polymeric structures have been demonstrated as excellent templates to obtain plasmonic nanostructures by a combination of thermal evaporation of gold film and lift-off process and/or by a combination of the sputtering of a thin gold layer and thermal annealing methods. Fabricated gold nanoarrays were experimentally characterized and their optical properties were theoretically confirmed by FDTD calculations. Furthermore, it was demonstrated that any gold nanostructure, with controllable size and shape, can be realized in one-step by direct laser writing technique thanks to the optically induced thermal effect. Some applications of these metallic nanostrucures are proposed, for instance, refractive index sensor, data storage, and color printing.
433

Electrical excitation of surface plasmon polaritons by inelastic tunneling electrons with resonant nanoantennas / Excitation électrique de plasmons polaritons de surface par effet tunnel inélastique avec des nanoantennes résonnantes

Zhang, Cheng 24 May 2019 (has links)
Les plasmons polaritons de surface (SPPs) jouent un rôle central en nanophotonique, parce que ce sont des modes optiques qui peuvent être confinés dans l’espace à l’échelle de 10 nm et dans le temps à l’échelle de 10 fs. L’excitation électrique des plasmons polaritons de surface par effet tunnel inélastique peut être ultrarapide et localisée, ce qui permet de développer une nanosource pour la nanophotonique intégrée en profitant pleinement du potentiel des polaritons plasmon de surface. Pourtant, ce processus est très inefficace avec un rendement de conversion typique de 10-7~10-5 plasmon par électron.Dans ce manuscrit de thèse, nous présentons une étude théorique et expérimentale qui vise à augmenter l’émission de plasmons de surface par effet tunnel inélastique avec une nano-antenne résonante. Nous avons développé un modèle théorique pour décrire l’émission de lumière à partir d’une jonction à effet tunnel en utilisant le théorème de fluctuation-dissipation. Nous proposons deux stratégies pour augmenter le rendement de conversion électron-plasmon. Nous introduisons un mode d’antenne résonnante confiné à l’échelle du nanomètre afin de renforcer le couplage entre le courant et le champ. En outre, nous introduisons l’hybridation d’un mode plasmonique metal/isolant/metal confiné et d’un mode d’antenne. Nous prédisons théoriquement que 30% de l’énergie émise par un dipôle est sous forme de SPP pour une longueur d’onde de travail de 800nm et une épaisseur d’isolant de 1 nm.Nous avons développé les processus de fabrication pour réaliser les antennes à effet tunnel en utilisant la configuration Al/AlOx/Au. L’antenne fabriquée présente une fonctionnalité robuste concernant les propriétés électriques et optiques. Nous montrons l’antenne permet de contrôler le spectre d’émission SPP, la polarisation d’émission SPP et renforcer l’efficacité des émissions de SPP de plus de 3 ordres de grandeur. La puissance totale émise sous forme de SPP est de l’ordre de 10 pW, quatre ordres de grandeur de plus que la puissance typique émise par une pointe de microscope à effet tunnel. / Surface plasmon polaritons (SPPs) plays a central role in nanophotonics because they are optical modes that can be confined in space at the 10 nm scale and in time at the 10 fs scale. Electrical excitation of surface plasmon polaritons by inelastic tunneling electrons has the potential to be fast and localized so that it offers the opportunity to develop a nanosource for on-chip nanophotonics taking advantage of the full potential of surface plasmons polaritons. However, inelastic tunneling is rather inefficient with a typical electron-to-plasmon conversion efficiency of 10-7~10-5. In this thesis manuscript, we present a study for enhancing surface plasmon emission by inelastic tunneling electrons with a resonant nanoantenna. It consists of theoretical and experimental investigations. First, we have developed a theoretical model to describe the light emission from a tunnel junction based on the fluctuation-dissipation theorem. Second, we have theoretically demonstrated two strategies to improve the antenna SPP efficiency thus aiming to enhance electron-to-plasmon conversion efficiency. We introduce a resonant antenna mode with a sub-nanometer gap in order to enhance the coupling between the inelastic current and the the mode. Furthermore, we introduce the hybridization in a nanopatch antenna between a gap mode and an antenna mode to launch SPPs: we theoretically predict that 30% of the power emitted by a dipole is converted into SPP (working wavelength at 800nm) with a 1nm gap thickness. Third, we have developed the fabrication procedures to realize antenna tunnel junctions based on the Al/AlOx/Au configuration. The fabricated antenna junction shows a robust functionality both regarding electrical and optical properties. The antenna junction is demonstrated to control the SPP emission spectrum, the SPP emission polarization and enhance the SPP emission efficiency by over 3 orders of magnitude. The total SPP power emitted is in the range of 10 pW, four orders of magnitude larger than the typical fW power emitted by a scanning tunneling tip junction.
434

Enhancement of Light Emission from Metal Nanoparticles Embedded Graphene Oxide

Karna, Sanjay K. 05 1900 (has links)
A fully oxidized state of graphene behaves as a pure insulating while a pristine graphene behaves as a pure conducting. The in-between oxide state in graphene which is the controlled state of oxide behaves as a semiconducting. This is the key condition for tuning optical band gap for the better light emitting property. The controlling method of oxide in graphene structure is known as reduction which is the mixed state of sp2 and sp3 hybrid state in graphene structure. sp2 hybridized domains correspond to pure carbon-carbon bond i.e. pristine graphene while sp3 hybridized domains correspond to the oxide bond with carbon i.e. defect in graphene structure. This is the uniqueness of the graphene-base material. Graphene is a gapless material i.e. having no bandgap energy and this property prevents it from switching device applications and also from the optoelectronic devices applications. The main challenge for this material is to tune as a semiconducting which can open the optical characteristics and emit light of desired color. There may be several possibilities for the modification of graphene-base material that can tune a band gap. One way is to find semiconducting property by doping the defects into pristine graphene structure. Other way is oxides functional groups in graphene structure behaves as defects. The physical properties of graphene depend on the amount of oxides present in graphene structure. So if there are more oxides in graphene structure then this material behaves as a insulating. By any means if it can be reduced then oxides amount to achieve specific proportion of sp2 and sp3 that can emit light of desired color. Further, after achieving light emission from graphene base material, there is more possibility for the study of non-linear optical property. In this work, plasmonic effect in graphene oxide has been focused. Mainly there are two kinds of plasmon effects have been studied, one is long range (surface) and short range (localized) plasmon. For long range plasmon gold thin film was deposited on partially reduced graphene oxide and for short range plasmon silver nanoparticles have used. Results show that there are 10-fold enhancement in light emission from partial graphene oxide coated with gold thin film while 4-fold enhancement from reduced graphene oxide solution with silver nanoparticles. Chemical method and photocatalytic method have been employed for the reduction of graphene oxide for the study of surface plasmon and localized plasmon. For the characterization UV-Vis spectrometer for absorption, spectrofluorophotometer for fluorescent emission, Raman spectrometer for material characterization, photoluminescence and time resolved photoluminescence have been utilized. Silver and gold nanoparticles are spherical of average size of 80 nm and 40 nm have been used as plasmons.
435

Hybridization of Surface Plasmon Polaritons and Molecular Excitations

Memmi, Hala 23 June 2023 (has links)
Starke Kopplung von Molekülen mit einem räumlich begrenzten Lichtfeld führt zur Bildung neuer polaritonischer Eigenzustände des Systems, die sowohl molekulare als auch photonische Eigenschaften erhalten und somit ein großes Potenzial für Anwendungen in der Chemie und Optoelektronik besitzen. In dieser Arbeit wird die Kopplung zwischen Oberflächenplasmonen Polaritonen (SPPs), die als das räumlich begrenzte Lichtfeld agieren, und molekularen Anregungen wie Schwingungen und polaronischen Resonanzen untersucht. Das starke Kopplungsregime zwischen einer Molekülschwingung und einem SPP wird zum ersten Mal im mittleren Infrarot unter Verwendung der Carbonylschwingung von Poly(vinylmethylketon) Polymer und Silber als Ausbreitungsmedium von SPPs demonstriert. Die neu gebildeten Hybridmoden werden durch Experimente und numerische Modellierung untersucht, wobei Messungen der abgeschwächten Totalreflexion und der thermischen Emission sowie Berechnungen mittels der Transfermatrix und der linearen Dispersionstheorie verwendet werden. Ein Anticrossing in der Dispersion der Polariton-Zweige mit einer Energieaufspaltung bis zu 15 meV, was die Hauptsignatur des starken Kopplungsregimes ist, wird beobachtet. Die starke Kopplung mit Zinkgalliumoxid, einem hochdotierten Halbleiter als Alternative zu Edelmetallen, wird auch untersucht. Experimentelle und simulierte Reflektometrie-Spektren sowie Dispersionsrelationen werden diskutiert, um Rückschlüsse auf die Eigenschaften des Systems zu ziehen. Außerdem wird ein Ansatz zur Verbesserung der Leitfähigkeit organischer Halbleiterpolymere durch starke Kopplung ihrer polaronischen Zustände an SPPs vorgestellt und Leitfähigkeitsmessungen durchgeführt. Ziel ist es, die Delokalisierung der Hybridzustände auszunutzen, um die Leitfähigkeit zu verändern. Die präsentierten Ergebnisse bieten neue Einblicke in den Nutzen der Eigenschaften der Licht-Materie-Hybridisierung, um ihr volles Potenzial für verschiedene Bereiche und Anwendungen zu erforschen. / Strong coupling of molecules with a confined light field results in the formation of new polaritonic eigenstates of the system called polaritons that inherit both molecular and photonic characteristics and thus holds strong potential for applications in chemistry and optoelectronics. In this work, coupling between propagating surface plasmon polaritons (SPPs), as confined light field, and molecular excitations, such as vibrational resonances and polaronic features, is investigated. The strong coupling regime between a molecular vibration and a propagating SPP is demonstrated for the first time in the mid-infrared spectral range using the carbonyl stretch vibration of Poly(vinyl methyl ketone) polymer and silver as metallic medium for SPPs propagation. The newly formed hybrid modes are investigated through experiments and numerical modelling, employing attenuated-total-reflection and thermal emission measurements as well as transfer-matrix and linear dispersion theory calculations. An anticrossing behavior in the dispersion of the polariton branches with an energy splitting up to 15meV, which is a key signature of the strong coupling regime, is observed. Strong coupling involving zinc gallium oxide, which is a highly doped semiconductor, as an alternative to noble metals is also investigated. Experimental and simulated reflectometry spectra as well as the dispersion relations are discussed so as to draw conclusions about the properties of the system. Furthermore, an approach to enhance the conductivity of organic semiconductor polymers by strongly coupling their polaronic states to SPPs is presented and four-point probe measurements are conducted. The goal is to exploit the delocalization of the hybrid states to alter the conductivity of the organic semiconductor. The results presented in this thesis provide new insights into the profit from the properties of light-matter hybridization in order to explore its full potential for several areas and applications.
436

Coherence and Coupling of Cavity Photons and Tamm Plasmons in Metal-Organic Microcavities

Brückner, Robert 31 May 2013 (has links)
The subject of this thesis is the investigation of organic microcavities with implemented unstructured and laterally structured metal layers. The optical properties are studied by means of various spectroscopic techniques and are compared to conventional metal-free devices. It is shown that the large expected absorption caused by the embedded metal is reduced compared to the case of a free-standing metal layer of the same thickness. As a consequence of the interaction of the photonic cavity mode with the metallic structures, two new coupled modes emerge which are called Tamm plasmons. The strength of this coupling and the resulting spectral difference of these modes are defined by the thickness of both the metal layer and the adjacent dielectric layers. These control parameters enable the optimization of the structural design. Accordingly, coherent emission from Tamm plasmons is realized at room temperature. An analytical approach is developed accounting for the experimentally observed polarization splitting of detuned resonances. Next, laterally structured metal layers embedded into organic microcavities are considered. The structuring leads to a confinement of the photonic density of states evident from a clear discretization in energy of the corresponding modes. Applying a photolithographic technique to structure the metal layer into a pattern of regularly placed stripes leads to additional effects due to the resulting periodicity. By exciting this hybrid structure above a certain threshold, periodic arrays of localized cavity modes and metal-based Tamm plasmons are generated. These Bloch-like excited states are capable of phase coupling across the grating. Additionally, surface plasmon polaritons (SPPs) are excited propagating at the interface of the silver and the adjacent dielectric layers. Thanks to the periodicity of the metallic stripes, SPPs are subject to efficient Bragg scattering into the light cone in air. Modes up to order number 30 are detectable as quasi-linear periodic lines in the dispersion pattern. A Fourier analysis reveals an in- or out-of-phase coupling of the modes and a spread of the coherence over macroscopic distances of more than 40 µm. This strategy of embedding metal patterns into an organic microcavity yields a viable route towards electrically contacted organic solid-state lasers. / In dieser Arbeit werden erstmals dünne, unstrukturierte sowie lateral strukturierte metallische Schichten in organische Mikroresonatoren eingebettet und anschließend die optischen Eigenschaften mittels spektroskopischer Verfahren untersucht. Es zeigt sich, dass die erwarteten hohen optischen Verluste durch die Absorption des elektrischen Feldes im Metall deutlich reduziert sind, verglichen mit dem Fall einer freistehenden, nicht eingebetteten Metallschicht gleicher Dicke. Als Folge der Wechselwirkung der photonischen Kavitätsmode mit dem Metall spaltet diese in zwei miteinander gekoppelte Moden auf. Diese neuartigen Moden werden als Tamm-Plasmonen bezeichnet. Die Kopplung sowie die spektrale Differenz beider Moden ist zum einen durch die optischen Eigenschaften und die Dicke der eingebetteten Metallschicht definiert, zum anderen durch die optische Dicke der angrenzenden dielektrischen Schichten. Dadurch ist eine Optimierung des Systems im Hinblick auf Absorption und Emissionswellenlänge der Bauteile möglich, so dass selbst bei Raumtemperatur kohärente Emission eines Tamm-Zustands erzielt werden kann. Eine erarbeitete analytische Rechnung bestätigt und erklärt die experimentell gemessene, polarisationsabhängige Aufspaltung der auftretenden resonanten Moden. Im zweiten Teil der Arbeit sind organische Mikroresonatoren, deren eingebettete Metallschicht in lateraler Richtung auf verschiedene Weisen strukturiert sind, Gegenstand der Untersuchungen. Als Folge dieser Strukturierung kommt es zur lateralen Beschränkung der photonischen Zustandsdichte, was durch eine Diskretisierung der Energiespektren der resultierenden optischen Moden experimentell nachweisbar ist. Werden periodische Metallstreifen mittels Photolithographie erzeugt, so kommt es neben einer weiteren Beeinflussung der Zustandsdichte auch zu Effekten, die durch diese Periodizität bedingt sind. Entsprechend reproduziert sich die Kavitätsmode mehrfach im Impulsraum. Oberflächenplasmonen, die auf der Grenzfläche zwischen dem Metall und den dielektrischen Schichten propagieren, werden auf Grund der Periodizität bis in den experimentell zugänglichen Lichtkegel gestreut. Dabei werden Plasmonenresonanzen bis hin zur 30. Ordnung gemessen. Im letzten Experiment werden derart periodisch strukturierte Metall-Organik-Mikroresonatoren auf ihre Lasertätigkeit hin untersucht. Eine lokal begrenzte optische Anregung mittels eines gepulsten Lasers führt zur Ausbildung verschiedener Bloch-ähnlicher Moden, deren Kohärenz sich lateral bis zu 40 µm ausbreitet. Eine Fourieranalyse zeigt eindeutige und feste Phasenbeziehungen zwischen angrenzenden Maxima der Moden. Zusammenfassend ergeben sich interessante metall-organische Systeme, die minimale Absorption und niedrige Laserschwellen aufweisen und die prinzipielle Eignung zur elektrischen Kontaktierung besitzen.
437

Influence of Escherichia coli feedstock properties on the performance of primary protein purification

Råvik, Mattias January 2006 (has links)
Abstract The aim of the present study was to increase the understanding of how the cell surface properties affect the performance of unit operations used in primary protein purification. In particular, the purpose was to develop, set up and apply methods for studies of cell surface properties and cell interactions. A method for microbial cell surface fingerprinting using surface plasmon resonance (SPR) is suggested. Four different Escherichia coli strains were used as model cells. Cell surface fingerprints were generated by registration of the interaction between the cells and four different surfaces, with different physical and chemical properties, when a cell suspension was flown over the surface. Significant differences in fingerprint pattern between some of the strains were observed. The physical properties of the cell surfaces were determined using microelectrophoresis, contact angle measurements and aqueous two-phase partitioning and were compared with the SPR fingerprints. The generated cell surface fingerprints and the physical property data were evaluated with multivariate data analysis that showed that the cells were separated into individual groups in a similar way using principal component analysis plots (PCA). Studies of the behaviour of the model cells on stirred cell filtration and in an interaction test with different expanded bed adsorption (EBA) adsorbents were performed. It could be concluded that especially one of the strains behaved differently. Differences in the properties of the model cells were indicated by microelectrophoresis and aqueous two-phase partitioning which to some extent correlated with observed differences in behaviour during filtration and in an interaction test with EBA adsorbents. The impact of high-pressure homogenisation of E. coli cell extract was examined, with a lab scale and a pilot scale technique. The DNA-fragmentation, visualised with agarose gel electrophoresis, and the resulting change in viscosity was analysed. A short homogenisation time resulted in increased viscosity of the process solution that correlated with increased concentration of released non-fragmented DNA. With longer homogenisation time the viscosity decreased with increasing degree of DNA-fragmentation. The results show that strain dependant cell surface properties of E. coli may have an impact on several primary steps in downstream processing. / QC 20101129
438

Design, Fabrication, And Testing Of High-transparency Deep Ultra-violet Contacts Using Surface Plasmon Coupling In Subwavelength Aluminum Meshes

Mazuir, Clarisse 01 January 2011 (has links)
The present work aims at enhancing the external quantum efficiencies of ultra-violet (UV) sensitive photodetectors (PDs) and light emitting diodes (LEDs)for any light polarization. Deep UV solid state devices are made out of AlGaN or MgZnO and their performances suffer from the high resistivity of their p-doped regions. They require transparent p-contacts; yet the most commonly used transparent contacts have low transmission in the UV: indium tin oxide (ITO) and nickel-gold (Ni/Au 5/5 nms) transmit less than 50% and 30% respectively at 300 nm. Here we investigate the use of surface plasmons (SPs) to design transparent p-contacts for AlGaN devices in the deep UV region of the spectrum. The appeal of using surface plasmon coupling arose from the local electromagnetic field enhancement near the metal surface as well as the increase in interaction time between the field and semiconductor if placed on top of a semiconductor. An in/out-coupling mechanism is achieved by using a grating consisting of two perpendicularly oriented sets of parallel aluminum lines with periods as low as 250 nm. The incident light is first coupled into SPs at the air/aluminum interface which then re-radiate at the aluminum/AlGaN interface and the photons energy is transferred to SP polaritons (SPPs) and back to photons. High transmission can be achieved not only at normal incidence but for a wider range of incident angles. iv A finite difference time domain (FDTD) package from R-Soft was used to simulate and design such aluminum gratings with transparency as high as 100% with tunable peak wavelength, bandwidth and angular acceptance. A rigorous coupled wave analysis (RCWA) was developed in Matlab to validate the FDTD results. The high UV transparency meshes were then fabricated using an e-beam assisted lithography lift-off process. Their electrical and optical properties were investigated. The electrical characterization was very encouraging; the sheet resistances of these meshes were lower than those of the conventionally used transparent contacts. The optical transmissions were lower than expected and the causes for the lower measurements have been investigated. The aluminum oxidation, the large metal grain size and the line edge roughness were identified as the main factors of inconsistency and solutions are proposed to improve these shortcomings. The effect of aluminum oxidation was calculated and the passivation of aluminum with SiO2 was evaluated as a solution. A cold deposition of aluminum reduced the aluminum grain size from 60 nm to 20 nm and the roughness from 5 nm to 0.5 nm. Furthermore, replacing the conventional lift-off process by a dry back-etch process led to much smoother metal line edges and much high optical transparency. The optical measurements were consistent with the simulations. Therefore, reduced roughness and smooth metal line edges were found to be especially critical considerations for deep UV application of the meshes.
439

Light-matter Interactions Of Plasmonic Nanostructures

Reed, Jennifer 01 January 2013 (has links)
Light interaction with matter has long been an area of interest throughout history, spanning many fields of study. In recent decades, the investigation of light-matter interactions with nanostructures has become an intense area of research in the field of photonics. Metallic nanostructures, in particular, are of interest due to the interesting properties that arise when interacting with light. The properties are a result of the excitation of surface plasmons which are the collective oscillation of the conduction electrons in the metal. Since the conduction electrons can be thought of as harmonic oscillators, they are quantized in a similar fashion. Just as a photon is a quantum of oscillations of an electromagnetic field, the plasmon is a quantum of electron oscillations of a metal. There are three types of plasmons: 1. Bulk plasmons, also called volume plasmons, are longitudinal density fluctuations which propagate through a bulk metal with an eigenfrequency of �� called the plasma frequency. 2. Localized surface plasmons are non-propagating excitations of the conduction electrons of a metallic nanoparticle coupled to an electromagnetic field. 3. Surface plasmon polaritons are evanescent, dispersive propagating electromagnetic waves formed by a coupled state between a photon and the excitation of the surface plasmons. They propagate along the surface of a metal-dielectric interface with a broad spectrum of eigenfrequencies from � = 0 to � = ��⁄√2. iv Plasmonics is a subfield of photonics which focuses on the study of surface plasmons and the optical properties that result from light interacting with metal films and nanostructures on the deep subwavelength scale. In this thesis, plasmonic nanostructures are investigated for optical waveguides and other nanophotonic applications through computational simulations primarily base on electrodynamic theory. The theory was formulated by several key figures and established by James Clerk Maxwell after he published a set of relations which describe all classical electromagnetic phenomena, known as Maxwell’s equations. Using methods based on Maxwell’s equations, the optical properties of metallic nanostructures utilizing surface plasmons is explored. In Chapter 3, light propagation of bright and dark modes of a partially and fully illuminated silver nanorod is investigated for waveguide applications. Then, the origin of the Fano resonance line shape in the scattering spectra of a silver nanorod is investigated. Next, in Chapter 4, the reflection and transmission of a multilayer silver film is simulated to observe the effects of varying the dielectric media between the layers on light propagation. Building on the multilayer film work, metal-insulator-metal waveguides are explored by perforating holes in the bottom layer of a two layer a silver film to investigate the limits of subwavelength light trapping, confinement, and propagation. Lastly, in Chapter 5, the effect of surface plasmons on the propagation direction of electromagnetic wave around a spherical silver nanoparticle which shows an effective negative index of refraction is examined. In addition, light manipulation using a film of silver prisms with an effective negative index of refraction is also investigated. The silver prisms demonstrate v polarization selective propagation for waveguide and optical filter applications. These studies provide insight into plasmonic mechanisms utilized to overcome the diffraction limit of light. Through better understanding of how to manipulating light with plasmonic nanostructures, further advancements in nanophotonic technologies for applications such as extremely subwavelength waveguides, sensitive optical detection, optical filters, polarizers, beam splitters, optical data storage devices, high speed data transmission, and integrated subwavelength photonic circuits can be achieved.
440

Characterization and Interactions of Ultrafast Surface Plasmon Pulses

Yalcin, Sibel Ebru 01 September 2010 (has links)
Surface Plasmon Polaritons (SPPs) are considered to be attractive components for plasmonics and nanophotonic devices due to their sensitivity to interface changes, and their ability to guide and confine light beyond the diffraction limit. They have been utilized in SPP resonance sensors and near field imaging techniques and, more recently, SPP experiments to monitor and control ultrafast charge carrier and energy relaxation dynamics in thin films. In this thesis, we discuss excitation and propagation properties of ultrafast SPPs on thin extended metal films and SPP waveguide structures. In addition, localized and propagating surface plasmon interactions in functional plasmonic nanostructures will also be addressed. For the excitation studies of ultrafast SPPs, we have done detailed analysis of femtosecond surface plasmon pulse generation under resonant excitation condition using prism coupling technique. Our results show that photon-SPP coupling is a resonant process with a finite spectral bandwidth that causes spectral phase shift and narrowing of the SPP pulse spectrum. Both effects result in temporal pulse broadening and, therefore, set a lower limit on the duration of ultrafast SPP pulses. These findings are necessary for the successful integration of plasmonic components into high-speed SPP circuits and time-resolved SPP sensors. To demonstrate interactions between localized and propagating surface plasmons, we used block-copolymer based self assembly techniques to deposit long range ordered gold nanoparticle arrays onto silver thin films to fabricate composite nanoparticle thin film structures. We demonstrate that these gold nanoparticle arrays interact with SPPs that propagate at the film/nanoparticle interface and therefore, modify the dispersion relation of SPPs and lead to strong field localizations. These results are important and advantageous for plasmonic device applications. For the propagation studies of ultrafast SPPs, we have designed and constructed a home-built femtosecond photon scanning tunneling microscope (fsPSTM) to visualize ultrafast SPPs in photonic devices based on metal nanostructures. Temporal and phase information have been obtained by incorporating the fsPSTM into one arm of a Mach-Zehnder interferometer, allowing heterodyne detection. Understanding plasmon propagation in metal nanostructures is a requirement for implementing such structures into opto-electronic and telecommunication technologies.

Page generated in 0.1124 seconds