• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 5
  • 2
  • Tagged with
  • 22
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Sur les stratifications réelles et analytiques complexes (a) - régulières de Whitney et Thom / On Whitney (a) and Thom regular real and complex analytic stratifications.

Trivedi, Saurabh 17 June 2013 (has links)
En 1979, Trotman a démontré que les stratifications réelles lisses qui satisfont la condition de (a)-régularité sont précisément celles pour lesquelles la transversalité aux strates des applications est une condition stable dans la topologie forte. C'était un résultat surprenant puisque la (t)-régularité semblait être plus appropriée pour la stabilité de la transversalité, une erreur qui a été faite dans plusieurs articles avant que ce résultat soit montré par Trotman. Notre premier résultat est un analogue au résultat de Trotman pour la topologie faible.Il y a une dizaine d'années Trotman a demandé si le même résultat est valable pour les stratifications analytiques complexes. Dans ce travail on démontre un analogue du résultat de Trotman dans le cas complexe, en utilisant la notion de variété de Oka introduite par Forstneric et on montre que la conjecture n'est pas vraie en général en donnant des contre-exemples.Dans sa thèse, Trotman a formulé une conjecture pour généraliser son résultat pour les stratifications (a_f)-régulières de Thom. Dans une tentative de résolution de cette conjecture on a observé que la transversalité par rapport à un feuilletage est une condition stable, cependant ce n'est pas une condition générique. Donc, en voulant imiter la preuve de Trotman on ne pourra pas obtenir cette généralisation. Néanmoins, on donne ici une preuve de cette conjecture. Ce résultat peut être résumé en disant que les (a_f)-défauts dans une stratification peuvent être détectés en perturbant les applications transverses au feuilletage induit par f. Certaines techniques pour détecter (a_f)-défauts sont aussi données vers la fin. / Trotman in 1979 proved that real smooth stratifications which satisfy the condition of $(a)$-regularity are precisely those stratifications for which transversality to the strata of smooth mappings is a stable condition in the strong topology. This was a surprising result since $(t)$-regularity seemed to be more appropriate for stability of transversality, a mistake that was made in several articles before this result of Trotman. Our first result is an analogue of this result of Trotman for the weak topology.Trotman asked more than ten years ago whether a similar result holds for complex analytic stratifications. We will give an analogue of Trotman's result in the complex setting using Forstneriv c's notion of Oka manifolds and show that the result is not true in general by giving counterexamples.In his Ph.D. thesis Trotman conjectured a generalization of his result for Thom $(a_f)$-regular stratifications. In an attempt to prove this conjecture we noticed that while transversality to a foliation is a stable condition, it is not generic in general. Thus, mimicking the proof of the result of Trotman would not suffice to obtain this generalization. Nevertheless, we will present a proof of this conjecture in this work. This result can be summarized by saying that Thom $(a_f)$-faults in a stratification can be detected by perturbation of maps transverse to the foliation induced by $f$. Some other techniques of detecting $(a_f)$-faults are also given towards the end.
12

Contribution à une théorie de Morse-Novikov à paramètre

Moraga Ferrandiz, Carlos 12 October 2012 (has links) (PDF)
Le cadre de cette étude est une variété fermée de dimension au moins six qui est munie d'une classe de cohomologie de De Rham non-nulle. L'objectif de la thèse est de créer des outils pour répondre au problème de savoir si deux 1-formes fermées non-singulières (sans zéro) dans la classe fixée sont toujours isotopes. La réponse générale à la question est non, et une obstruction de type K-théorique est attendue. Il est toujours possible de relier deux 1-formes fermées non singulières par un chemin qui reste dans la classe de cohomologie ; l'isotopie des extrêmes du chemin équivaut à déformer le chemin par une homotopie relative en un autre constitué de 1-formes non-singulières. On introduit deux sortes de pseudo-gradients pour chaque nombre L positif : ceux avec une liaison L-élémentaire et ceux que nous appelons L-transverses. Ils forment une classe de champs de vecteurs adaptés aux 1-formes qui permettent de faire une lecture algébrique associée au chemin. Cette lecture est analogue à celle qui est faite dans la théorie de Hatcher-Wagoner qui traitait le problème d'isotopie pour les fonctions à valeurs réelles sans point critique. On réussit à trouver un nombre L assez grand pour déformer un chemin de 1-formes à deux indices critiques en un autre chemin muni d'un équipement L-transverse qui est sous forme normale. Les zéros d'un tel chemin de 1-formes qui sont nés ensemble, s'éliminent ensemble et de plus le graphique de Cerf-Novikov associé se ferme : la lecture algébrique citée appartient à un certain K_2, ce qui est au point de départ de la définition d'une obstruction à l'isotopie des 1-formes fermées non-singulières.
13

Enrichissements de siegel

Bachy, Ismael 10 October 2011 (has links)
On s'intéresse dans ce travail à la description des enrichissements des disques de Siegel d'une fraction rationnelle f. Dans un premier temps nous étudions les enrichissements qui sont définis sur un ouvert de la grande orbite d'un disque de Siegel donné. Ce sont nécessairement des applications qui commutent à f là où les compositions ont un sens. Ce sont donc des applications linéaires en coordonnées linéarisantes. Le résultat principal de ce travail est que l'on peut obtenir toutes les applications linéaires en coordonnées linéarisantes définies sur un sous-disque du disque de Siegel de f. Pour démontrer ce résultat nous utilisons la compacité des applications linéarisantes normalisées, le théorème des fonctions implicites dans l'espace des fractions rationnelles de degré fixé et une étude du comportement du rayon d'univalence des applications linéarisantes. Nous identifions également les approches donnant lieu à des enrichissements définis ou à valeurs dans le disque de Siegel tout entier (enrichissements maximaux). Au passage nous généralisons aux limites avec ordre de contact fini par rapport au cercle unité un théorème de JC.Yoccoz sur le comportement du rayon d'univalence pour la famille quadratique lorsque le paramètre converge vers un nombre complexe de module un et d'argument un nombre de Brjuno.Ensuite, nous nous intéressons au cas où f a plusieurs cycles de disques de Siegel. Nous utilisons le théorème de transversalité d'A.Epstein pour décrire les enrichissements de f dans ce cas là. La linéarisabilité de f et la convergence des applications linéarisantes permet de transférer le problème de la description des enrichissements de Siegel de f à un problème de limite géométrique de sous-semigroupes de l'ensemble des nombres complexes non-nuls engendrés par un élément. Nous donnons dans ce travail un modèle topologique de l'adhérence de cet ensemble de sous-semigroupes. Nous déduisons de ces résultats une interprétation en terme de convergence géométrique de dynamiques de polynômes quadratiques et une description des points d'accumulation, pour la topologie de Hausdorff sur les compacts non-vides, des ensembles de Julia lorsque le paramètre tend vers un paramètre de Siegel. / In this work we are interested in giving the description of Siegel discs enrichments of a rational map f. We first study the case of enrichments that are defined on an open subset of the grand orbit of a given Siegel disc. These maps commute with f where it makes sense. Thus they are linear in linearizing coordinates. The main result of this work is that we can obtain all linear maps in linearizing coordinates that are defined in a subdisc of the Siegel disc. For this we use the compactness of the set of normalized linearizing maps, the implicit functions theorem in the space of rational maps with fixed degree and a study on the behaviour on the univalent radius of the linearizing maps. We identify approaches giving enrichments that are defined or take values on the whole Siegel disc (maximal enrichments). We generalize to finite order of contact approaches with respect to the unit circle a theorem of JC.Yoccoz on the behaviour of the univalent radius for the quadratic family when the parameter converges to a complex number of modulus one with argument a Brjuno number.We then focus on the case where f has more than one Siegel disc. We make use of A.Epstein's transversality theorem to describe Siegel enrichments of f in this case. The linearisability of f and the convergence of the linearizing maps reduces the problem of Siegel enrichments description to a geometric limit problem on one generated closed sub-semigroups ofthe set of non zero complex numbers. We give in this work a topological model fot the closure of this set of sub-semigroups.We deduce from these results an interpretation in terms of geometric convergence of quadratic polynomial dynamics and we describe the accumulation points (for the Hausdorff topology on non empty compact subsets) of Julia sets when the parameter converges to a Siegel parameter.
14

Maurice Sand, un créateur fantastique méconnu : la transversalité, brisant d’une œuvre au 19e siècle

Bissonnette, Lise 12 1900 (has links)
Sauf par des regards fugitifs et distraits sur son travail d’illustrateur et son théâtre de marionnettes, l’histoire culturelle et littéraire n’a en général retenu de Maurice Sand que son état de fils bien-aimé de la plus célèbre écrivaine du 19e siècle. Étudiée pour elle-même, son œuvre multidisciplinaire - qui allie peinture, dessin, illustration, théâtre, histoire de l’art, sciences naturelles - se propose pourtant avec cohérence, marque d’une création soutenue plutôt que du dilettantisme où son souvenir s’est incrusté. Maurice Sand apparaît alors comme un de ces individus situés aux interstices des récits majeurs de la littérature et des arts qui, bien qu’ayant figure de minores, amènent à des réflexions nuancées sur la constitution de ces récits. Explorer son cas permet ainsi de scruter de plus près les mécanismes de la méconnaissance qui a pu et peut encore affecter un créateur et une œuvre soumis aux arbitrages mémoriels. Discrets angles morts de l’histoire, certains de ces mécanismes jalonnent clairement son parcours et les aléas de sa trace posthume. D’une part le vaste corpus des études sur George Sand, notamment des écrits biographiques et autobiographiques, fait voir à l’œuvre le mode déformant de la constitution de la mémoire d’un être saisi à partir des positions d’autrui : son existence devient cliché, elle se réduit peu à peu au rôle d’adjuvant dans des débats, passés ou actuels, qui font l’impasse sur le cours autonome de sa carrière, voire de sa vie. D’autre part la mise au jour de son œuvre, enfin vue comme un ensemble, dévoile une cause encore plus déterminante de sa méconnaissance. Presque tous les travaux de Maurice Sand sont traversés par une ligne de fantastique, au surplus connotée par son intérêt pour les sciences liées à la métamorphose, de l’ethnogénie à l’entomologie. Réinvention constante du passé, sa démarche cognitive et créatrice ignore les frontières disciplinaires, son objet est hybride et composé. L’œuvre se constitue ainsi par transversalité, trait et trame irrecevables en un siècle qui n’y perçut que dispersion, mais paradoxalement marque supérieure de qualité dans le champ éclaté où se déploient les arts de notre temps. / Aside from fleeting, inattentive glances at his illustration work and his puppet theatre, cultural and literary history has generally taken little notice of Maurice Sand except as the beloved son of the most famous woman writer of the 19th century. Yet considered on its own merits, his multidisciplinary work—in painting, drawing, illustration, theatre, art history, natural science—forms a very coherent whole, indicative of sustained creativity, rather than the dilettantism of which he is often accused. From this perspective, Maurice Sand appears to be one of those individuals whose work lies in the interstitial space between major literary and artistic narratives and who, though seemingly minor figures, prompt nuanced reflection on how those narratives are constructed. An exploration of his case is an opportunity for a closer examination of the mechanisms of misappreciation that affected, and can still affect, a creator and oeuvre that have fallen victim to the arbiters of memory. Some of those mechanisms have clearly turned various points in his career and posthumous traces into discrete blind spots of history. First, the extensive corpus of studies on George Sand, especially biographical and autobiographical writings, demonstrates how the recollection of someone constructed from the positions of others can be distorted: his existence becomes a cliché, gradually reduced to a mere adjunct to past or current discussions of his mother, which overlook his independent career and life. Second, bringing his oeuvre to light, so it can at last be seen as a whole, reveals an even more significant cause of history’s misappreciation of him. Virtually all Maurice Sand’s works are not only shot through with the fantastic, but also marked by his interest in the sciences of metamorphosis, from ethnogeny to entomology. Constantly reinventing the past, his cognitive and creative processes ignored boundaries between disciplines, embracing hybrid, composite subjects. The inherently transversal nature of his work, which made it totally unacceptable in a century that saw it as indicative of a lack of focus, is now paradoxically viewed as a mark of superior quality in the fragmented field of the arts today.
15

Transversalité et Systèmes Budgétaires- Un essai d'observation et d'analyse

Villesèque-Dubus, Fabienne 13 October 2003 (has links) (PDF)
L'objet de la thèse est d'étudier les liens entre transversalité et systèmes budgétaires. Il s'agit en particulier d'observer dans quelle mesure les phénomènes transversaux dans les organisations peuvent exercer une influence sur les systèmes budgétaires, et réciproquement, de chercher si le recours à des systèmes budgétaires transversaux peut influencer les processus de transversalisation et de développement d'interactions dans l'organisation. Des observations en ce sens ont donc été conduites auprès d'entreprises industrielles de taille et d'activités variées. La combinaison de méthodes de recherche qualitatives et quantitatives permet de souligner que la transversalité est formellement reconnue dans un nombre significatif d'entreprises industrielles et dans les mécanismes de contrôle tels que les systèmes budgétaires. Cette reconnaissance de la transversalité est conçue et comprise comme complémentaire des approches classiques des organisations et du contrôle. La thèse montre que les budgets transversaux sont liés à la recherche d'un meilleur suivi des réalisations, sur la base d'activités et processus étroitement associés à la stratégie de l'entreprise.
16

Théorie KAM faible et instabilité pour familles d'hamiltoniens

Mandorino, Vito 11 March 2013 (has links) (PDF)
Dans cette thèse nous étudions la dynamique engendrée par une famille de flots Hamiltoniens. Un tel système dynamique à plusieurs générateurs est aussi appelé 'polysystème'. Motivés par des questions liées au phénomène de la diffusion d'Arnold, notre objectif est de construire des trajectoires du polysystème qui relient deux régions lointaines de l'espace des phases. La thèse est divisée en trois parties.Dans la première partie, nous considérons le polysystème engendré par les flots discrétisés d'une famille d'Hamiltoniens Tonelli. En utilisant une approche variationnelle issue de la théorie KAM faible, nous donnons des conditions suffisantes pour l'existence des trajectoires souhaitées.Dans la deuxième partie, nous traitons le cas d'un polysystème engendré par un couple de flots Hamiltoniens à temps continu, dont l'étude rentre dans le cadre de la théorie géométrique du contrôle. Dans ce contexte, nous montrons dans certains cas la transitivité d'un polysystème générique, à l'aide du théorème de transversalité de Thom.La dernière partie de la thèse est dédiée à obtenir une nouvelle version du théorème de transversalité de Thom s'exprimant en termes d'ensembles rectifiables de codimension positive. Dans cette partie il n'est pas question de polysystèmes, ni d'Hamiltoniens. Néanmoins, les résultats obtenus ici sont utilisés dans la deuxième partie de la thèse
17

Maturité du projet d'urbanisme et temporalités : détermination de la maturité du projet selon son épaisseur et sa transversalité temporelles

Jolivet, Delphine 26 November 2012 (has links) (PDF)
L'intérêt de cette recherche est d'aider à la compréhension du processus de projet, par l'entremise de ses temporalités. Nous déterminons les structures temporelles de plusieurs projets d'urbanisme, c'est-à-dire des représentations des temps des projets sous forme de découpages d'inspiration archéologique, généalogique et épistémologique. Cette analyse, issue de notre méthode d'appréhension du temps du projet, qui correspond à un projet défini comme processus, dans sa fonction de saisie d'une réalité donnée, mobilise deux notions. L'épaisseur temporelle est une image qui nuance la vision lissée du temps du projet : ce sont les temporalités du projet, actives ou inactives, qui s'ajoutent, apparaissent ou qui s'imbriquent. La transversalité temporelle est dépendante du contexte, et donc d'une analyse du parcours temporel du projet suivant les interactions entre projet et contexte. Plusieurs indicateurs de maturité du projet existent et marquent l'avancement du projet au fil du temps.
18

Etude, représentation et applications des traverses minimales d'un hypergraphe / Representation and applications of hypergraph minimal transversals

Jelassi, Mohamed Nidhal 08 December 2014 (has links)
Cette thèse s'inscrit dans le domaine de la théorie des hypergraphes et s'intéresse aux traverses minimales des hypergraphes. L'intérêt pour l'extraction des traverses minimales est en nette croissance, depuis plusieurs années, et ceci est principalement dû aux solutions qu'offrent les traverses minimales dans divers domaines d'application comme les bases de données, l'intelligence artificielle, l'e-commerce, le web sémantique, etc. Compte tenu donc du large éventail des domaines d'application des traverses minimales et de l'intérêt qu'elles suscitent, l'objectif de cette thèse est donc d'explorer de nouvelles pistes d'application des traverses minimales tout en proposant des méthodes pour optimiser leur extraction. Ceci a donné lieu à trois contributions proposées dans cette thèse. La première approche tend à tirer profit de l'émergence du Web 2.0 et, par conséquent, des réseaux sociaux en utilisant les traverses minimales pour la détection des acteurs importants au sein de ces réseaux. La deuxième partie de recherche au cours de cette thèse s'est intéressé à la réduction du nombre de traverses minimales d'un hypergraphe. Ce nombre étant très élevé, une représentation concise et exacte des traverses minimales a été proposée et est basée sur la construction d'un hypergraphe irrédondant, d'où sont calculées les traverses minimales irrédondantes de l'hypergraphe initial. Une application de cette représentation au problème de l'inférence des dépendances fonctionnelles a été présentée pour illustrer l’intérêt de cette approche. La dernière approche s'est intéressée à la décomposition des hypergraphes en des hypergraphes partiels. Les traverses minimales de ces derniers sont calculées et leur produit cartésien permet de générer l'ensemble des traverses de l'hypergraphe. Les différentes études expérimentales menées ont montré l’intérêt de ces approches proposées / This work is part of the field of the hypergraph theory and focuses on hypergraph minimal transversal. The problem of extracting the minimal transversals from a hypergraph received the interest of many researchers as shown the number of algorithms proposed in the literature, and this is mainly due to the solutions offered by the minimal transversal in various application areas such as databases, artificial intelligence, e-commerce, semantic web, etc. In view of the wide range of fields of minimal transversal application and the interest they generate, the objective of this thesis is to explore new application paths of minimal transversal by proposing methods to optimize the extraction. This has led to three proposed contributions in this thesis. The first approach takes advantage of the emergence of Web 2.0 and, therefore, social networks using minimal transversal for the detection of important actors within these networks. The second part of research in this thesis has focused on reducing the number of hypergraph minimal transversal. A concise and accurate representation of minimal transversal was proposed and is based on the construction of an irredundant hypergraph, hence are calculated the irredundant minimal transversal of the initial hypergraph. An application of this representation to the dependency inference problem is presented to illustrate the usefulness of this approach. The last approach includes the hypergraph decomposition into partial hypergraph the “local” minimal transversal are calculated and their Cartesian product can generate all the hypergraph transversal sets. Different experimental studies have shown the value of these proposed approaches
19

Source spaces and perturbations for cluster complexes

Charest, François 11 1900 (has links)
Dans ce travail, nous définissons des objets composés de disques complexes marqués reliés entre eux par des segments de droite munis d’une longueur. Nous construisons deux séries d’espaces de module de ces objets appelés clus- ters, une qui sera dite non symétrique, la version ⊗, et l’autre qui est dite symétrique, la version •. Cette construction permet des choix de perturba- tions pour deux versions correspondantes des trajectoires de Floer introduites par Cornea et Lalonde ([CL]). Ces choix devraient fournir une nouvelle option pour la description géométrique des structures A∞ et L∞ obstruées étudiées par Fukaya, Oh, Ohta et Ono ([FOOO2],[FOOO]) et Cho ([Cho]). Dans le cas où L ⊂ (M, ω) est une sous-variété lagrangienne Pin± mono- tone avec nombre de Maslov ≥ 2, nous définissons une structure d’algèbre A∞ sur les points critiques d’une fonction de Morse générique sur L. Cette struc- ture est présentée comme une extension du complexe des perles de Oh ([Oh]) muni de son produit quantique, plus récemment étudié par Biran et Cornea ([BC]). Plus généralement, nous décrivons une version géométrique d’une catégorie de Fukaya avec seul objet L qui se veut alternative à la description (relative) hamiltonienne de Seidel ([Sei]). Nous vérifions la fonctorialité de notre construction en définissant des espaces de module de clusters occultés qui servent d’espaces sources pour des morphismes de comparaison. / We define objects made of marked complex disks connected by metric line seg- ments and construct two sequences of moduli spaces of these objects, referred as the ⊗ version (nonsymmetric) and the • version (symmetric). This allows choices of coherent perturbations over the corresponding versions of the Floer trajectories proposed by Cornea and Lalonde ([CL]). These perturbations are intended to lead to an alternative geometric description of the (obstructed) A∞ and L∞ structures studied by Fukaya, Oh, Ohta and Ono ([FOOO2],[FOOO]) and Cho ([Cho]). Given a Pin± monotone lagrangian submanifold L ⊂ (M, ω) with mini- mal Maslov number ≥ 2, we define an A∞ -algebra structure from the critical points of a generic Morse function on L. We express this structure as a cochain complex extending the pearl complex introduced by Oh ([Oh]) and further ex- plicited by Biran and Cornea ([BC]), equipped with its quantum product. This could also be seen as an alternative geometric description of a Fukaya cate- gory of (M, ω) with L as its only object, a hamiltonian relative version appear- ing in [Sei]. Using spaces of quilted clusters, we verify, using more general quilted cluster spaces, that this defines a functor from a homotopy category of Pin± monotone lagrangian submanifolds hL mono,± (M, ω) to the homotopy category of cochain complexes hK(Λ-mod) where Λ is an appropriate Novikov ring.
20

Théorie KAM faible et instabilité pour familles d'hamiltoniens / Weak KAM theory and instability for families of Hamiltonians

Mandorino, Vito 11 March 2013 (has links)
Dans cette thèse nous étudions la dynamique engendrée par une famille de flots Hamiltoniens. Un tel système dynamique à plusieurs générateurs est aussi appelé ‘polysystème’. Motivés par des questions liées au phénomène de la diffusion d’Arnold, notre objectif est de construire des trajectoires du polysystème qui relient deux régions lointaines de l’espace des phases. La thèse est divisée en trois parties.Dans la première partie, nous considérons le polysystème engendré par les flots discrétisés d’une famille d’Hamiltoniens Tonelli. En utilisant une approche variationnelle issue de la théorie KAM faible, nous donnons des conditions suffisantes pour l’existence des trajectoires souhaitées.Dans la deuxième partie, nous traitons le cas d’un polysystème engendré par un couple de flots Hamiltoniens à temps continu, dont l’étude rentre dans le cadre de la théorie géométrique du contrôle. Dans ce contexte, nous montrons dans certains cas la transitivité d’un polysystème générique, à l’aide du théorème de transversalité de Thom.La dernière partie de la thèse est dédiée à obtenir une nouvelle version du théorème de transversalité de Thom s’exprimant en termes d’ensembles rectifiables de codimension positive. Dans cette partie il n’est pas question de polysystèmes, ni d’Hamiltoniens. Néanmoins, les résultats obtenus ici sont utilisés dans la deuxième partie de la thèse / In this thesis we study the dynamics generated by a family of Hamiltonian flows. Such a dynamical system with several generators is also called ‘polysystem’.Motivated by some questions related to the phenomenon of Arnold diffusion, our aim is to construct trajectories of the polysystem which connect two far-apart regions of the phase space.The thesis is divided into three parts.In the first part, we consider the polysystem generated by the time-onemaps of a family of Tonelli Hamiltonians. By using a variational approach falling within the framework of weak KAM theory, we give sufficient conditions for the existence of the desired trajectories.In the second part, we address the case of a polysystem generated by twocontinuous-time Hamiltonian flows. This problem fits into the framework of geometriccontrol theory. In this context, we show in some cases the transitivity of a generic polysystem, by means of Thom’s transversality theorem.The third and last part of the thesis is devoted to the proof of a newversion of Thom’s transversality theorem, formulated in terms of rectifiable sets of positive codimension. Neither polysystems nor Hamiltonians are explicitly involved in this part. However, the results obtained here are used in the second part of the thesis.

Page generated in 0.0767 seconds