• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 381
  • 114
  • 68
  • 57
  • 51
  • 40
  • 19
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • Tagged with
  • 959
  • 108
  • 87
  • 66
  • 62
  • 60
  • 57
  • 54
  • 48
  • 46
  • 45
  • 45
  • 44
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
871

Evaluation of Laboratory Durability Tests for Stabilized Aggregate Base Materials

Roper, Matthew B. 19 May 2007 (has links) (PDF)
The Portland Cement Association commissioned a research project at Brigham Young University to compare selected laboratory durability tests available for assessing stabilized aggregate base materials. The laboratory research associated with this project involved two granular base materials, three stabilizers at three concentration levels each, and three durability tests in a full-factorial experimental design. The granular base materials consisted of an aggregate-reclaimed asphalt pavement blend obtained from Interstate 84 (I-84) and a crushed limestone obtained from U.S. Highway 91 (US-91), while the three stabilizer types included Class C fly ash, lime-fly ash, and Type I/II Portland cement. Specimens were tested for durability using the freeze-thaw test, the vacuum saturation test, and the tube suction test. Analyses of the test results indicated that the unconfined compressive strength (UCS) and retained UCS were higher for specimens tested in freeze-thaw cycling than the corresponding values associated with vacuum saturation testing. This observation suggests that the vacuum saturation test is more severe than the freeze-thaw test for materials similar to those evaluated in this research. The analyses also indicated that the I-84 material retained more strength during freeze-thaw cycling and vacuum saturation and exhibited lower final dielectric values during tube suction testing than the US-91 material. Although the I-84 material performed better than the US-91 material, the I-84 material required higher stabilizer concentrations to reach the target 7-day UCS values specified in this research. After freeze-thaw testing, the Class C fly-treated specimens were significantly stronger than both lime-fly ash- and cement-treated specimens. In the vacuum saturation test, none of the three stabilizer types were significantly different from each other with respect to either UCS or retained UCS. Dielectric values measured during tube suction testing were lowest for cement-treated specimens, indicating that cement performed better than other stabilizers in reducing the moisture/frost susceptibility of the treated materials. The results also show that, as the stabilizer concentration level increased from low to high, specimens performed better in nearly all cases. A strong correlation was identified between UCS after the freeze-thaw test and UCS after the vacuum saturation test, while very weak correlations were observed between the final dielectric value after tube suction testing and all other response variables. Differences in variability between test results were determined to be statistically insignificant. Engineers interested in specifying a comparatively severe laboratory durability test should consider vacuum saturation testing for specimens treated with stabilizers similar to those evaluated in this research. The vacuum saturation test is superior to both the freeze-thaw and tube suction tests because of the shorter duration and lack of a need for daily specimen monitoring. Although the Class C fly ash used in this research performed well, further investigation of various sources of Class C fly ash is recommended because of the variability inherent in that material. Similar research should be performed on subgrade soils, which are also routinely stabilized in pavement construction. Research related to long-term field performance of stabilized materials should be conducted to develop appropriate thresholds for laboratory UCS values in conjunction with vacuum saturation testing.
872

Evaluation of Laboratory Durability Tests for Stabilized Subgrade Soils

Parker, John Wesley 17 May 2008 (has links) (PDF)
The Portland Cement Association commissioned a research project at Brigham Young University to compare selected laboratory durability tests available for assessing stabilized subgrade materials. Improved understanding of these tests is needed to enable more objective selection of durability tests by design engineers and to facilitate more meaningful comparisons of data obtained for different stabilizer treatments using different evaluation procedures. The laboratory research associated with this project involved two subgrade materials, four stabilizers at three concentrations each, and three durability tests in a full-factorial experimental design. The two subgrade soils used were a silty sand and a lean clay, while the four stabilizer types included Class C fly ash, lime-fly ash, lime, and Type I/II portland cement. The three tests used in this comparative study were the freeze-thaw test, the vacuum saturation test, and the tube suction test. On average, to achieve the same 7-day unconfined compressive strength (UCS) values, the sand required 4.4 times more Class C fly ash than cement, 3.6 times more lime-fly ash than cement, and 6.0 times more lime than cement. Likewise, the clay required 10 times more Class C fly ash than cement, 7.5 times more lime-fly ash than cement, and 1.8 times more lime than cement. Analyses of the test results indicated that the UCS and retained UCS were higher for specimens tested by vacuum saturation than the corresponding values associated with freeze-thaw cycling. This observation suggests that the freeze-thaw test is more severe than the vacuum saturation test for these particular fine-grained materials. Testing also suggested that specimens with 7-day UCS values below 200 psi will generally not survive freeze-thaw cycling. After both freeze-thaw and vacuum saturation testing, the sand specimens treated with lime-fly ash had significantly higher UCS and retained UCS than specimens treated with Class C fly ash, lime, or cement. Similarly, the clay specimens treated with Class C fly ash or lime-fly ash had significantly higher UCS values than specimens treated with cement or lime; however, clay specimens treated with Class C fly ash and lime-fly ash were not significantly different. None of the four stabilizer types were significantly different from each other with respect to retained UCS after vacuum saturation testing. Dielectric values measured in tube suction testing were lowest for specimens treated with lime-fly ash and cement with respect to the sand and for specimens treated with Class C fly ash and cement with respect to the clay. The lime-fly ash and cement successfully reduced the dielectric value of sand specimens to a "marginal" rating, while no stabilizer reduced the moisture susceptibility of the clay to a satisfactory level. A strong correlation was identified between UCS after the freeze-thaw test and UCS after the vacuum saturation test, while very weak correlations were observed between the final dielectric value after tube suction testing and all other response variables. Differences in variability between test results were determined to be statistically insignificant in an analysis of the CVs associated with data collected in this research. Although the freeze-thaw test utilized in this research was determined to be more severe than the vacuum saturation test for materials similar to those tested in this study, the vacuum saturation test is recommended over both the freeze-thaw and tube suction tests because of the shorter test duration, usability for specimens with 7-day UCS values even below 200 psi, and lack of a need for daily specimen monitoring.
873

[en] DESIGN AND ACTIVATION OF A PNEUMATIC GECKO ROBOT WITH APPLICATION OF MACHINE LEARNING / [pt] PROJETO E ACIONAMENTO DE UM ROBÔ LAGARTIXA PNEUMÁTICO COM APLICAÇÃO DE APRENDIZADO COMPUTACIONAL

MATHEUS RODRIGUES GOEBEL 07 November 2022 (has links)
[pt] Este trabalho apresenta um projeto mecânico de um robô lagartixa pneumática, capaz de se locomover em superfícies inclinadas em relação ao solo, através apenas de atuadores lineares que utilizam o ar comprimido como fonte de energia. Como parte fundamental do projeto mecânico neste trabalho, um sistema de garra é desenvolvido gerando vácuo mecanicamente, para haver uma economia de consumo energético no robô em comparação com os acessórios comerciais geralmente utilizados para esta tarefa de fixação. Com o protótipo de conceito fabricado e montado, o mesmo é submetido a uma bateria de testes com o intuito de posteriormente aplicar os dados obtidos em uma rede neural artificial, visando o aprendizado computacional dos movimentos do robô e, assim, sua otimização de velocidade em determinada sequência de movimentação. Após o treinamento desta rede neural, o protótipo é submetido a novos experimentos para verificar a eficiência do treinamento realizado e qual o impacto real obtido no robô. Finalmente, com a utilização de um sistema de câmeras, os deslocamentos do robô em diversas situações distintas são rastreados, visando gerar gráficos comparativos e analisar a repetibilidade e confiabilidade do sistema. / [en] This work presents the mechanical design of a pneumatic gecko robot, capable of moving on inclined surfaces with respect to the ground, using only linear actuators with compressed air as a source of energy. As a fundamental part of the mechanical design in this work, a claw system is developed by generating vacuum mechanically, significantly reducing the energy consumption of the robot when compared to commercial accessories generally used for this clamping task. With the concept prototype manufactured and assembled, a series of tests are conducted to later apply the collected data in an artificial neural network. This network allows the computational learning of the robot movements, and thus its speed optimization for a certain defined gait. After training this neural network, the prototype is submitted to new experiments to verify the efficiency of the training performed and the real impact obtained on the robot. Furthermore, with the use of a camera system, the movements of the robot along several different situations are tracked, generating comparative graphs to analyze the repeatability and reliability of the system.
874

Investigating mechanical properties of ordinary portland cement. Investigating improvements to the mechanical properties of Ordinary Portland Cement (OPC) bodies by utilizing the phase transformation properties of a ceramic (Zirconia).

Almadi, Alaa January 2012 (has links)
The effects of metastable tetragonal zirconia on the properties of Ordinary Portland Cement were observed during which the effect of crystallite size pH on the preparation solution, precursor salt, and the presence of co-precipitates, Fe(OH)3, SnO2 and SiO2 on the crystallization temperature, enthalpy and crystal structure, immediately following the crystallization exothermic burst phenomenon in ZrO2 were measured. Thermal analysis and x-ray methods were used to determine crystallite sizes and structures immediately following the exothermic burst. Comparisons were made for zirconias prepared from oxychloride, chloride and nitrate solutions. The existence of tetrameric hydroxidecontaining ions in oxychloride precursor is used to rationalise low values of crystallization enthalpy. The position of the crystallization temperature, Tmax was not dependent on crystallite size alone but also on the pH at which the gel was made, the surface pH after washing, and the presence of diluent oxides. Enthalpy v r1/2 and Tmax v (diluent vol)1/3 relationships indicate that surface coverage effects dominate a surface nucleated phenomenon. The data established for ZrO2 systems was used to develop tetragonal-ZrO2-SnO2 powders capable of improving the mechanical properties of Ordinary Portland Cement discs. The ZrO2-OPC discs were prepared by powder mixing, water hydration and uniaxial pressing. Vicat needle tests showed that tetragonal-ZrO2 increases the initial setting rate. Microscopy indicated that porosity distribution changes near to ZrO2 particles. Zirconia has also been introduced into OPC discs by vacuum infiltration methods developed for solutions and colloidal suspensions. Comparisons between OPC discs and the OPCtetragonal ZrO2 composites have been made on the basis of diametral compression strength, Young’s modulus, hardness and toughness (K1c), as estimated by the cracked indentation method. Bell-shaped curves are found for the way the mechanical properties are changed as a function of Zirconia content.
875

Автоматизация процессов синтеза слоистых структур и исследование их электрофизических характеристик : магистерская диссертация / Automation of synthetic processes of layered structures and investigation of their electrophysical characteristics

Грязнов, А. О., Gryaznov, A. O. January 2017 (has links)
С помощью оборудования National Instruments реализованы две установки для нанесения органических покрытий. Установка термовакуумного нанесения с виртуальным прибором «ThermoVac» позволяет производить линейный нагрев испаряемого вещества с фиксированной скоростью до заданной температуры термостатирования в диапазоне от комнатной до 500 °C. Установка для нанесения методом центрифугирования с ВП «SC_organic» позволяет поддерживать заданную скорость вращения подложки в диапазоне от 500 до 9000 об/мин. На базе микрозондовой станции Cascade Microtech MPS150 разработан автоматизированный канал для тестирования мемристорных структур, в режиме многократного чтения и записи. ВП «RW MIM» формирует на выходе SMU источника последовательность импульсов заданной амплитуды и длительности в режимах запись/чтение. Выполнено нанесение и аттестация пленок 5,11-диметил-5,11-дигидроиндоло [3.2-b]карбазола и 5,11-дигексил-5,11-дигидроиндоло[3.2-b]карбазола. По измеренным вольтамперным характеристикам получено, что полупроводник в синтезированных структурах TiN/DMICZ/Au, Ti/DMICZ/Au обладает дырочной проводимостью с подвижностью μ = 4.9∙10-7 см2/(В∙с). Показано, что регистрируемая ВАХ характеризуется петлями гистерезиса, которые свидетельствуют о наличии мемристивного эффекта в образцах TiN/DHICZ/Au. Произведено тестирование исследуемых слоистых структур в режимах многократного чтения/записи. / An automated installation based on National Instruments equipment, two installations for applying organic coatings are implemented. The installation of a thermo vacuum evaporation with a virtual device "ThermoVac" allows linear heating of the evaporated substance at a fixed rate of up to 500 ° C. The centrifugal centrifugation unit with an VI “SC_organic” supports the specified rotation speed of the substrate in the range of 500 to 9000 rpm. Based on the microprobe station Cascade Microtech MPS150, an automated channel was developed for testing memristor structures, in the mode of multiple reading and writing. VI "RW MIM" forms a sequence of pulses of the specified amplitude and duration in the write / read modes at the SMU output of the source. The deposition and validation of 5,11-dimethyl-5,11-dihydroindolo [3.2-b] carbazole and 5,11-dihexyl-5,11-dihydroindolo [3.2-b] carbazole films was performed. From the measured volt-ampere characteristics, it was found that the semiconductor in the synthesized TiN / DMICZ / Au, Ti / DMICZ / Au structures has a hole conductivity with a mobility μ = 4.9 ∙ 10-7 cm2/(V∙s). It is shown that the recorded I-V characteristic is characterized by hysteresis loops that indicate the presence of a memorial effect in TiN / DHICZ / Au samples. The testing of layered structures under test in multiple read / write modes was performed.
876

Измерительный комплекс на базе модульной микрозондовой платформы для изучения электрофизических характеристик : магистерская диссертация / Measuring complex based on a modular microprobe platform for studying the electrophysical characteristics of materials

Мартемьянов, Н. А., Martemyanov, N. A. January 2020 (has links)
Для изучения электрофизических свойств широкозонных полупроводников собран модуль оптической стимуляции в микрозондовой станции CascadeMicrotechMPS150.Стимуляция производится светом полупроводникового лазера с длиной волны 532 нм. Управление лазером производится непосредственно из программы измерения характеристик материалов (написанной в среде LabView) и позволяет изменять мощность от 2 до 225 мВт/с путем изменения скважности управляющих импульсов. Разработан и собран модуль подогрева образца в микрозондовой станции CascadeMicrotechMPS150.Модуль имеет независимое от измерительного тракта управление нагревом и позволяет нагревать образец до 120 °С за 7,5 мин и поддерживать температуру образца с точностью до 0,1 °С. Разработан и собран модуль высокотемпературного отжига материалов. Модуль состоит из двух независимых блоков нагрева (950 ° С и 1300 °С)и позволяет производить отжиг материалов в вакууме и различных газовых средах. Максимальные размеры образца‒(Д х В х Ш, мм) –50х10х10, скорость нагрева в первом блоке до 950°С ‒7.5 мин., во втором до 1200°С‒103 минуты. / To study the electrophysical properties of wide-gap semiconductors, an optical stimulation module was assembled in a Cascade Microtech MPS 150 microprobe station. Stimulation is performed by the light of a semiconductor laser with a wavelength of 532 nm. The laser is controlled directly from the program for measuring the characteristics of materials (written in the LabView environment) and allows you to change the power from 2 to 225 mW / s by changing the duty cycle of the control pulses. A sample heating module was developed and assembled in the Cascade Microtech MPS 150 microprobe station. The module has heating control independent of the measuring path and allows heating the sample to 120 ° C in 7.5 minutes and maintaining the temperature of the sample with an accuracy of 0.1 ° C.A module for high‒temperature annealing of materials was developed and assembled. The module consists of two independent heating units (950 ° C and 1300 ° C) and allows annealing of materials in vacuum and various gaseous media. The maximum dimensions of the sample ‒ (L x W x H, mm) are 50x10x10, the heating rate in the first block to 950 ° C is 7.5 minutes, in the second to 1200 ° C for 103 minutes.
877

MODELING AND CHARACTERIZATION OF SOLID-STATE AND VACUUM HIGH-POWER MICROWAVE DEVICES

Xiaojun Zhu (8039564) 30 November 2023 (has links)
<p dir="ltr">High-power microwave (HPM) devices are generally vacuum-based devices that transform electron beam energy into microwaves with peak powers above 100 MW from 1-300 GHz. Solid-state HPM devices provide more compactness and greater reliability while consuming less power. Nonlinear transmission lines (NLTLs) provide a solid-state alternative to HPM generation by sharpening the input pulses from a pulse forming network to create output oscillations.</p><p dir="ltr">The first section of this dissertation evaluates and explores the feasibility of using nonlinear composites containing ferroelectric (e.g., Ba<sub>2/3</sub>Sr<sub>1/3</sub>TiO<sub>3</sub>, BST) and/or ferromagnetic (e.g., Ni<sub>1/2</sub>Zn<sub>1/2 </sub>Fe<sub>2</sub>O<sub>4</sub>, NZF) inclusions in a linear polymer host (polydimethylsiloxane, PDMS) to tune NLTL properties for HPM applications. Appropriately modelling and designing NLTLs using nonlinear composites require accurately characterizing their linear and nonlinear electromagnetic properties. We first studied the electromagnetic properties of the composites using theoretical, numerical, and experimental approaches. Incorporating these composite models and characterizations into NLTL simulations will be discussed.</p><p dir="ltr">Vacuum-based HPM devices, such as magnetrons and crossed-field amplifiers, generally operate in the space-charge-limited region, which corresponds to the maximum current possible for insertion into the device. This motivated studying the space-charge-limited current and electron flow in a two-dimensional (2D) planar diode with various crossed-magnetic fields using particle-in-cell (PIC) simulations. For non-magnetically insulated diodes (electrons emitted from the cathode can reach the anode), analytical and/or semi-empirical solutions are derived for electrons with nonzero monoenergetic initial velocity that agree well with PIC simulations. For magnetically insulated conditions, we developed new metrics using simulations and analytic theories to assess electron cycloidal and Brillouin flow to understand the implications of increasing injection current for 2D diodes. These analyses provide details on the operation of these devices at high currents, particularly virtual cathode operation, that may elucidate behavior near their limits of operation.</p>
878

Design of a vacuum chamber for cathode testing and low power Hall Effect Thrusters : Collaborative project with OHB Sweden AB / Design av en vakuumkammare för katodtestning och Hall Effect Thrusters med låg effekt : Samarbetsprojekt med OHB Sweden AB

Martinez Sanz, Andrea January 2023 (has links)
Testing of hardware to be used in space sometimes involves using vacuum chambers. The need to test hollow cathodes, used as neutralizers for some Electric Propulsion Thrusters, and low power Hall Effect Thrusters at OHB Sweden requires a vacuum chamber to be upgraded. The thesis aims firstly to show the process of adapting the vacuum chamber at OHB to test a heaterless hollow cathode. The requirements of the test included a maximum temperature of a 100 °C in the cathode’s bracket and a pressure inside the chamber around 10¯6 mbar during the test. To accomplish the first, the mounting structure was subjected to a thermal simulation using CREO. Once, the requirement was fulfilled the structure was manufactured and mounted. For the second requirement, a vacuum chamber characterization was done to see the pressure evolution inside the facility. Lastly, the fluid line was designed and mounted in the facility. An upgrade of the current vacuum chamber was deemed insufficient to test low power Hall Effect Thrusters. A comparison between the current vacuum chamber at OHB Sweden and other vacuum chambers designed for this purpose was made. The conclusion was drawn that a new vacuum chamber is necessary. Proposals for the design of a new vacuum facility are presented with particular focus on dimensions, the pump system, sputter protection and thermal protection. / Testandet av hårdvara som ska användas i rymden involverar ibland vakuumkammare. Behovet av att testa hollow cathodes, som används som neutraliserare för vissa jonmotorer, och Hall Effect Thrusters med låg effekt hos OHB Sweden kräver att en vakuumkammare uppgraderas. Avhandlingen syftar först till att redogöra för hur en av vakuumkammarna hos OHB Sweden kan anpassas för att testa en heaterless hollow cathode. Kraven för testet inkluderar en maximal temperatur på 100 °C grader i katodens fäste och och ett vakuum runt 10 ¯6 mbar. En jig designades genom bland annat termisk simulering i CREO. När det termiska kravet ansågs uppfyllas tillverkades och installerades denna jig. För det andra kravet karakteriserades vakuumkammaren med dess vakuumpumpar i syfte att bedöma om dessa kunde uppfylla kravet. Slutligen designades och installerades ett rörsystem som möjliggör matning av bränsle till testobjekten. En uppgradering av nuvarande vakuumkammare bedömdes otillräcklig för att testa Hall Effect Thrusters med låg effekt. En jämförelse mellan nuvarande vakuumkammare på OHB Sweden och andra vakuumkammare designade för detta ändamål gjordes och slutsatsen drogs att en ny vakuumkammare är nödvändig. Förslag på design av ny vakuumkammare presenteras med särkilt fokus på dimensioner, pumpssystemet, sputtingskydd och termiskt skydd.
879

Enhancing Luminescence Efficiency by Controlled Island Formation of CsPbBr₃ Perovskite

Antrack, Tobias, Kroll, Martin, Merten, Lena, Albaladejo-Siguan, Miguel, Hinderhofer, Alexander, Konovalov, Oleg V., Jankowski, Maciej, Benduhn, Johannes, Schreiber, Frank, Vaynzof, Yana, Leo, Karl 02 February 2024 (has links)
CsPbBr₃ is an inorganic perovskite material that is promising for light-emitting applications. Such applications are known to benefit from an island-type active layer structure, which enhances the device’s light emission efficiency. Here, the impact of the environment on the island formation in thermally deposited bilayers of CsPbBr₃/LiBr is investigated. It is demonstrated that the island formation occurs only in humid environments, leading to an enhancement of the photoluminescence quantum yield by a factor of 350. Timeresolved grazing-incidence wide-angle X-ray scattering experiments document the island growth process and reveal that the LiBr has already changed the perovskite crystal orientation prior to the island formation.
880

Optical Properties of Perovskite-Organic Multiple Quantum Wells

Antrack, Tobias, Kroll, Martin, Sudzius, Markas, Cho, Changsoon, Imbrasas, Paulius, Albaladejo-Siguan, Miguel, Benduhn, Johannes, Merten, Lena, Hinderhofer, Alexander, Schreiber, Frank, Reineke, Sebastian, Vaynzof, Yana, Leo, Karl 02 February 2024 (has links)
A comprehensive study of the optical properties of CsPbBr₃ perovskite multiple quantum wells (MQW) with organic barrier layers is presented. Quantum confinement is observed by a blue-shift in absorption and emission spectra with decreasing well width and agrees well with simulations of the confinement energies. A large increase of emission intensity with thinner layers is observed, with a photoluminescence quantum yield up to 32 times higher than that of bulk layers. Amplified spontaneous emission (ASE) measurements show very low thresholds down to 7.3 μJ cm−² for a perovskite thickness of 8.7 nm, significantly lower than previously observed for CsPbBr₃ thin-films. With their increased photoluminescence efficiency and low ASE thresholds, MQW structures with CsPbBr₃ are excellent candidates for high-efficiency perovskite-based LEDs and lasers.

Page generated in 0.1102 seconds