• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 29
  • 12
  • 10
  • 9
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Design of a High Speed AGC Amplifier for Multi-level Coding

Bhuiya, Iftekharul Karim January 2006 (has links)
<p>This thesis presents the design of a broadband and high speed dc-coupled AGC amplifier for multi-level (4-PAM) signaling with a symbol rate of 1-GS/s ( 2-Gb/s ) . It is a high frequency analog design with several design challenges such as high -3 dB bandwidth ( greater than 500 MHz ) and highly linear gain while accommodating a large input swing range ( 120 mVp-p to 1800 mVp-p diff.) and delivering constant</p><p>differential output swing of 1700 mVp-p to 50-ohm off-chip loads at high speed. Moreover, the gain control circuit has been designed in analog domain. The amplifier incorporates both active and passive feedback in shunt-shunt topology in order to achieve wide bandwidth. This standalone chip has been implemented in AMS 0.35 micron CMOS process. The post layout eye-diagrams seem to be quite satisfactory.</p>
22

Design of a High Speed AGC Amplifier for Multi-level Coding

Bhuiya, Iftekharul Karim January 2006 (has links)
This thesis presents the design of a broadband and high speed dc-coupled AGC amplifier for multi-level (4-PAM) signaling with a symbol rate of 1-GS/s ( 2-Gb/s ) . It is a high frequency analog design with several design challenges such as high -3 dB bandwidth ( greater than 500 MHz ) and highly linear gain while accommodating a large input swing range ( 120 mVp-p to 1800 mVp-p diff.) and delivering constant differential output swing of 1700 mVp-p to 50-ohm off-chip loads at high speed. Moreover, the gain control circuit has been designed in analog domain. The amplifier incorporates both active and passive feedback in shunt-shunt topology in order to achieve wide bandwidth. This standalone chip has been implemented in AMS 0.35 micron CMOS process. The post layout eye-diagrams seem to be quite satisfactory.
23

Research About The Laws And System Of The Electricity Liberalization In Taiwan

Chang, Chun-Te 30 July 2005 (has links)
Electricity power is an irreplaceable resource in industry for a country. Enough and steady-offered electricity is also the support to develop not only traditional industry but high technology industry. Taiwan is a place, where is lacking of natural resources. There is only 3 % of which can be self ¡Vcontained. In fact, electricity power plays one of important roles in achieving ¡§Economic Miracle of Taiwan.¡¨ Basically, electricity power embraces three parts of power generation, power transmission, and distribution. And it is managed by the way of vertically integration. Traditionally, electricity power is assorted into public utility because of its huge principal and social resources, even concerning with the economy and society of the country and is governed and controlled by the government. Whatever country promotes electricity liberalization, the government and the academic put their eye on foster the total efficiency of management through market mechanisms. Electricity liberalization has been working for more than twenty years. Of course, there are some successful cases, for example, like England, Australia, and etc. They do benefit from increasing the occurrence, the efficiency, and decrease the price after operating electricity liberalization. As to Taiwan, the government has the same policy on it, too. The amendments are under discussion in The Legislative Yuan. By referencing to electricity liberalization of other countries and comparing their experiences with Taiwan, the questions below are searched in this thesis. First, does the policy in Taiwan really satisfy the essence of electricity liberalization? Second, could power generation, power transmission, and distribution of the electricity industry be operated by vertically integrated way? After electricity liberalization, it is important that how to do could get good combined with competition of the market, the offer of steady electricity and the society justice. If not, how to modify the rules would satisfy the needs of country development and expectations of the society.
24

Construction of RF-link budget template for transceiver modelling

Frykskog, David, Jonsson, Hjalmar January 2019 (has links)
This master thesis report details the process of developing a simulation platform for radio transceivers with a focus on analog receiver front end system design. The platform was implemented in the National Instruments VSS environment for the company Ericsson AB.
25

Aplikační možnosti řiditelného proudového zesilovače / Application possibilities of controllable current amplifier

Bradáč, Josef January 2014 (has links)
This thesis deals with the application using digitally controlled current amplifiers DACA (Digitally Adjustable Current Amplifer), which was developed at the Department of Telecommunications FEEC in cooperation with ON Semiconductor in 2010. In introduction is decribed the topic of active filters and oscillators. Farther active current components, besides DACA are described current conveyor UCC (Universal Current Conveyor), current amplifier DO-CF (Dual-Output Current Follower), MO-CF (Multiple-Output Current Follower) and FD-CF (Fully Diferential Current Follower) and operational transconductant amplifier BOTA (Balanced-Output Operational Transconductance Amplifer) and MOTA (Multiple-Output Operational Transconductance Amplifier). The following is a compilation of theories circuits using signal flow graphs, which are designed using a simulated filter circuits to control the cutoff frequency or the quality factor. Then design and simulation with auxiliary oscillator circuit AGC for controlling the oscillation frequency. Simulations are conducted with ideal models and with models that include some real properties. The conclusion of this work is devoted to the printed circuit board design for a selected filter circuit realization and measurement.
26

Analysis of Covariance with Linear Regression Error Model on Antenna Control Unit Tracking

Laird, Daniel T. 10 1900 (has links)
ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV / Over the past several years DoD imposed constraints on test deliverables, requiring objective measures of test results, i.e., statistically defensible test and evaluation (SDT&E) methods and results. These constraints force the tester to employ statistical hypotheses, analyses and perhaps modeling to assess test results objectively, i.e., based on statistical metrics, probability of confidence and logical inference to supplement rather than rely solely on expertise, which is too subjective. Experts often disagree on interpretation. Numbers, although interpretable, are less variable than opinion. Logic, statistical inference and belief are the bases of testable, repeatable and refutable hypothesis and analyses. In this paper we apply linear regression modeling and analysis of variance (ANOVA) to time-space position information (TSPI) to determine if a telemetry (TM) antenna control unit (ACU) under test (AUT) tracks statistically, thus as efficiently, in C-band while receiving both C- and S-band signals. Together, regression and ANOVA compose a method known as analysis of covariance (ANCOVA). In this, the second of three papers, we use data from a range test, but make no reference to the systems under test, nor to causes of error. The intent is to present examples of tools and techniques useful for SDT&E methodologies in testing.
27

Logistics Regression Model on Antenna Control Unit Autotracking Mode

Laird, Daniel T. 10 1900 (has links)
ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV / Over the past several years DoD imposed constraints on test deliverables, requiring objective measures of test results, i.e., statistically defensible test and evaluation (SDT&E) methods and results. These constraints force testers to employ statistical hypotheses, analyses and modeling to assess test results objectively, i.e., based on statistical metrics, analytical methods, probability of confidence complemented by, rather than solely on expertise, which is too subjective. In this and companion papers we discuss methods of objectifying testing. We employ an earth coordinate model and statistical modeling of telemetry (TM) tracking antenna employing time-space position information (TSPI) and derived statistical measures for tracking-error and auto-tracking mode. Test data were statistically analyzed via analysis of covariance (ANCOVA) which revealed that the antenna control unit (ACU) under test (AUT) does not track statistically identically, nor as practically or efficiently in C-band while receiving data carriers in both S- and C-bands. The conclusions of this paper add support to that hypothesis. In this third of three papers we use data from a range test, but make no reference to the systems under test as the purpose of this paper is to present an example of tools useful for employing a SDT&E methodology.
28

Generátory měřicích signálů sin220 T a sin22T / Generators of the Measuring Signals sin220T and Sin22T

Mazánek, David January 2008 (has links)
My diploma thesis deals about the one possibility of distortion measuring in TV devices and distributions. The main objectives are analysis of special measuring signals sin220T and sin22T, means of precision assesments and design possibilities. Next point is proposal and after that draft of generator circuit. It will consist analog a digital section of processing measuring signals. Pulse sin22T is generated by digital decoder CPLD, trigged by “hardware” quartz oscilator 60MHz. Low-frequency component of signal sin220T have identical form like sin22T, diference is only in clocking by 10MHz assured by “software”frequency divider. High-frequency component of pulse is gained like product of AM modulation, that the modulation signal is low-frequency sin220T and harmonic carrier with frequency 4,433619MHz. Ocilator with automatic gain control (AGC) and quartz feed-back generates absolute accuracy oscillation (precision 10-6). Finaly this parts are summing in operation amplifier. Detailed analysis, draft and layout of PCB (Printed Circuid Board) is reffered – to diploma thesis.
29

New Generation 4-Channel GNSS Receiver : Design, Production, and Testing

Antoja Lleonart, Guillem January 2018 (has links)
Due to the current research needs and the lack of commercial multi-channel, multi-constellation GNSS receivers, a two-board solution has been developed so it can be mated with and take advantage of the processing power of the FPGA board branded as MicroZed. In order to achieve the proposed goals, an initial phase for assessing and updating the older design, building, and testing of SiGe modules (including both the electronics and casings) has been carried out. The results included demonstrate performances at logging GPS-L1 data with similar C/N0 and AGC values as the previous versions of the modules and offering navigation solutions with accuracies of a few meters. Secondly, a first iteration and design proposal for the new generation receiver has been proposed for GPS and GLONASS L1 and L2, which has been manufactured and tested. Partial tests have been performed due to the flaws of the current revision of the MicroZed Board in regards to its communication peripherals, and the results have validated the receiver’s design provided certain modifications are considered for future iterations. Furthermore, voltage and frequency tests have provided results with an error of less than 7%, and signal tests have provided C/N0 values similar to those of the SiGe modules of around 47[dB-Hz] which will be a useful baseline for future iterations. Finally, a design proposal for an Interface Board used between the older NT1065_PMOD Board and other FPGA boards carrying the standardized FMC connectors has been added to the report and negotiations with manufacturers have been engaged.

Page generated in 0.03 seconds