• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 91
  • 25
  • 16
  • 14
  • 12
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Bounded Surface

Brown, Emilie Sayward 01 January 2008 (has links)
The relationship between surface, perception, and structure has occupied my graduate studies. Locating, transforming, and transcending the surface requires play with perceptive abilities not only of vision, but of touch, hearing, and the other senses as well. How do the interactions of sense with the qualities of a surface determine our perception of the world? What role does the extension of the senses play in one's ability to perceive surface and structure? Using sense information gleaned from surfaces, the tectonics of our world are made visible. Might this relationship be played backwards as well? Composed structures produce surfaces upon which limina can be sensed.This written accompaniment to the thesis works is intended to continue the exploration of the surface/ sense/ structure relationship. With the visual work as a basis, each section consists of two parts. This structure is a tool for producing sense information for the viewer concerning the visual work.The first part serves as a bridge between the particular visual work and the second part. Consisting of a page or so of text, the first part of each section is also intended to set a tone or position the reader for the second part. The second part is more formal and speaks about the ideas behind the produced object, and for the most part could be applied to any works in this thesis. My desire is that the adjacency of the pieces in each section will create a friction of sorts— an awareness of the surface between the two writings, and perhaps, between the writing and the objects.
82

DESIGN AND ANALYSIS OF A 3D-PRINTED, THERMOPLASTIC ELASTOMER (TPE) SPRING ELEMENT FOR USE IN CORRECTIVE HAND ORTHOTICS

Richardson, Kevin Thomas 01 January 2018 (has links)
This thesis proposes an algorithm that determine the geometry of 3D-printed, custom-designed spring element bands made of thermoplastic elastomer (TPE) for use in a wearable orthotic device to aid in the physical therapy of a human hand exhibiting spasticity after stroke. Each finger of the hand is modeled as a mechanical system consisting of a triple-rod pendulum with nonlinear stiffness at each joint and forces applied at the attachment point of each flexor muscle. The system is assumed quasi-static, which leads to a torque balance between the flexor tendons in the hand, joint stiffness and the design force applied to the fingertip by the 3D-printed spring element. To better understand material properties of the spring element’s material, several tests are performed on TPE specimens printed with different infill geometries, including tensile tests and cyclic loading tests. The data and stress-strain curves for each geometry type are presented, which yield a nonlinear relationship between stress and strain as well as apparent hysteresis. Polynomial curves are used to fit the data, which allows for the band geometry to be designed. A hypothetical hand is presented along with how input measurements might be taken for the algorithm. The inputs are entered into the algorithm, and the geometry of the bands for each finger are generated. Results are discussed, and future work is noted, providing a means for the design of a customized orthotic device.
83

Self powered wrist extension orthosis

Singer, Mathew Kyle January 2006 (has links)
One of the most devastating effects of tetraplegia is the inability to grasp and manipulate everyday objects necessary to living an independent life. Currently surgery is widely accepted as the solution to improve hand functionality. However, surgery becomes difficult when the user has paralysed wrists as is the case with C5 tetraplegia. The aim of this research was to develop a solution which provided controlled wrist flexion and extension which, when combined with surgery, achieves a 'key pinch' grip. This particular grip is critically important for people with C5 tetraplegia as it is used for countless grasping activities, necessary on a day-to-day basis. A systematic design process was used to evolve the solution to provide controlled wrist flexion and extension. Concept brainstorming identified four alternative solutions which were evaluated to find the preferred concept. The chosen solution was called the Self Powered Wrist Extension Orthosis, more commonly referred to as the 'orthosis'. This concept contained a shoulder harness which provided both energy and control to the wrist harness, which in turn changed the wrist position. The orthosis was developed with the use of a mathematical model which theoretically predicted the functional performance by comparing the required force needed to move the wrist harness to the achievable force supplied by the user's shoulders. Using these parameters, the orthosis was optimized using the matlab Nelder-Mead algorithm which adjusted the wrist harness geometries to maximize the functional performance. A prototype was constructed and tested with the help of two participants who when combined, achieved an average of 18.5° of wrist rotation. The theoretical model however predicted an average range of motion of 28.4°. The discrepancy found between the theoretical and experimental result can be contributed to incorrect assumptions in the theoretical model. This included unaccounted friction and inaccurate modeling of the orthosis dynamics. The feedback from potential users of the orthosis was enthusiastic and encouraging especially towards the simplicity, usability and practicality of the design.
84

An alignment tool for prosthetic components : A conceptual development

Johansson, Robin January 2022 (has links)
Prosthetic alignment is the principle of the position and orientation and of the components in a lower limb prosthesis to achieve desirable biomechanical characteristics. Poor alignment of lower limb prostheses is related to decreased balance, knee and hip arthritis, and higher energy expenditure for the user. Clinicians, the prosthetists, have declared they need better tools and increased knowledge in how to perform lower limb prosthetic alignments. Therefore, the aim was to develop a tool concept for clinicians to use in the prosthetic alignment process. This thesis mapped out most of the variables a clinician must consider in the alignment process, identified the clinicians needs of an alignment tool, and screened the market for existing solutions. A systematic approach was applied to develop a conceptual tool from the gathered information. The needs of the customer were based on interviews with clinicians and competing products were benchmarked. Two different conceptual tools were developed, tested with clinicians with promising results, and presented in this thesis. Due to confidentiality agreements with the cooperating company, the designs and functions of the final concepts cannot be shown in the report and are therefore covered in the publication. / Protesuppställning är principen av att orientera och positionera komponenterna i en benprotes för att uppnå önskvärda biomekaniska egenskaper. Undermålig protesuppställning är relaterat till försämrad balans, knä- och höftartros, samt högre energiförbrukning hos användaren. Ortopedingenjörer har uttalat att de behöver bättre verktyg och ökad kunskap kring hur man bäst utför uppställning för benproteser. Uppsatsen ämnade därför att utveckla ett verktygskoncept för ortopedingenjören att använda i protesuppställningen. Den här uppsatsen har kartlagt de flesta variabler som en ortopedingenjör behöver överväga i uppställningsprocessen, identifierat ortopedingenjörers behov i ett uppställningsverktyg, samt undersökt marknaden för existerande lösningar. Ett systematiskt tillvägagångsätt användes för att utveckla ett konceptuellt verktyg baserat på den insamlade informationen. Kundens behov identifierades genom intervjuer med ortopedingenjörer och konkurrerande lösningar sammanställdes i en konkurrensanalys. Två olika konceptuella verktyg utvecklades, testades tillsammans med ortopedingenjörer med lovande resultat, samt har presenterats i denna uppsats. På grund av sekretessavtal med företaget som ingått i samarbetet kunde designen och funktioner, som ingår i de slutliga koncepten och resultatet, inte visas i denna rapport och är därmed övertäckta vid publicering.
85

Metamorfos; Den mänskliga kroppen i transformation / Metamorphosis; The Human Body in Transformation

Moreno, Alexandra January 2023 (has links)
Based on what body adornment has been throughout history, this project investigates what it might be in the future. The possibilities, forms and methods of body adornment has changed and will continue to change over time, along with our societal and environmental shifts as well as with developments in science and technology. Our bodies are increasingly perceived as malleable objects that we can modify, enhance and improve. I use speculation as a method to explore how the human body may develop and be modified in the future. I envision a world where we have become increasingly intertwined with technologies, where environmental changes and our lifestyle have affected our biology, and where our bodies have continued to be altered based on social norms. Through this project I have become some kind of contemporary Frankenstein scientist, although I am not in a laboratory but in a jewellery workshop. My objects, which I call potential jewellery, or maybe-jewellery, are presented in an installation in the form of a clinical setting. It is a representation of where body adornment meets medical technology, where jewellery meets prostheses and implants. This project does not have any answers or a clear message about what is right or wrong – it is based on a curiosity without having a conclusion in mind. The installation is meant to be a reminder that our bodies are always adorned, modified and in transformation – that we are in an ongoing metamorphosis from one state to another.
86

[pt] ALMANAQUE DA SURDEZ: UMA EXPERIÊNCIA DE SUBMERSÃO / [en] DEAFNESS ALMANAC: A SUBMERSIAN EXPERIENCE

NATALIA ARAUJO RODRIGUES 05 May 2021 (has links)
[pt] Do impulso ao mergulho numa paisagem submersa, este almanaque propõe uma reflexão sobre surdez e escuta. A escrita conduz o pensamento através da observação de imagens submarinas, seguindo um percurso que cruza fronteiras; entre o lúdico e os dados científicos, a teoria e a intuição, a certeza e incerteza, humano e bicho, natural artificial. Num caminho que deseja chegar ao abismo, para conhecer seus monstros e sua pluralidade. / [en] From impulse to diving in a submerged landscape, this almanac proposes a reflection on deafness and listening. Writing leads thought through the observation of under-water images, following a route that crosses borders; between ludic and scientific data, theory and intuition, certainty and uncertainty, human and animal, natural and artificial. In a path that wants to reach the abyss, to know its monsters and plurality.
87

Advanced Manufacturing of Titanium Alloys for Biomedical Applications

Mavros, Nicholas C. 12 June 2018 (has links)
No description available.
88

Transcendence: An Ethical Analysis of Enhancement Technologies

McCormick, Sean Eli 27 May 2016 (has links)
No description available.
89

Accuracy and Reliability of 3D Scanning Spatial Data when Capturing Limb Morphology for Use within Prosthetics and Orthotics: A Scoping Review / Nøjagtighed og pålidelighed af 3D scanning for spatial data ved afbildning af lemme morfologi til brug indenfor bandagistfaget: et scoping review

Bailey-Brændgaard, Miles, Enevoldsen, Peter Wibe January 2022 (has links)
Background: Scanners are becoming widespread in Prosthetics and Orthotics, replacing plaster casting in the manufacture of some types of devices. P&O shape capture must be accurate and reliable, so the device is comfortable and reproducible between clinicians/sessions. Objectives: To map knowledge on measuring accuracy and reliability of spatial data produced from 3D scanners. Methods: The study design was a scoping review using the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Studies published in or after 2010 in English with a full-text available that analyse either the accuracy/validity or reliability of human 3D scanning data within a P&O context. Sources were obtained from Pubmed, CINAHL, Scopus, Cochrane Library, Web of Science, and AMed databases on 25th March. Results: The search identified 115 studies of which 9 were included (7 experimental [4 prosthetic, 3 orthotic], 1 systematic review, 1 literature review). 7 analysed both reliability and accuracy/validity and 2 analysed reliability. High heterogeneity amongst studies’ methods, techniques, and equipment. Conclusion: Methods, techniques, and equipment used to measure accuracy/validity and reliability varied greatly though more so in the measurement of accuracy/validity. Within the studies, researchers called for more research on standardisation of measurement methods and techniques.
90

Investigación para el desarrollo de un protocolo para fabricación aditiva de modelos anatómicos en centros de salud

de Rossi Estrada, Marco 10 June 2022 (has links)
[ES] La fabricación aditiva, también llamada impresión 3D, ha tenido un gran impacto en la industria. La capacidad de fabricar modelos complejos y personalizados a bajo coste se adapta muy bien para algunas aplicaciones, sustituyendo procesos de fabricación tradicional y ofreciendo nuevas oportunidades. En medicina, la fabricación personalizada de modelos complejos ha encontrado muchas aplicaciones, desde réplicas de patologías para la educación hasta implantes hechos a medida y remplazo de órganos. De todas las posibilidades de esta tecnología en medicina, la fabricación de modelos anatómicos a partir de imágenes médicas ofrece un excelente balance entre facilidad de implementación y beneficio, esto la hace una aplicación perfecta para ser usada ampliamente en los hospitales. La fabricación aditiva de modelos anatómicos es un campo que ha suscitado considerable entusiasmo en los últimos años. La comunidad médica ve esta herramienta como el siguiente paso generacional en la visualización clínica, ofreciendo grandes beneficios para los pacientes y el sistema de salud. Debido al gran interés, hay muchos investigadores que han evaluado el impacto de esta tecnología en la práctica médica, midiendo los beneficios médicos que puedan tener estos modelos anatómicos. En general, los resultados muestran que hay reducción de tiempo de quirófano, menor morbilidad y mortalidad al igual que menor estrés y denuncias por parte de pacientes. A pesar de estos resultados prometedores, no hay muchos estudios realizados sobre cuál debe ser el proceso para garantizar la reproducibilidad y seguridad de estos modelos, un tema que es de gran importancia para poder cumplir con las regulaciones actuales, que exigen protocolos de fabricación y sistemas de calidad para este proceso. Debemos observar que, aunque el proceso para obtener modelos anatómicos es más fácil que otras aplicaciones de esta tecnología, no es un proceso trivial. Es un trabajo complejo con múltiples pasos que Involucra a varios especialistas para su correcta realización. Actualmente el hospital es el entorno ideal para poder fabricar estos modelos, permite un mayor control del proceso, facilita la colaboración multidisciplinar necesaria y reduce considerablemente los requisitos legales que rigen los dispositivos médicos. El objetivo de esta investigación es desarrollar un protocolo detallado y optimizado que cumpla con los requisitos técnicos, médicos y legales para poder implementar esta tecnología emergente de forma segura y eficiente en centros de salud. Para alcanzar este objetivo, las metodologías observadas fueron la revisión por literatura, la investigación doctrinal legal y la investigación acción empleada en los diferentes casos estudiados. Los casos se han elegido buscando la mayor diversidad posible bajo el criterio de conveniencia en el horizonte temporal contemplado, dada la diversidad compleja del estudio realizado. Gracias a la colaboración con varias instituciones médicas y de educación, este protocolo se pudo implementar en diversos contextos, mejorándolo progresivamente al ponerlo a prueba con casos reales, mediante el trabajo continuo con los expertos. El resultado es un protocolo que incluye varios años de experiencia y que ha sido aplicado en un amplio rango de especialidades. Este protocolo es relativamente sencillo de seguir y cumple con los principales requisitos para ser implementado en hospitales. / [CA] La fabricació additiva, també anomenada impressió 3D, ha tingut un gran impacte en la indústria. La capacitat de fabricar models complexos i personalitzats a baix cost s' adapta molt bé per a algunes aplicacions, substituint processos de fabricació tradicional i oferint noves oportunitats. En medicina, la fabricació personalitzada de models complexos ha trobat moltes aplicacions, des de rèpliques de patologies per a l'educació fins a implants fets a mida i òrgans. De totes les possibilitats d'aquesta tecnologia en medicina, la fabricació de models anatòmics a partir d'imatges mèdiques ofereix un excel·lent balanç entre facilitat d'implementació i benefici, això la fa una aplicació perfecta per ser usada àmpliament als hospitals. La fabricació additiva de models anatòmics és un camp que ha suscitat considerable entusiasme en els últims anys. La comunitat mèdica veu aquesta eina com el següent pas generacional en la visualització clínica, oferint grans beneficis per als pacients i el sistema de salut. A causa del gran interès, hi ha molts investigadors que han avaluat l'impacte d'aquesta tecnologia en la pràctica mèdica, mesurant els beneficis mèdics que puguen tenir aquests models anatòmics. En general, els resultats mostren que hi ha reducció de temps de quiròfan, menor morbiditat i mortalitat igual que menor estrès i denúncies per part de pacients. Malgrat aquests resultats prometedors, no hi ha molts estudis realitzats sobre quin ha de ser el procés per garantir la reproduïbilitat i seguretat d' aquests models, un tema que és de gran importància per poder complir amb les regulacions actuals, que exigeixen protocols de fabricació i sistemes de qualitat per a aquest procés. Hem d'observar que, tot i que el procés per obtenir models anatòmics és més fàcil que altres aplicacions d'aquesta tecnologia, no és un procés trivial. És un treball complex amb múltiples passos que Involucra diversos especialistes per a la seva correcta realització. Actualment l'hospital és l'entorn ideal per poder fabricar aquests models, permet un major control del procés, facilita la col·laboració multidisciplinària necessària i redueix considerablement els requisits legals que regeixen els dispositius mèdics. L'objectiu d'aquesta investigació és desenvolupar un protocol detallat i optimitzat que compleix amb els requisits tècnics, mèdics i legals per poder implementar aquesta tecnologia emergent de forma segura i eficient en centres de salut. Per assolir aquest objectiu, les metodologies observades van ser la revisió per literatura, la investigació doctrinal legal i la investigació acció emprada en els diferents casos estudiats. Els casos s' han triat buscant la major diversitat possible sota el criteri de conveniència en l' horitzó temporal contemplat, atesa la diversitat complexa de l' estudi realitzat. Gràcies a la col·laboració amb diverses institucions mèdiques i d'educació, aquest protocol es va poder implementar en diversos contextos, millorant-lo progressivament en posar-lo a prova amb casos reals, mitjançant el treball continu amb els experts. El resultat és un protocol que inclou diversos anys d' experiència i que ha estat aplicat en un ampli rang d' especialitats. Aquest protocol és relativament senzill de seguir i compleix amb els principals requisits per ser implementat en hospitals. / [EN] Additive manufacturing, also called 3D printing, has had a huge impact on the industry. The ability to manufacture complex and customized models at a low cost is well suited for some applications, replacing traditional manufacturing processes and offering new opportunities. In medicine, the custom manufacture of complex models has found many applications, from replicas of pathologies for education to custom-made implants and organ replacement. Of all the possibilities of this technology in medicine, the manufacture of anatomical models from medical images offers an excellent balance between ease of implementation and benefit, this makes it a perfect application to be widely used in hospitals. Additive manufacturing of anatomical models is a field that has attracted considerable enthusiasm in recent years. The medical community sees this tool as the next generational step in clinical visualization, offering great benefits for patients and the healthcare system. Due to the great interest, there are many researchers who have evaluated the impact of this technology on medical practice, measuring the medical benefits that these anatomical models may have. In general, the results show that there is a reduction in operating room time, lower morbidity and mortality as well as less stress and complaints from patients. Despite these promising results, there are not many studies conducted on what the process should be to guarantee the reproducibility and safety of these models, an issue that is of great importance to be able to comply with current regulations, which require manufacturing protocols and quality systems for this process. We should note that although the process for obtaining anatomical models is easier than other applications of this technology, it is not a trivial process. It is a complex work with multiple steps that involves several specialists for its correct realization. Currently the hospital is the ideal environment to be able to manufacture these models, it allows greater control of the process, facilitates the necessary multidisciplinary collaboration, and considerably reduces the legal requirements that govern medical devices. The objective of this research is to develop a detailed and optimized protocol that meets the technical, medical, and legal requirements to implement this technology in hospitals. To achieve this objective, the methodologies observed consisted of literature review, legal doctrinal research and action research used in the multiple cases studied. The cases have been selected seeking the greatest possible diversity under the criterion of convenience in the time horizon contemplated, given the complex diversity of the study carried out. Thanks to the collaboration with several medical and educational institutions, this protocol could be implemented in various contexts, progressively improving it by testing it with real cases, through continuous work with experts. The result is a protocol that includes several years of experience and has been applied in a wide range of specialties. It is relatively simple to follow and complies with most requirements to be implemented in hospitals. / De Rossi Estrada, M. (2022). Investigación para el desarrollo de un protocolo para fabricación aditiva de modelos anatómicos en centros de salud [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/183303 / TESIS

Page generated in 0.0587 seconds