Spelling suggestions: "subject:"[een] OLEDS"" "subject:"[enn] OLEDS""
51 |
Alternative transparent electrodes for organic light emitting diodesTomita, Yuto 10 March 2009 (has links) (PDF)
Solid state lighting is a new environmentally friendly light source. So far, light emitting diodes (LEDs) and organic LEDs (OLEDs) have been presented as candidates with potentially high efficiency. Recent advances of OLEDs in device architecture, light-out coupling, and materials have ensured high efficiency, exceeding that of incandescent light bulbs. In contrast to conventional point source LEDs, OLEDs distribute light throughout the surface area and are not restricted by their size. Additionally, OLEDs are expected to reach sufficient stability in the near future. The remaining challenge for OLEDs is their cost. New OLED technologies provide cost effective manufacturing methods which could be presented for transparent electrode materials because indium tin oxide (ITO), a widely used material as a transparent electrode for OLEDs, is less than optimal due to its high element price. In this work, alternative transparent electrodes for OLEDs as a replacement of ITO were studied. First, Al doped ZnO (ZnO:Al) which is composed of abundant materials was investigated with DC magnetron sputtering under a wide range of experimental conditions. The optimised ZnO:Al received comparable performance with conventional ITO films, low sheet resistance of 22.8 Ω/sq as well as a high transparency of 93.1 % (average value in the visible range). Various type of p-i-n OLEDs were employed on the structured ZnO:Al using photolithography. Green OLEDs with double emission layers have been archived stable efficiencies even at higher luminance. Also, OLEDs using two fluorescent colour system on ZnO:Al anode showed a purely white emission. It has been found that the OLEDs on ZnO:Al anode has comparable or better device efficiencies and operational lifetime compared to OLEDs on conventional ITO anode. As another alternative electrode, the conductive polymer Baytron®PH510 (PEDOT:PSS) was investigated. Due to a relatively high sheet resistance of PEDOT:PSS, metal grid was designed for large size OLEDs. White OLEDs on PEDOT anode with a size of 5 × 5 cm2 have achieved more than 10 lm/W of power efficiency using a scattering foil. Furthermore, up-scaled devices on 10 × 10 cm2 were also demonstrated. These results showed ZnO:Al and PEDOT are suitable for OLEDs as anode and have high potential as alternative transparent electrode materials.
|
52 |
Optimisation des matériaux d'électrodes dans les diodes électroluminescentes et les cellules solaires organiquesBejbouji, Habiba 04 December 2009 (has links) (PDF)
Ce travail porte dans un premier temps sur l optimisation du matériau constituant la couche d injection des trous dans les diodes électroluminescentes organiques (OLEDs) et les cellules solaires organiques (OPVCs). Les Polyanilines (PANIs) utilisées dans ce travail sont dispersées dans différents solvants organiques ou dans l'eau. L effet de l épaisseur, de la morphologie et de la conductivité des films de PANI sur l efficacité des cellules solaires a été étudié. Les résultats montrent que la conductivité et l épaisseur des films de PANI affectent énormément l efficacité des dispositifs OLEDs ou OPVCs. Le dopant et le solvant utilisés dans la synthèse de la dispersion de PANI jouent aussi un rôle important. Dans un second temps, différentes PANIs ainsi que des latex de PEDOT et des nanotubes de carbone ont été utilisés seuls en tant qu'électrode dans le but d'accéder à des dispositifs "tout polymère". L influence du pH, de la conductivité, du travail de sortie, la nature du dopant et du solvant sur les propriétés de l injection de charge ont été analysés.
|
53 |
Alternative transparent electrodes for organic light emitting diodesTomita, Yuto 06 October 2008 (has links)
Solid state lighting is a new environmentally friendly light source. So far, light emitting diodes (LEDs) and organic LEDs (OLEDs) have been presented as candidates with potentially high efficiency. Recent advances of OLEDs in device architecture, light-out coupling, and materials have ensured high efficiency, exceeding that of incandescent light bulbs. In contrast to conventional point source LEDs, OLEDs distribute light throughout the surface area and are not restricted by their size. Additionally, OLEDs are expected to reach sufficient stability in the near future. The remaining challenge for OLEDs is their cost. New OLED technologies provide cost effective manufacturing methods which could be presented for transparent electrode materials because indium tin oxide (ITO), a widely used material as a transparent electrode for OLEDs, is less than optimal due to its high element price. In this work, alternative transparent electrodes for OLEDs as a replacement of ITO were studied. First, Al doped ZnO (ZnO:Al) which is composed of abundant materials was investigated with DC magnetron sputtering under a wide range of experimental conditions. The optimised ZnO:Al received comparable performance with conventional ITO films, low sheet resistance of 22.8 Ω/sq as well as a high transparency of 93.1 % (average value in the visible range). Various type of p-i-n OLEDs were employed on the structured ZnO:Al using photolithography. Green OLEDs with double emission layers have been archived stable efficiencies even at higher luminance. Also, OLEDs using two fluorescent colour system on ZnO:Al anode showed a purely white emission. It has been found that the OLEDs on ZnO:Al anode has comparable or better device efficiencies and operational lifetime compared to OLEDs on conventional ITO anode. As another alternative electrode, the conductive polymer Baytron®PH510 (PEDOT:PSS) was investigated. Due to a relatively high sheet resistance of PEDOT:PSS, metal grid was designed for large size OLEDs. White OLEDs on PEDOT anode with a size of 5 × 5 cm2 have achieved more than 10 lm/W of power efficiency using a scattering foil. Furthermore, up-scaled devices on 10 × 10 cm2 were also demonstrated. These results showed ZnO:Al and PEDOT are suitable for OLEDs as anode and have high potential as alternative transparent electrode materials.
|
54 |
Preparación y caracterización de polímeros electroluminiscentes encapsulados en materiales nanoporosos inorgánicosPeris Sanchis, Encarnación 13 February 2013 (has links)
Se han utilizado materiales inorgánicos porosos como matrices rígidas para encapsular una serie de polímeros orgánicos conjugados en el interior de sus poros. El objetivo de esta estrategia sintética es aumentar la fotoestabilidad y la resistencia química de los polímeros al O2 y a la humedad, de modo que se preserven sus propiedades conductoras, fotoquímicas u optoelectrónicas. En todos los casos, el polímero se ha preparado mediante la polimerización in situ de precursores monoméricos adecuados, previamente adsorbidos dentro de los poros de matrices inorgánicas convenientemente funcionarizadas para contener los centros activos para promover la polimerización.
Como anfitriones sólidos se han usado faujasitas X e Y, zeolitas deslaminadas ITQ-2, montmorillonita, materiales mesoporosos MCM-41 y esferas huecas monodispersas de sílice amorfa. Como huéspedes poliméricos se han preparado varios polímeros -conjugados, elegidos teniendo en cuenta su conductividad eléctrica o propiedades fotoquímicas y sus potenciales aplicaciones tecnológicas. En particular se han sintetizado con éxito: i) el poli(fenilenovinileno) puro (PPV) y 2,5-alcoxi-derivados; ii) el poli(2,6-naftalenovinileno), un polímero análogo al PPV pero con grupos naftaleno en lugar de grupos fenileno intercalados a la cadena vinilénica; iii) una serie de derivados de poliacetileno conteniendo naftaleno, fenantreno y tiofeno como grupos laterales, así como el poli(dietinilbenceno), que tiene varias posibilidades de polimerizar que pueden verse influenciadas por la geometría impuesta por la matriz hospedadora; y iv) el poli(etilen dioxitiofeno) (PEDOT).
Los materiales compuestos orgánico-inorgánicos resultantes se han caracterizado extensamente mediante técnicas espectroscópicas y métodos analíticos, con especial atención en sus propiedades fotoquímicas (o conductivita eléctrica) y en su estabilidad en comparación con los polímeros no encapsulados. Todos los resultados obtenidos son consistentes con el hecho / Peris Sanchis, E. (2007). Preparación y caracterización de polímeros electroluminiscentes encapsulados en materiales nanoporosos inorgánicos [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/21053
|
55 |
Raman-Spektroskopie an metallische/organische/anorganische Heterostrukturen und Pentacen-basierten OFETsPaez Sierra, Beynor Antonio 06 August 2008 (has links) (PDF)
Im Rahmen dieser Arbeit wurden die Wechselwirkung von Indium (In) und Magnesium (Mg) als Topelektroden auf zwei Perylen-Derivativen, 3,4,9,10-Perylentetracarbonsäure Dianhydrid (PTCDA) und Dimethyl-3,4,9,10-
Perylentetracarbonsäure Diimid (DiMe-PTCDI) untersucht. Die Metal/organische Schichten wurden auf S-passivierten GaAs(100):2x1-Substraten hergestellt und unter Ultrahochvakuum (UHV)-Bedingungens aufgedampft. Als
Hauptcharakterisierungsmethode wird die Raman-Spektroskopie eingesetzt, die eine nicht-destruktive Methode ist,und auch in situ Untersuchungen des Wachstumsprozesses ermöglicht. Die experimentell Ergebnisse haben gezeigt,
dass alle aufgedampft Metallen auf die organische Schichten von PTCDA und DiMe-PTCDI eine Verstärkung des
aktive Raman Signals von interne Schwingungsmoden fördern, begleitet durch die Aktivierung von normalerweise
Infrarotaktivemoden. Diesem Phänomen als Oberflächenverstärkte Raman-Spektroskopie (SERS) genannt ist.
Das Mg Wachstum auf beiden Molekularstrukturen wurde durch die viel niedrigere Diffusion des Metalls
in die organischen Molekülen im Vergleich zum Indium, es war durch die Bewahrung des von externe molekulare
Schwingungsmoden nach das Metallswachstum, und in ersten Mal in einem Ramanexperiment beobachtet. Die
PTCDA/Mg Strukturen formen sich durch zwei Stufen des Metallwachstum, die erste gehört zu einer neuen
molekularen Struktur für eine Mg Schicht dünner als 2.8 nm, wo das PTCDA Molekühl des Sauerstoff-Atoms von die
dianhydride Gruppe verliert. Die zweite gehört zu das SERS Spektrum von die vorherige Struktur. Im Fall von
Mg/DiMe-PTCDI Heterostrukturen, den Molekühl wird gut bewahrt, wo die Raman Verschiebung an der diimide
Gruppe wird nicht modifiziert. Auch von dieser Struktur eine interessante Eigenschaft wurde durch die Kopplung
zwischen diskret Moleküleigenschwingungen am 221 cm^-1, 1291 cm^-1 und 1606 cm^-1 des organischen Materials
und den elektronischen Kontinuum-Zuständen des Mg-Metallkontakts. Ihre entsprechenden Energieliniengestalten
werden gut durch die Breit-Wigner-Fano-Funktion beschrieben.
Die Untersuchungen auf dem vorherigen Heterostrukturen half, die Kanalbildung von Pentacen-basierten organische
Feldeffekt-Transistoren (OFETs) experimentell zu analysieren, und in ersten Mal in einem Ramanexperiment
durchgeführt. Der organische Kanal war gebildet durch die organische Molekularstrahldeposition (OMBD) unter
UHV-Bedingungens der Pentacen Moleküle, und es war mit eine Evaporationsrate von ca. 0.65 Å/min aufgedampft.
Nach jede Aufdampfung von ca. 0.1 nm des organische Moleküle, den Strom und den Ramansignal in den Kanal
wurden in situ gemessen. Die minimale nominelle Dicke des organischen Materials erforderlich für den effizienten
Ladungstransport durch den OFET Kanal wurde um ungefähr 1.5 nm nomineller Einschluss oder 1.1 Monolagen (ML)
zu sein. Eigenschaften der ersten Monolagen werden gut im Vergleich mit dickeren Schichten definiert, wo die 1.1 ML
eine gestrecktes Natur wegen seines direkten Kontakts mit dem Gate-Isolator präsentieren. Es wurde gefunden, dass
der leitende organische Kanal bzw. -organische erhöhende Schicht (OBL)- eine Druckdeformierung hat. Dieses
Phänomen durch die rote Verschiebung der Ramanbanden beobachtet war. Das Ausgangskennlinienfeld des OFETs
wurden nach die letzte aufgedampft organische Schicht gemessen. Es wurde gefunden, dass der Drain-Strom einem
Relaxationsprozesse mit zwei Zeitkonstanten hat, wo eine in der Ordnung von 10¹ min ist und die zweite unter 10²
min. Ein ähnliches Experiment mit der Beleuchtung des Kanals mit einer 676.4 nm Laserquelle, es erhöht der Drain-
Strom und lässt ummodifiziert die Zeitkonstanten. In der Ergänzung, die OFET-Strukturen waren ex situ durch
Landungstransientspektroskopie (QTS) unstersucht. Die QTS Spektren zeigten positive und negative Banden zum
Gesamtsignal der relaxierte Ladung in Bezug auf die einzigartige Biaspulsepolarität. Wir haben dieses Phänomen als
,,anomales Verhalten des QTS-Signals“ genannt, und in ersten Mal in einem QTS-Experiment beobachtet. Bei
Wiederholung der QTS-Messung innerhalb ca. 100 min, die QTS-Spektre eine langsame Relaxationsprozesse von
Störstellen am 5 μs in bereich ca. 63 min < 10^2 min hat. Die Einfangsquerschnitten sind Zeitabhängig, es bedeutet,
dass die Störstellendichte nicht Konstant im Lauf der Betriebs des OFET bleibt. Dafür des Drain-Strom verändert sich
und die Beweglichkeit unabhängige des elektrisches Feld ist. Experimentell Untersuchungen auf dem OFETs mit der
Kombination der Ramanspektroskopie und elektrischen Felder zeigten eine Erhöhung des Ramanseinfangsquerschnitt
in endliche Bereich als die chemische SERS-Verstärkung von In bzw. Mg auf die Perylen-Derivativen PTCDA und
DiMe-PTCDI. Nach den Ausschaltung des elektrisches Felds den Ramansignal des Pentacen-basierten OFET eine
Relaxationsprozesse mit Zeitkonstant von ca. 94 min hat. Deshalb ist die Summe von Störstellensdichte wegen dieser
am organische/anorganische Grenze plus dieser dass die elektrisches Felds am die organische Halbleiter induziert.
|
56 |
Surface energy modification of metal oxide to enhance electron injection in light-emitting devices : charge balance in hybrid OLEDs and OLETsApicella Fernandez, Sergio January 2017 (has links)
Organic semiconductors (OSCs) present an electron mobility lower by several orders of magnitude than the hole mobility, giving rise to an electron-hole charge imbalance in organic devices such as organic light-emitting diodes (OLEDs) and organic light-emitting transistors (OLETs). In this thesis project, I tried to achieve an efficient electron transport and injection properties in opto-electronic devices, using inorganic n-type metal oxides (MOs) instead of organic n-type materials and a polyethyleneimine ethoxylated (PEIE) thin layer as electron transport (ETLs) and injection layers (EILs), respectively. In the first part of this thesis, inverted OLEDs were fabricated in order to study the effect of the PEIE layer in-between ZnO and two different emissive layers (EMLs): poly(9,9-dioctylfluorene-alt-benzothiadiazole) polymer (F8BT) and tris(8-hydroxyquinolinato) aluminum small molecule (Alq3), based on a solution and thermal evaporation processes, respectively. Different concentrations (0.80 %, 0.40 %) of PEIE layers were used to further study electron injection capability in OLEDs. After a series of optimizations in the fabrication process, the opto-electrical characterization showed high-performance of devices. The inverted OLEDs reported a maximum luminance over 104 cd m-2 and a maximum external quantum efficiency (EQE) around 1.11 %. The results were attributed to the additional PEIE layer which provided a good electron injection from MOs into EMLs. In the last part of the thesis, OLETs were fabricated and discussed by directly transferring the energy modification layer from OLEDs to OLETs. As metal oxide layer, ZnO:N was employed for OLETs since ZnO:N-based thin film transistors (TFTs) showed better performance than ZnO-based TFTs. Finally, due to their short life-time, OLETs were characterized electrically but not optically.
|
57 |
[en] DEVELOPMENT AND CHARACTERIZATION OF FLEXIBLE COMPOSITE SUBSTRATES FOR ORGANIC DEVICES APPLICATIONS / [pt] DESENVOLVIMENTO E CARACTERIZAÇÃO DE SUBSTRATOS COMPÓSITOS FLEXÍVEIS PARA APLICAÇÃO EM DISPOSITIVOS ORGÂNICOSVANESSA LUZ E CALIL 20 July 2015 (has links)
[pt] Nas últimas décadas a tecnologia de displays e células solares evoluiu consideravelmente. Há menos de cinco décadas atrás a tecnologia de volume (bulk) era a mais amplamente utilizada no mundo. Com o surgimento das tecnologias de dispositivos planos ocorreu uma grande revolução e, nos dias atuais, é a tecnologia dominante na área de displays e de células solares. Já a tecnologia do futuro surgiu com a descoberta dos materiais orgânicos semicondutores tornando possível a substituição dos convencionais substratos de vidro por substratos flexíveis, como os substratos poliméricos ou metálicos. Nesta tese foram desenvolvidos diferentes tipos de substratos compósitos poliméricos baseados no termoplástico comercial de alto desempenho, poli(éter imida) (PEI), e na celulose bacteriana (CB), um polímero natural e biocompatível comumente utilizado como pele artificial. Os nanocompósitos foram idealizados para aplicação como substratos flexíveis em dispositivos orgânicos. Três tipos de substratos foram estudados: nanocompósito PEI/nanotubos de carbono (CNTs); nanocompósito CB/PEI; e CB modificada por camada de dióxido de titânio dopado com alumínio (AlTiO2). Os dois primeiros substratos foram utilizados na produção de dispositivos orgânicos emissores de luz (OLEDs), enquanto o último na produção de um dispositivo fotodetector em meio aquoso – implante de retina. Os novos materiais foram caracterizados, principalmente, por suas propriedades ópticas e morfológicas, e os resultados foram utilizados para determinar suas possíveis aplicações. O nanocompósito PEI/CNT apresentou propriedades similares ao polímero puro quando produzido com baixas concentrações de CNTs. Para maiores concentrações os resultados obtidos mostraram-se inferiores aos do polímero puro. Já o nanocompósito CB/PEI apresentou propriedades comparáveis ou melhores que dos polímeros puros. Podemos destacar a grande melhoria em sua transparência óptica na região do visível, além de ter sido possível a obtenção de uma rugosidade superficial comparável à encontrada para substratos de vidro e com maior homogeneidade em relação aos substratos de PEI. Ambos substratos foram funcionalizados pela deposição de uma camada de óxido de índio-estanho (ITO), que foi utilizado como eletrodo transparente na produção dos OLEDs. A análise da funcionalização da superfície mostrou que os filmes de ITO sobre os compósitos apresentou propriedades elétricas também comparáveis aos obtidos para substratos de vidro e PEI. No caso do substrato de CB/PEI foi verificada melhor estabilidade do filme de ITO nos testes de flexão, não sendo observado variações no valor de sua resistividade mesmo após sofrer flexão de 5mm de diâmetro. Os dispositivos produzidos no substrato compósito PEI/CNT também apresentaram propriedades semelhantes às obtidas pela utilização do polímero puro. A maior eficiência atingida por ambos dispositivos flexíveis chegou a 1,45 cd/m2, ainda abaixo dos valores obtidos para os substratos de vidro – 2,15 cd/m2 no caso do substrato com ITO comercial e 2,00 cd/m2 no caso do substrato com ITO depositado. Já os dispositivos produzidos no nanocompósito CB/PEI apresentou excelente eficiência (2,50 cd/m2), sendo maior que o obtido para subtratos revestidos com ITO comercial. O substrato de CB/AlTiO2 foi idealizado para melhorar a aderência do ITO no filme de CB quando em contato com a água. O resultado obtido foi bastante satisfatório, pois, além de manter a camada de ITO aderido ao substrato, melhorou em 46 porcento sua rugosidade superficial. Essa modificação na morfologia da superfície acarretou em uma melhora significativa da resistividade elétrica do filme de ITO sobre o substrato flexível, uma redução de aproximadamente 63 porcento. Os substratos modificados foram utilizados para a produção de um dispositivo fotodetector. Os resultados obtidos apontam substratos promissores para a produção de implantes de retinas flexíveis e biocompatíveis. / [en] Over the past decades displays and solar cells technology had substantially evolved. For less than five decades ago the bulk technology was the most widely used worldwide. With the emergence of flat device technology a great revolution has occurred and, nowadays, this is the dominant technology in the field of displays and solar cells. The future technology has begun with the discovery of the organic semiconductor material which makes possible to replace conventional glass substrates for flexible substrates such as polymeric or metallic ones. In this thesis different types of polymeric composite substrates based on commercial high performance thermoplastic polyetherimide (PEI), and a natural and biocompatible polymer commonly used as artificial skin, bacterial cellulose (BC) has been developed. The above mentioned nanocomposites were developed for application as flexible substrates in organic devices. Three types of substrates were studied: PEI/carbon nanotubes (CNTs) nanocomposite; BC/PEI nanocomposite; and BC modified with an aluminum doped titanium dioxide (AlTiO2) layer. The first two substrates were used for the production of organic emitting devices (OLEDs), while the latter one was used for the production of a photodetector device in aqueous medium – retinal prosthesis. The new materials were mainly characterized by its optical and morphological properties and the results were used to determine its possible applications. PEI/CNT nanocomposite presented similar properties to the pure polymer when produced with low CNTs contents. For higher concentrations the results were inferior to those of the pure polymer. BC/PEI nanocomposite has showed comparable or better properties when compared with pure polymers. A highlight was the great improvement in their optical transparency in the visible region of electromagnetic spectrum, and the smooth surface achieved by the nanocomposite – comparable to that found for glass substrates and with better uniformity in relation to PEI substrates. Both substrates were functionalized by depositing a layer of tin doped indium oxide (ITO), which was used as a transparent electrode in the production of OLEDs. The analysis of surface functionalization showed that electrical properties of ITO films onto composites were also comparable to those obtained for glass and PEI substrates. However, BC/PEI substrate presented better ITO film stability in bending tests, showing no changes in its resistivity value even after undergoing 5 mm diameter of bending. The devices produced in the PEI/CNT composite substrate has also similar properties to those obtained by using pure polymer. The higher efficiency achieved by both flexible devices reached 1.45 cd/m2 which is still below the values obtained for the glass substrates – 2.15 cd/m2 in the case of commercial ITO substrate and 2.00 cd/m2 in the case the substrate with deposited ITO. The devices produced onto CB/PEI composite substrates showed excellent efficiency (2.50 cd/m2), a higher value than that obtained for substrates coated with commercial ITO. The CB/AlTiO2 substrate was designed to improve the adhesion of the ITO film onto BC substrate when in contact with water. The result was quite satisfactory, because in addition to maintaining the ITO layer adhered to the substrate it has a 46 percent improvement in surface roughness. This change in surface morphology resulted in a significant improvement of ITO electrical resistivity, a reduction of approximately 63 percent was observed. The modified substrates were used for production of a photodetector device and the results showed a promising substrate for production of biocompatible and flexible retinal prosthesis.
|
58 |
Development Of Fluorescent OLED And Analysis Of Integrated Optofluidic Lab-on-a Chip SensorNarayan, K 04 1900 (has links) (PDF)
Optofluidics is a new branch within photonics which attempts to unify concepts from optics and microfluidics. Unification of photonics and microfluidics enable us to carry out analysis of fluids through highly sensitive optical sensing device. These optical sensing devices are contained within a microchip, wherein light is made to pass through analyte (fluids of few nanoliters). The interaction between light and fluid gives rise to highly sensitive diagnostic systems.
In this work the fabrication and performance characterization of a fluorescent green OLED for optofluidic applications is presented. The effect of thickness variation of hole injection (CuPc) and hole blocking (BCP) layers on the performance of fluorescent green organic light emitting diodes (OLEDs) have been studied. Even though these two organic layers have opposite functions, yet there is a particular combination of their thicknesses when they function in conjunction and luminous efficiency and power efficiency are maximized. The optimum thickness of CuPc layer, used as hole injection layer and BCP used as hole blocking layer were found to be 18 nm and 10 nm respectively. It is with this delicate adjustment of thicknesses, charge balancing was achieved and luminous efficiency and power efficiency were optimized. Such OLEDs with higher luminance can be monolithically integrated with other optical and fluidic components on a common substrate and can function as monolithically integrated internal source of light in optofluidic sensors.
In this work the analysis of a fully integrated optofluidic lab-on-a-chip sensor for refractive index and absorbance based sensing using fluorescent green organic light emitting diode (OLED) as a light source is also presented. This device consists of collinear input and output waveguides which are separated by a microfluidic channel. When light is passed through the analyte contained in the fluidic gap an optical power loss due to absorption of light takes place. Apart from absorption a mode-mismatch between collinear input and output waveguide also occurs. The degree of mode-mismatch, quantum of optical power loss due to absorption of light by the
fluid forms the basis of our analysis. Detection of minutest change in refractive index and
changes in concentration of species contained in the analyte is indicative of sensitivity.
Various parameters which influence the sensitivity of the sensor are mode spot size, refractive index of the fluid, molar concentration of the species contained in the analyte, width of the fluidic gap, waveguide geometry. By correlating various parameters, an optimal fluidic gap distance corresponding to a particular mode spot size to achieve the best sensitivity for refractive index based sensing and absorbance based sensing have been determined.
|
59 |
Raman-Spektroskopie an metallische/organische/anorganische Heterostrukturen und Pentacen-basierten OFETsPaez Sierra, Beynor Antonio 20 December 2007 (has links)
Im Rahmen dieser Arbeit wurden die Wechselwirkung von Indium (In) und Magnesium (Mg) als Topelektroden auf zwei Perylen-Derivativen, 3,4,9,10-Perylentetracarbonsäure Dianhydrid (PTCDA) und Dimethyl-3,4,9,10-
Perylentetracarbonsäure Diimid (DiMe-PTCDI) untersucht. Die Metal/organische Schichten wurden auf S-passivierten GaAs(100):2x1-Substraten hergestellt und unter Ultrahochvakuum (UHV)-Bedingungens aufgedampft. Als
Hauptcharakterisierungsmethode wird die Raman-Spektroskopie eingesetzt, die eine nicht-destruktive Methode ist,und auch in situ Untersuchungen des Wachstumsprozesses ermöglicht. Die experimentell Ergebnisse haben gezeigt,
dass alle aufgedampft Metallen auf die organische Schichten von PTCDA und DiMe-PTCDI eine Verstärkung des
aktive Raman Signals von interne Schwingungsmoden fördern, begleitet durch die Aktivierung von normalerweise
Infrarotaktivemoden. Diesem Phänomen als Oberflächenverstärkte Raman-Spektroskopie (SERS) genannt ist.
Das Mg Wachstum auf beiden Molekularstrukturen wurde durch die viel niedrigere Diffusion des Metalls
in die organischen Molekülen im Vergleich zum Indium, es war durch die Bewahrung des von externe molekulare
Schwingungsmoden nach das Metallswachstum, und in ersten Mal in einem Ramanexperiment beobachtet. Die
PTCDA/Mg Strukturen formen sich durch zwei Stufen des Metallwachstum, die erste gehört zu einer neuen
molekularen Struktur für eine Mg Schicht dünner als 2.8 nm, wo das PTCDA Molekühl des Sauerstoff-Atoms von die
dianhydride Gruppe verliert. Die zweite gehört zu das SERS Spektrum von die vorherige Struktur. Im Fall von
Mg/DiMe-PTCDI Heterostrukturen, den Molekühl wird gut bewahrt, wo die Raman Verschiebung an der diimide
Gruppe wird nicht modifiziert. Auch von dieser Struktur eine interessante Eigenschaft wurde durch die Kopplung
zwischen diskret Moleküleigenschwingungen am 221 cm^-1, 1291 cm^-1 und 1606 cm^-1 des organischen Materials
und den elektronischen Kontinuum-Zuständen des Mg-Metallkontakts. Ihre entsprechenden Energieliniengestalten
werden gut durch die Breit-Wigner-Fano-Funktion beschrieben.
Die Untersuchungen auf dem vorherigen Heterostrukturen half, die Kanalbildung von Pentacen-basierten organische
Feldeffekt-Transistoren (OFETs) experimentell zu analysieren, und in ersten Mal in einem Ramanexperiment
durchgeführt. Der organische Kanal war gebildet durch die organische Molekularstrahldeposition (OMBD) unter
UHV-Bedingungens der Pentacen Moleküle, und es war mit eine Evaporationsrate von ca. 0.65 Å/min aufgedampft.
Nach jede Aufdampfung von ca. 0.1 nm des organische Moleküle, den Strom und den Ramansignal in den Kanal
wurden in situ gemessen. Die minimale nominelle Dicke des organischen Materials erforderlich für den effizienten
Ladungstransport durch den OFET Kanal wurde um ungefähr 1.5 nm nomineller Einschluss oder 1.1 Monolagen (ML)
zu sein. Eigenschaften der ersten Monolagen werden gut im Vergleich mit dickeren Schichten definiert, wo die 1.1 ML
eine gestrecktes Natur wegen seines direkten Kontakts mit dem Gate-Isolator präsentieren. Es wurde gefunden, dass
der leitende organische Kanal bzw. -organische erhöhende Schicht (OBL)- eine Druckdeformierung hat. Dieses
Phänomen durch die rote Verschiebung der Ramanbanden beobachtet war. Das Ausgangskennlinienfeld des OFETs
wurden nach die letzte aufgedampft organische Schicht gemessen. Es wurde gefunden, dass der Drain-Strom einem
Relaxationsprozesse mit zwei Zeitkonstanten hat, wo eine in der Ordnung von 10¹ min ist und die zweite unter 10²
min. Ein ähnliches Experiment mit der Beleuchtung des Kanals mit einer 676.4 nm Laserquelle, es erhöht der Drain-
Strom und lässt ummodifiziert die Zeitkonstanten. In der Ergänzung, die OFET-Strukturen waren ex situ durch
Landungstransientspektroskopie (QTS) unstersucht. Die QTS Spektren zeigten positive und negative Banden zum
Gesamtsignal der relaxierte Ladung in Bezug auf die einzigartige Biaspulsepolarität. Wir haben dieses Phänomen als
,,anomales Verhalten des QTS-Signals“ genannt, und in ersten Mal in einem QTS-Experiment beobachtet. Bei
Wiederholung der QTS-Messung innerhalb ca. 100 min, die QTS-Spektre eine langsame Relaxationsprozesse von
Störstellen am 5 μs in bereich ca. 63 min < 10^2 min hat. Die Einfangsquerschnitten sind Zeitabhängig, es bedeutet,
dass die Störstellendichte nicht Konstant im Lauf der Betriebs des OFET bleibt. Dafür des Drain-Strom verändert sich
und die Beweglichkeit unabhängige des elektrisches Feld ist. Experimentell Untersuchungen auf dem OFETs mit der
Kombination der Ramanspektroskopie und elektrischen Felder zeigten eine Erhöhung des Ramanseinfangsquerschnitt
in endliche Bereich als die chemische SERS-Verstärkung von In bzw. Mg auf die Perylen-Derivativen PTCDA und
DiMe-PTCDI. Nach den Ausschaltung des elektrisches Felds den Ramansignal des Pentacen-basierten OFET eine
Relaxationsprozesse mit Zeitkonstant von ca. 94 min hat. Deshalb ist die Summe von Störstellensdichte wegen dieser
am organische/anorganische Grenze plus dieser dass die elektrisches Felds am die organische Halbleiter induziert.
|
60 |
Organic light-emitting diodes with doped charge transport layers / Organische Leuchtdioden mit dotierten LadungsträgertransportschichtenBlochwitz, Jan 08 July 2001 (has links) (PDF)
Organische Farbstoffe mit einem konjugierten pi-Elektronen System zeigen überwiegend ein halbleitendes Verhalten. Daher sind sie potentielle Materialien für elektronische und optoelektronische Anwendungen. Erste Anwendungen in Flachbildschirmen sind bereits in (noch) geringen Mengen auf dem Markt. Die kontrollierte Dotierung anorganischer Halbleiter bereitete die Basis für den Durchbruch der bekannten Halbleitertechnologie. Die Kontrolle des Leitungstypes und der Lage des Fermi-Niveaus erlaubte es, stabile pn-Übergänge herzustellen. LEDs können daher mit Betriebsspannungen nahe dem thermodynamischen Limit betrieben werden (ca. 2.5V für eine Emission im grünen Spektralbereich). Im Gegensatz dazu bestehen organische Leuchtdioden (OLEDs) typischerweise aus einer Folge intrinsischer Schichten. Diese weisen eine ineffiziente Injektion aus Kontakten und eine relative geringe Leitfähigkeit auf, welche mit hohen ohmschen Verlusten verbunden ist. Andererseits besitzen organische Materialien einige technologische Vorteile, wie geringe Herstellungskosten, große Vielfalt der chemischen Verbindungen und die Möglichkeit sie auf flexible große Substrate aufzubringen. Sie unterscheiden sich ebenso in einigen fundamentalen physikalischen Parametern wie Brechungsindex, Dielektrizitätskonstante, Absorptionskoeffizient und Stokes-Verschiebung der Emissionswellenlänge gegenüber der Absorption. Das Konzept der Dotierung wurde für organische Halbleiter bisher kaum untersucht und angewandt. Unser Ziel ist die Erniedrigung der Betriebsspannung herkömmlicher OLEDs durch den Einsatz der gezielten Dotierung der Transportschichten mit organischen Molekülen. Um die verbesserte Injektion aus der Anode in die dotierte Löchertransportschicht zu verstehen, wurden UPS/XPS Messungen durchgeführt (ultraviolette und Röntgen-Photoelektronenspektroskopie). Messungen wurden an mit F4-TCNQ dotiertem Zink-Phthalocyanin auf ITO und Gold-Kontakten durchgeführt. Die Schlussfolgerungen aus den Experimenten ist, das (i) die Fermi-Energie sich durch Dotierung dem Transportniveau (also dem HOMO im Falle der vorliegenden p-Dotierung) annähert, (ii) die Diffusionspannung an der Grenzfläche durch Dotierung entsprechend verändert wird, und (iii) die Verarmungszone am Kontakt zum ITO sehr dünn wird. Der Kontakt aus organischem Material und leitfähigem Substrat verhält sich also ganz analog zum Fall der Dotierung anorganischer Halbleiter. Es entsteht ein stark dotierter Schottky-Kontakt dessen schmale Verarmungszone leicht durchtunnelt werden kann (quasi-ohmscher Kontakt). Die Leistungseffizienz von OLEDs mit dotierten Transportschichten konnte sukzessive erhöht werden, vom einfachen 2-Schicht Design mit dotiertem Phthalocyanine als Löchertransportschicht, über einen 3-Schicht-Aufbau mit einer Elektronen-Blockschicht bis zu OLEDs mit dotierten 'wide-gap' Löchertransport-Materialien, mit und ohne zusätzlicher Schicht zur Verbesserung der Elektroneninjektion. Sehr effiziente OLEDs mit immer noch niedriger Betriebsspannung wurden durch die Dotierung der Emissionsschicht mit Molekülen erhöhter Photolumineszenzquantenausbeute (Laser-Farbstoffe) erreicht. Eine optimierte LED-Struktur weist eine Betriebsspannung von 3.2-3.2V für eine Lichtemission von 100cd/m2 auf. Diese Resultate entsprechen den zur Zeit niedrigsten Betriebsspannungen für OLEDs mit ausschließlich im Vakuum aufgedampften Schichten. Die Stromeffizienz liegt bei ca. 10cd/A, was einer Leistungseffizienz bei 100cd/m2 von 10lm/W entspricht. Diese hohe Leistungseffizienz war nur möglich durch die Verwendung einer Blockschicht zwischen der dotierten Transportschicht und der Lichtemissions-Schicht. Im Rahmen der Arbeit konnte gezeigt werden, dass die Dotierung die Betriebsspannungen von OLEDs senken kann und damit die Leistungseffizienz erhöht wird. Zusammen mit einer sehr dünnen Blockschicht konnte einen niedrige Betriebsspannung bei gleichzeitig hoher Effizienz erreicht werden (Blockschicht-Konzept). / Organic dyes with a conjugated pi-electron system usually exhibit semiconducting behavior. Hence, they are potential materials for electronic and optoelectronic devices. Nowadays, some applications are already commercial on small scales. Controlled doping of inorganic semiconductors was the key step for today's inorganic semiconductor technology. The control of the conduction type and Fermi-level is crucial for the realization of stable pn-junctions. This allows for optimized light emitting diode (LED) structures with operating voltages close to the optical limit (around 2.5V for a green emitting LED). Despite that, organic light emitting diodes (OLEDs) generally consist of a series of intrinsic layers based on organic molecules. These intrinsic organic charge transport layers suffer from non-ideal injection and noticeable ohmic losses. However, organic materials feature some technological advantages for device applications like low cost, an almost unlimited variety of materials, and possible preparation on large and flexible substrates. They also differ in some basic physical parameters, like the index of refraction in the visible wavelength region, the absorption coefficient and the Stokes-shift of the emission wavelength. Doping of organic semiconductors has only been scarcely addressed. Our aim is the lowering of the operating voltages of OLEDs by the use of doped organic charge transport layers. The present work is focused mainly on the p-type doping of weakly donor-type molecules with strong acceptor molecules by co-evaporation of the two types of molecules in a vacuum system. In order to understand the improved hole injection from a contact material into a p-type doped organic layer, ultraviolet photoelectron spectroscopy combined with X-ray photoelectron spectroscopy (UPS/XPS) was carried out. The experimental results of the UPS/XPS measurements on F4-TCNQ doped zinc-phthalocyanine (ZnPc) and their interpretation is given. Measurements were done on the typical transparent anode material for OLEDs, indium-tin-oxide (ITO) and on gold. The conclusion from these experiments is that (i) the Fermi-energy comes closer to the transport energy (the HOMO for p-type doping), (ii) the built-in potential is changed accordingly, and (iii) the depletion layer becomes very thin because of the high space charge density in the doped layer. The junction between a doped organic layer and the conductive substrate behaves rather similar to a heavily doped Schottky junction, known from inorganic semicondcutor physics. This behavior favors charge injection from the contact into the organic semiconductor due to tunneling through a very small Schottky barrier (quasi-ohmic contact). The performance of OLEDs with doped charge transport layers improves successively from a simple two-layer design with doped phthalocyanine as hole transport layer over a three-layer design with an electron blocking layer until OLEDs with doped amorphous wide gap materials, with and without additional electron injection enhancement and electron blocking layers. Based on the experience with the first OLEDs featuring doped hole transport layers, an ideal device concept which is based on realistic material parameters is proposed (blocking layer concept). Very high efficient OLEDs with still low operating voltage have been prepared by using an additional emitter dopant molecule with very high photoluminescence quantum yield in the recombination zone of a conventional OLED. An OLED with an operating voltage of 3.2-3.2V for a brightness of 100cd/m2 could be demonstrated. These results represent the lowest ever reported operating voltage for LEDs consisting of exclusively vacuum sublimed molecular layers. The current efficiency for this device is above 10cd/A, hence, the power efficiency at 100cd/m2 is about 10lm/W. This high power efficiency could be achieved by the use of a blocking layer between the transport and the emission layer.
|
Page generated in 0.0414 seconds