Spelling suggestions: "subject:"theorem""
1 |
Fonction de Artin et théorème d'IzumiRond, Guillaume 30 June 2005 (has links) (PDF)
Nous etudions la fonction de Artin qui apparait dans la version forte du theoreme d'approximation de Artin. Nous montrons que cette fonction n'est en general pas majoree par une fonction affine comme cela a ete conjecture. Nous faisons le lien avec un resultat d'approximation diophantienne dans le corps des series en plusieurs variables.
|
2 |
Theoremes limite pour les champs et les suites stationnaires de variables aleatoires reellesEL MACHKOURI, Mohamed 19 December 2002 (has links) (PDF)
Cette thèse est essentiellement consacrée au comportement asymptotique de champs et de suites stationnaires de variables aléatoires réelles. Dans le premier chapitre, nous mettons en évidence que le principe d'invariance de Dedecker (2001) pour des processus de sommes partielles issus d'un champ stationnaire $(X_{i})_{i\in\Z^{d}}$ de variables aléatoires réelles bornées et indexés par les ensembles d'une classe $\A$ n'a plus nécessairement lieu si on considère des champs de variables aléatoires qui sont seulement $p$-intégrables ($0
|
3 |
On the sets of real vectors recognized by finite automata in multiple basesBrusten, Julien 08 June 2011 (has links)
This thesis studies the properties of finite automata recognizing sets of real vectors encoded in positional notation using an integer base. We consider both general infinite-word automata, and the restricted class of weak deterministic automata, used, in particular, as symbolic data structures for representing the sets of vectors definable in the first order additive theory of real and integer numbers.
<br><br>
In previous work, it has been established that all sets definable in the additive theory of reals and integers can be handled by weak deterministic automata regardless of the chosen numeration base. In this thesis, we address the reciprocal property, proving that the sets of vectors that are simultaneously recognizable in all bases, by either weak deterministic or Muller automata, are those definable in the additive theory of reals and integers.
<br><br>
Precisely, for weak deterministic automata, we establish that the sets of real vectors simultaneously recognizable in two multiplicatively independent bases are necessarily definable in the additive theory of reals and integers. For general automata, we show that the multiplicative independence is not sufficient, and we prove that, in this context, the sets of real vectors that
are recognizable in two bases that do not share the same set of prime factors are exactly those definable in the additive theory of reals and integers.
<br><br>
Those results lead to a precise characterization of the sets of real vectors that are recognizable in multiple bases, and provide a theoretical justification to the use of weak automata as symbolic representations of sets.
<br><br>
As additional contribution, we also obtain valuable insight into the internal structure of automata recognizing sets of vectors definable in the additive theory of reals and integers.
|
4 |
Identidades polinomiais para o produto tensorial de PI-álgebras. / Polynomial identities for the tensor product of PI-algebras.GALVÃO, Israel Burití. 05 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-05T13:30:11Z
No. of bitstreams: 1
ISRAEL BURITÍ GALVÃO - DISSERTAÇÃO PPGMAT 2012..pdf: 650302 bytes, checksum: a18f67c466fa85d401a769d86e98be3a (MD5) / Made available in DSpace on 2018-08-05T13:30:11Z (GMT). No. of bitstreams: 1
ISRAEL BURITÍ GALVÃO - DISSERTAÇÃO PPGMAT 2012..pdf: 650302 bytes, checksum: a18f67c466fa85d401a769d86e98be3a (MD5)
Previous issue date: 2012-03 / CNPq / Nesta dissertação foi feita uma abordagem sobre identidades polinomiais para o produto
tensorial de duas álgebras. Com base no crescimento da sequência de codimensões
de uma PI-álgebra, estudado inicialmente por Regev em 1972, apresentamos uma prova
de que o produto tensorial de duas PI-álgebras é ainda uma PI-álgebra. Depois, através
do produto de Kronecker de caracteres e do clássico Teorema do Gancho de Amitsur e
Regev, obtemos relações entre as codimensões e os cocaracteres de duas PI-álgebras e
as codimensões e cocaracteres do seu produto tensorial. Também através do estudo de
codimensões e cocaracteres, conseguimos exibir identidades polinomiais para o produto
tensorial. / In this dissertation we study polynomial identities for the tensor product of two algebras.
Based on the growth of the PI-algebra’s codimensions sequence, originally studied
by Regev in 1972, we present a proof that the tensor product of two PI-algebras is still
a PI-algebra. After this, using the Kronecker product of characters and the classic
Amitsur and Regev Hook Theorem, we obtained relations between the codimensions
and cocharacters of two PI-algebras and the codimensions and cocharacters of their
tensor product. With the study of codimensions and cocharacters, we also exhibit
polynomial identities for the tensor product.
|
5 |
O teorema do gancho e aplicações. / The hook theorem and applications.ROCHA, Josefa Itailma da. 02 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-02T20:44:35Z
No. of bitstreams: 1
JOSEFA ITAILMA DA ROCHA - DISSERTAÇÃO PPGMAT 2011..pdf: 536621 bytes, checksum: 06e799bb53766cc5565089a6028e876f (MD5) / Made available in DSpace on 2018-08-02T20:44:35Z (GMT). No. of bitstreams: 1
JOSEFA ITAILMA DA ROCHA - DISSERTAÇÃO PPGMAT 2011..pdf: 536621 bytes, checksum: 06e799bb53766cc5565089a6028e876f (MD5)
Previous issue date: 2011-12 / Capes / Neste trabalho usamos a Teoria de Young para representações dos grupos simétricos
no estudo de PI-álgebras. Amitai Regev (1972) introduziu os conceitos de codimensão
e cocaracter de uma PI-álgebra, os quais foram as principais ferramentas desse estudo.
Apresentamos inicialmente o Teorema do Gancho, que foi demonstrado por Amitsur
e Regev em 1982. Esse teorema refere-se ao comportamento da sequência de cocaracteres de uma PI-álgebra, dando condições para que um caracter irredutível do grupo Sn apare¸ca com multiplicidade n˜ao nula na decomposição do n-ésimo cocaracteres dessa PI-álgebra. Apresentamos também três aplicações desse teorema, entre elas o Teorema de Amitsur, que garante que toda PI-álgebra satisfaz uma potência de algum polinˆomio standard. Por fim, estudamos resultados de Amitsur e Regev de 1982 sobre um tipo de identidade que generaliza as identidades de Capelli. / In this work we use Young’s Theory for representations of the symmetric groups in
the study of PI-algebras. Amitai Regev (1972) introduced the concepts of codimension
and cocharacter of PI-algebras, which are the main tools in this study. We first present
the Hook Theorem, which was proved by Amitsur and Regev in 1982. This theorem
refers to the behavior of the sequence of cocharacters of a PI-algebra, giving conditions
for an irreducible character of the group Sn to appear with nonzero multiplicity in the
decomposition of the cocharacter of this PI-algebra. We also present three applications
of this theorem, including the Amitsur’s theorem, which ensures that all PI-algebra
satisfies a power of a standard polynomial. Finally, we study the results of Amitsur
and Regev (1982) about a type identity that generalizes the Capelli identities
|
6 |
Varietes kaehleriennes et hyperkaeleriennes de dimension infinieTumpach, Alice Barbara 26 July 2005 (has links) (PDF)
Le premier chapitre de cette thèse est consacré, d'une part à l'étude des quotients kaehlériens et hyperkaehlériens dans le cadre banachique et, d'autre part, à la construction par quotient hyperkaehlérien (d'une variété banachique non hilbertienne par un groupe de Lie banachique) d'une variété hilbertienne qui s'identifie (en fonction de la structure complexe distinguée) soit à l'espace cotangent d'une composante connexe de la grassmannienne restreinte définie par G. Segal et G. Wilson, soit à une complexification naturelle de cette grassmannienne. Le second chapitre comprend trois parties. La première partie est consacrée à la classification des orbites coadjointes affines hermitiennes symétriques irréductibles des L*-groupes de type compact. La seconde partie est consacrée a la démonstration du théorème de Mostow pour un L*-groupe semi-simple de type compact. Dans la troisième partie, je construis une structure hyperkaehlérienne sur les orbites complexifiées des orbites coadjointes affines hermitiennes symétriques des L*-groupes semi-simples de type compact.
|
7 |
Caractère reconnaissable densembles de polynômes à coefficients dans un corps finiWaxweiler, Laurent 11 December 2009 (has links)
Nous nous plaçons dans le cadre de l'anneau des polynômes sur un corps fini. Si P est un polynôme de degré au moins 1, tout polynôme Q se décompose de manière unique sous la forme d'une combinaison linéaire de puissances de P, dont les coefficients sont des polynômes dont le degré est strictement inférieur à celui de P. À une telle décomposition, nous associons un mot que nous appelons la P-représentation du polynôme Q. Un ensemble de polynômes est alors qualifié de P-reconnaissable si il existe un automate fini déterministe qui accepte l'ensemble des P-représentations de ses éléments.<BR><BR>
Dans cette thèse, nous montrons que les ensembles P-reconnaissables sont exactement ceux qui sont définissables par une formule du premier ordre dans une certaine structure S(P) basée sur un prédicat dépendant du polynôme P. Nous donnons aussi une caractérisation des ensembles P-reconnaissables en terme de suites P-automatiques. Nous apportons également une réponse partielle à la question de savoir quels sont les ensembles reconnaissables simultanément dans toutes les bases de degré au moins 1. Finalement, nous montrons que si P et Q sont deux polynômes de degré au moins 1 et multiplicativement indépendants, alors la multiplication est définissable dans la réunion des structures S(P) et S(Q).
|
8 |
Harmonic analysis of stationary measures / Analyse harmonique des mesures stationnairesLi, Jialun 04 December 2018 (has links)
Soit μ une mesure de probabilité borélienne sur SL m+1 (R) tel que le sous-groupe engendré par le support de μ est Zariski dense. Soit V une représentation irréductible de dimension finie de SL m+1 (R). D’après un théorème de Furstenberg, il existe une unique mesure μ-stationnaire sur PV et nous nous somme intéressés à la décroissance de Fourier de cette mesure. Le résultat principal de cette thèse est que la transformée de Fourier de la mesure stationnaire a une décroissance polynomiale. À partir de ce résultat, nous obtenons un trou spectral de l’opérateur de transfert, dont les propriétés nous permettent d’établir un terme d’erreur exponentiel pour le théorème de renouvellement dans le cadre des produits de matrices aléatoires. L’ingrédient essentiel est une propriété de décroissance de Fourier des convolutions multiplicatives de mesures sur R n , qui est une généralisation d’un théorème de Bourgain en dimension 1. Nous établissons cet ingrédient en utilisant un estimée somme produit de He et de Saxcé.Dans la dernière partie, nous généralisons un résultat de Lax et Phillips et un résultat de Hamenstädt sur la finitude des petites valeurs propres de l’opérateur de Laplace sur les variétés hyperboliques géométriquement finies. / Let μ be a Borel probability measure on SL m+1 (R), whose support generates a Zariski dense subgroup. Let V be a finite dimensional irreducible linear representation of SL m+1 (R). A theorem of Furstenberg says that there exists a unique μ-stationary probability measure on PV and we are interested in the Fourier decay of the stationary measure. The main result of the thesis is that the Fourier transform of the stationary measure has a power decay. From this result, we obtain a spectral gap of the transfer operator, whose properties allow us to establish an exponential error term for the renewal theorem in the context of products of random matrices. A key technical ingredient for the proof is a Fourier decay of multiplicative convolutions of measures on R n , which is a generalisation of Bourgain’s theorem on dimension 1. We establish this result by using a sum-product estimate due to He-de Saxcé. In the last part, we generalize a result of Lax-Phillips and a result of Hamenstädt on the finiteness of small eigenvalues of the Laplace operator on geometrically finite hyperbolic manifolds
|
9 |
Mehrdimensionale Change-Point-Schätzung mit U-StatistikenDöring, Maik 05 April 2007 (has links) (PDF)
Wir betrachten ein mehrdimensionales Change-Point-Problem. Seien X1;n; : : : ;Xn;n unabhängige Zufallselemente bei denen q, q 2 N, Verteilungswechsel auftreten. Dass heisst, es existiert ein Vektor µ = (µ1; : : : ; µq) 2 Rq mit 0 = µ0 &lt; µ1 &lt; ¢ ¢ ¢ &lt; µq &lt; µq+1 = 1 sowie Verteilungen º0;n; : : : ; ºq;n, so dass Xj;n für [nµi] &lt; j · [nµi+1] die Verteilung ºi;n besitzt. Wir führen eine Klasse von Schätzer ^µn für den unbekannten Change-Point µ ein. Diese sind Maximalstellen von gewichteten q + 1-Stichproben U-Statistiken. Das Ziel der Arbeit ist die Un- tersuchung des asymptotischen Verhalten der Schätzer.
|
10 |
Mehrdimensionale Change-Point-Schätzung mit U-StatistikenDöring, Maik 02 April 2007 (has links)
Wir betrachten ein mehrdimensionales Change-Point-Problem. Seien X1;n; : : : ;Xn;n unabhängige Zufallselemente bei denen q, q 2 N, Verteilungswechsel auftreten. Dass heisst, es existiert ein Vektor µ = (µ1; : : : ; µq) 2 Rq mit 0 = µ0 &lt; µ1 &lt; ¢ ¢ ¢ &lt; µq &lt; µq+1 = 1 sowie Verteilungen º0;n; : : : ; ºq;n, so dass Xj;n für [nµi] &lt; j · [nµi+1] die Verteilung ºi;n besitzt. Wir führen eine Klasse von Schätzer ^µn für den unbekannten Change-Point µ ein. Diese sind Maximalstellen von gewichteten q + 1-Stichproben U-Statistiken. Das Ziel der Arbeit ist die Un- tersuchung des asymptotischen Verhalten der Schätzer.
|
Page generated in 0.0572 seconds