• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 31
  • 19
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 170
  • 170
  • 93
  • 91
  • 43
  • 36
  • 32
  • 31
  • 21
  • 20
  • 19
  • 18
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Control of Dynamically Assisted Phase-shifting Transformers

Johansson, Nicklas January 2008 (has links)
In this thesis, controllers for power oscillation damping, transient stability improvement and power flow control by means of a Controlled Series Compensator (CSC) and and a Dynamic Power Flow Controller (DPFC) are proposed. These devices belong to the group of power system components referred to as Flexible AC Transmission System (FACTS) devices. The developed controllers use only quantities measured locally at the FACTS device as inputs, thereby avoiding the risk of interrupted communications associated with the use of remote signals for control. For power systems with one dominating, poorly damped inter-area power oscillation mode, it is shown that a simple generic system model can be used as a basis for damping- and power flow control design. The model for control of CSC includes two synchronous machine models representing the two grid areas participating in the oscillation and three reactance variables, representing the interconnecting transmission lines and the FACTS device. The model for control of DPFC is of the same type but it also includes the phase shift of the internal phase-shifting transformer of the DPFC. The key parameters of the generic grid models are adaptively set during the controller operation by estimation from the step responses in the FACTS line power to the changes in the line series reactance inserted by the FACTS device. The power oscillation damping controller is based on a time-discrete, non-linear approach which aims to damp the power oscillations and set the desired power flow on the FACTS line by means of two step changes in the line reactance separated in time by half an oscillation cycle. A verification of the proposed controllers was done by means of digital simulations using power system models of different complexities. The CSC and DPFC controllers were shown to significantly improve the small-signal- and transient stability in one four-machine system of a type commonly used to study inter-area oscillations. The CSC controller was also tested for 18 different contingencies in a 23-machine system, resulting in an improvement in both the system transient stability and the damping of the critical oscillation mode. / QC 20101112
162

Study of FACTS/ESS Applications in Bulk Power System

Zhang, Li 27 November 2006 (has links)
The electric power supply industry has evolved into one of the largest industries. Even though secure and reliable operation of the electric power system is fundamental to economy, social security and quality of modern life, the complicated power grid is now facing severe challenges to meet the high-level secure and reliable operation requirements. New technologies will play a major role in helping today's electric power industry to meet the above challenges. This dissertation has focused on some key technologies among them, including the emerging technologies of energy storage, controlled power electronics and wide area measurement technologies. Those technologies offer an opportunity to develop the appropriate objectives for power system control. The use of power electronics based devices with energy storage system integrated into them, such as FACTS/ESS, can provide valuable added benefits to improve stability, power quality, and reliability of power systems. The study in this dissertation has provided several guidelines for the implementation of FACTS/ESS in bulk power systems. The interest of this study lies in a wide range of FACTS/ESS technology applications in bulk power system to solve some special problems that were not solved well without the application of FACTS/ESS. The special problems we select to solve by using FACTS/ESS technology in this study include power quality problem solution by active power compensation, electrical arc furnace (EAF) induced problems solution, inter-area mode low frequency oscillation suppression, coordination of under frequency load shedding (UFLS) and under frequency governor control (UFGC), wide area voltage control. From this study, the author of this dissertation reveals the unique role that FACTS/ESS technology can play in the bulk power system stability control and power quality enhancement in power system. In this dissertation, almost all the studies are based on the real system problems, which means that the study results are special valuable to certain utilities that have those problems. The study in this dissertation can assist power industry choose the right FACTS/ESS technology for their intended functions, which will improve the survivability, minimize blackouts, and reduce interruption costs through the use of energy storage systems. / Ph. D.
163

Supporting Distributed Fault Tolerance In A Real-Time Micro-Kernel

Menon, Suraj S. 04 December 2006 (has links)
Research into modular approaches for constructing power electronics control systems has provided a number of benefits, as well as new opportunities. Control systems composed of an interconnected collection of standardized parts makes distributed processing a realistic possibility. Unfortunately, current strategies to supporting software on such systems have a number of critical drawbacks. Many existing approaches rely on centralized control strategies, fail to support fault tolerance in the face of failures among processing nodes or communications links, and fail to robustly support live addition or removal of nodes from a running network. In this context, failure of a single element means failure of the entire system. This thesis describes research to extend the Dataflow Architecture Real-time Kernel (DARK) to support distributed, fault-tolerant execution of control algorithms for power electronics control systems. An appropriate scheme for fault-tolerant scheduling of processes on distributed processing nodes is described, added to DARK, and evaluated. Literature indicates that fault-tolerant multiprocessor scheduling for hard real-time tasks with task precedence constraints is an NP-hard problem. The new system is based on an off-line fault-tolerant scheduling strategy that generates a static schedule of tasks for each processing unit to follow. This algorithm handles both the task precedence constraints and the constraints imposed by the underlying network protocol(DRPESNET). Modifications to the underlying daisy-chained, packet-switched, time-triggered ring network protocol to support communications fault tolerance and plug-and-play addition or removal of live nodes from an existing control system are also described. / Master of Science
164

IL POTERE DI CONTROLLO DEL DATORE DI LAVORO TRA ESIGENZE DELL'IMPRESA E TUTELA DELLA DIGNITA' E DELLA RISERVATEZZA DEI LAVORATORI

ROSSI, NICOLO' 14 May 2019 (has links)
Il potere di controllare l’attività dei lavoratori subordinati è da sempre una manifestazione ineliminabile della posizione giuridica del datore di lavoro. Nella misura in cui risulta necessario alla corretta esecuzione del contratto, l’assoggettamento del lavoratore al controllo datoriale costituisce una componente essenziale del rapporto di cui all’art. 2094 c.c., contribuendo a definire la nozione stessa di subordinazione. Proprio per questa ragione, una precisa ricognizione dei limiti posti dall’ordinamento ai controlli dell’imprenditore assume fondamentale importanza, onde scongiurare il rischio che la relazione che si instaura nei luoghi di lavoro divenga occasione di condizionamenti della libertà del lavoratore, incompatibili con i principi su cui si fonda una società democratica. Prendendo le mosse da tali considerazioni, l’opera analizza il quadro normativo sul potere di controllo del datore di lavoro, concentrandosi soprattutto sulle regole sancite dallo Statuto dei lavoratori e sulla più recente disciplina di protezione dei dati personali. Nei quattro capitoli lungo i quali si articola, la riflessione viene svolta con sguardo rivolto sia ai tradizionali problemi della materia sia alle nuove sfide sollevate dall’innovazione tecnologica. / The power to control the activity of workers has always been an ineradicable manifestation of the employer’s legal position. To the extent that it is necessary for the correct performance of the contract, the subjection of the worker to the employer control is an essential element of the relationship referred to in Article 2094 of the Italian Civil Code and plays a crucial role in the definition of subordination. For this reason, an accurate recognition of the legal limits on the entrepreneur’s controls is important to avoid the risk that the employment relationship becomes an occasion for conditioning workers’ freedom in a way that is incompatible with the principles of a democratic society. Based on these considerations, the study analyzes the regulatory framework on the employer’s power to control workers, focusing mostly on the rules laid down by Legge no. 300/1970 (Statuto dei lavoratori) and on the recent Personal Data Protection Regulation. The reflection, which is organized around four chapters, is carried out with an eye on both traditional problems related to this topic and new challenges raised by technological innovation.
165

Sensory input encoding and readout methods for in vitro living neuronal networks

Ortman, Robert L. 06 July 2012 (has links)
Establishing and maintaining successful communication stands as a critical prerequisite for achieving the goals of inducing and studying advanced computation in small-scale living neuronal networks. The following work establishes a novel and effective method for communicating arbitrary "sensory" input information to cultures of living neurons, living neuronal networks (LNNs), consisting of approximately 20 000 rat cortical neurons plated on microelectrode arrays (MEAs) containing 60 electrodes. The sensory coding algorithm determines a set of effective codes (symbols), comprised of different spatio-temporal patterns of electrical stimulation, to which the LNN consistently produces unique responses to each individual symbol. The algorithm evaluates random sequences of candidate electrical stimulation patterns for evoked-response separability and reliability via a support vector machine (SVM)-based method, and employing the separability results as a fitness metric, a genetic algorithm subsequently constructs subsets of highly separable symbols (input patterns). Sustainable input/output (I/O) bit rates of 16-20 bits per second with a 10% symbol error rate resulted for time periods of approximately ten minutes to over ten hours. To further evaluate the resulting code sets' performance, I used the system to encode approximately ten hours of sinusoidal input into stimulation patterns that the algorithm selected and was able to recover the original signal with a normalized root-mean-square error of 20-30% using only the recorded LNN responses and trained SVM classifiers. Response variations over the course of several hours observed in the results of the sine wave I/O experiment suggest that the LNNs may retain some short-term memory of the previous input sample and undergo neuroplastic changes in the context of repeated stimulation with sensory coding patterns identified by the algorithm.
166

A Networked Control Systems Framework for Smart Grids with Integrated Communication

Sivaranjani, S January 2014 (has links) (PDF)
Over the last decade, power systems have evolved dramatically around the world, owing to higher demand, stringent requirements on quality and environmental concerns that are becoming increasingly critical. With the introduction of new technologies like large-scale renewable energy, wide-area measurement based on phasor measurement units (PMUs) and consumer interaction in the distribution system, the power grid today has become more potent than ever before. Most of the defining features of the smart grid today rest on the integration of advanced communication capabilities into the grid. While communication infrastructure has become a key enabler for the smart grid, it also introduces new and complex control challenges that must be addressed. As we increasingly rely on information transmitted to distant areas over communication networks, it becomes imperative to model the effects of the communication system on the stability of the power grid. Several approaches exist in control theory to study such systems, widely referred to as Networked Control Systems (NCS). Networked control theory provides mathematical tools for system stability analysis and control in the presence of communication delays, packet dropouts and disordering due to transmission of sensor and actuator signals via a limited communication network. In this thesis, a networked control framework for smart grids with integrated commu-nication infrastructure (ICT) is developed. In particular, a networked control systems perspective is developed for two scenarios - wide-area monitoring control, and coordinated control of distributed generation sources. The effects of communication delays and packet dropouts on power system stability are modeled in detail. In the wide-area monitoring control problem, system state measurements are trans-mitted from remote locations through a communication network. The system is modeled as an NCS and a control design approach is presented to damp inter-area oscillations arising from various power system disturbances in the presence of communication constraints. In the coordinated control scenario, a power system with geographically dispersed sources is modeled as an NCS. A networked controller is designed to stabilize the system in the presence of small signal disturbances when system measurements are subject to communication delays and packet dropouts. A realistic output feedback networked control scheme that only uses voltage measurements from PMUs is also developed for practical implementation. The networked controllers designed in this thesis are validated against controllers designed by standard methods, by simulation on standard test systems. The networked controllers are found to enhance power system stability and load transfer capability even in the presence of severe packet dropouts and delays. Several extensions and theoretical problems motivated by this thesis are also proposed.
167

Contribution for integrating urban wind turbine into electrical microgrid : modeling and control / Contribution à l'intégration des éoliennes urbaines dans un micro réseau électrique : modélisation et contrôle

Liu, Hongliang 27 January 2017 (has links)
L’intégration de l’énergie éolienne, qui est une ressource renouvelable très utilisée, n’est pas toujours facile pour le micro-réseau urbain. Dans cette thèse, une éolienne urbaine basée sur une machine synchrone à aimants permanents (MSAP) est étudiée pour être intégrée dans un micro-réseau urbain à courant continu. Un état de l'art concernant les énergies renouvelables, les micro-réseaux à courant continu et les stratégies de contrôle de la production d'énergie éolienne, est réalisée. Basé sur un modèle d’éolienne urbaine répondant à la demande du système électrique, qui se compose d’un émulateur de vent et de pales, un MSAP et un convertisseur DC/DC, cette thèse propose des méthodes de poursuite du point de puissance maximale satisfaisant à l’obligation de produire de l’énergie dans la mesure du possible. Une stratégie de contrôle à puissance limitée répond correctement. De simples à complexes, quatre algorithmes MPPT, P&O à pas fixe, P&O à pas variable avec la méthode Newton-Raphson améliorée, P&O à pas variable à base de logique floue et une méthode indirecte de type lookup table, sont étudiés et implémentés pour être comparés à l’aide de trois profils de vitesse du vent. Par expérimentation, les algorithmes MPPT et PLC sont comparés, analysés et discutés. Résumant tous les résultats expérimentaux, la méthode lookup table peut gérer toutes les exigences du mode de fonctionnement MPPT en présentant la meilleure performance, mais, dans le mode de fonctionnement PLC, la P&O à base de logique floue présente les meilleures performances. / The integration of the wind power, which is one mostly used renewable resource, is always one challenger for urban microgrid. In this thesis, one urban wind turbine based on a permanent magnet synchronous machine (PMSM) is studied in order to be integrated into a DC urban microgrid. A state of the art concerning the renewable energies, DC microgrid, and control strategies of wind power generation is done. Based on a model of urban wind turbine fitting the demand of urban electric system, which consists of an emulator of wind speed and blades, a PMSM and a DC/DC converter, this thesis proposes the maximum power point tracking (MPPT) methods satisfying the requirement of producing energy as much as possible, and power limited control (PLC) strategies answering the demand of flexible energy production. From simple to complex, four MPPT algorithms including Perturbation and Observation (P&O) fixed step-size method, P&O with improved Newton-Raphson method, P&O with fuzzy logic method and lookup table method are studied and implemented to be compared with each other using three wind velocity profiles. According to the experience about MPPT subject, four PLC algorithms are introduced and implemented to be analyzed and compared with each other with one power demand profile calculated randomly. Summarizing all experimental results, the lookup table method can handle all requirement of MPPT operating mode supplying the best performance, however, in the condition of more flexible power demand operating mode, the combination of P&O and fuzzy logic method presents the best performance and potential which can be achieved in future works.
168

Modeling and control of hydraulic wind power transfer systems

Vaezi, Masoud January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Hydraulic wind power transfer systems deliver the captured energy by the blades to the generators differently. In the conventional systems this task is carried out by a gearbox or an intermediate medium. New generation of wind power systems transfer the captured energy by means of high-pressure hydraulic fluids. A hydraulic pump is connected to the blades shaft at a high distance from the ground, in nacelle, to pressurize a hydraulic flow down to ground level equipment through hoses. Multiple wind turbines can also pressurize a flow sending to a single hose toward the generator. The pressurized flow carries a large amount of energy which will be transferred to the mechanical energy by a hydraulic motor. Finally, a generator is connected to the hydraulic motor to generate electrical power. This hydraulic system runs under two main disturbances, wind speed fluctuations and load variations. Intermittent nature of the wind applies a fluctuating torque on the hydraulic pump shaft. Also, variations of the consumed electrical power by the grid cause a considerable load disturbance on the system. This thesis studies the hydraulic wind power transfer systems. To get a better understanding, a mathematical model of the system is developed and studied utilizing the governing equations for every single hydraulic component in the system. The mathematical model embodies nonlinearities which are inherited from the hydraulic components such as check valves, proportional valves, pressure relief valves, etc. An experimental prototype of the hydraulic wind power transfer systems is designed and implemented to study the dynamic behavior and operation of the system. The provided nonlinear mathematical model is then validated by experimental result from the prototype. Moreover, this thesis develops a control system for the hydraulic wind power transfer systems. To maintain a fixed frequency electrical voltage by the system, the generator should remain at a constant rotational speed. The fluctuating wind speed from the upstream, and the load variations from the downstream apply considerable disturbances on the system. A controller is designed and implemented to regulate the flow in the proportional valve and as a consequence the generator maintains its constant speed compensating for load and wind turbine disturbances. The control system is applied to the mathematical model as well as the experimental prototype by utilizing MATLAB/Simulink and dSPACE 1104 fast prototyping hardware and the results are compared.
169

PV Based Converter with Integrated Battery Charger for DC Micro-Grid Applications

Salve, Rima January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This thesis presents a converter topology for photovoltaic panels. This topology minimizes the number of switching devices used, thereby reducing power losses that arise from high frequency switching operations. The control strategy is implemented using a simple micro-controller that implements the proportional plus integral control. All the control loops are closed feedback loops hence minimizing error instantaneously and adjusting efficiently to system variations. The energy management between three components, namely, the photovoltaic panel, a battery and a DC link for a microgrid, is shown distributed over three modes. These modes are dependent on the irradiance from the sunlight. All three modes are simulated. The maximum power point tracking of the system plays a crucial role in this configuration, as it is one of the main challenges tackled by the control system. Various methods of MPPT are discussed, and the Perturb and Observe method is employed and is described in detail. Experimental results are shown for the maximum power point tracking of this system with a scaled down version of the panel's actual capability.
170

Energy conversion unit with optimized waveform generation

Sajadian, Sally January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The substantial increase demand for electrical energy requires high efficient apparatus dealing with energy conversion. Several technologies have been suggested to implement power supplies with higher efficiency, such as multilevel and interleaved converters. This thesis proposes an energy conversion unit with an optimized number of output voltage levels per number of switches nL=nS. The proposed five-level four-switch per phase converter has nL=nS=5/4 which is by far the best relationship among the converters presented in technical literature. A comprehensive literature review on existing five-level converter topologies is done to compare the proposed topology with conventional multilevel converters. The most important characteristics of the proposed configuration are: (i) reduced number of semiconductor devices, while keeping a high number of levels at the output converter side, (ii) only one DC source without any need to balance capacitor voltages, (iii) high efficiency, (iv) there is no dead-time requirement for the converters operation, (v) leg isolation procedure with lower stress for the DC-link capacitor. Single-phase and three-phase version of the proposed converter is presented in this thesis. Details regarding the operation of the configuration and modulation strategy are presented, as well as the comparison between the proposed converter and the conventional ones. Simulated results are presented to validate the theoretical expectations. In addition a fault tolerant converter based on proposed topology for micro-grid systems is presented. A hybrid pulse-width-modulation for the pre-fault operation and transition from the pre-fault to post-fault operation will be discussed. Selected steady-state and transient results are demonstrated to validate the theoretical modeling.

Page generated in 0.1664 seconds