• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 232
  • 88
  • 50
  • 26
  • 14
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 526
  • 144
  • 97
  • 74
  • 64
  • 64
  • 60
  • 59
  • 53
  • 49
  • 46
  • 45
  • 43
  • 41
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Feature selection based segmentation of multi-source images : application to brain tumor segmentation in multi-sequence MRI / Segmentation des images multi-sources basée sur la sélection des attributs : application à la segmentation des tumeurs cérébrales en IRM

Zhang, Nan 12 September 2011 (has links)
Les images multi-spectrales présentent l’avantage de fournir des informations complémentaires permettant de lever des ambigüités. Le défi est cependant comment exploiter ces informations multi-spectrales efficacement. Dans cette thèse, nous nous focalisons sur la fusion des images multi-spectrales en extrayant des attributs les plus pertinents en vue d’obtenir la meilleure segmentation possible avec le moindre coût de calcul possible. La classification par le Support Vector Machine (SVM), combinée avec une méthode de sélection d’attributs, est proposée. Le critère de sélection est défini par la séparabilité des noyaux de classe. S’appuyant sur cette classification SVM, un cadre pour suivre l’évolution est proposé. Il comprend les étapes suivantes : apprentissage des tumeurs cérébrales et sélection des attributs à partir du premier examen IRM (imagerie par résonance magnétique) ; segmentation automatique des tumeurs dans de nouvelles images en utilisant une classification basée sur le SVM multi-noyaux ; affiner le contour des tumeurs par une technique de croissance de région ; effectuer un éventuel apprentissage adaptatif. L’approche proposée a été évaluée sur 13 patients avec 24 examens, y compris 72 séquences IRM et 1728 images. En comparant avec le SVM traditionnel, Fuzzy C-means, le réseau de neurones, et une méthode d’ensemble de niveaux, les résultats de segmentation et l’analyse quantitative de ces résultats démontrent l’efficacité de l’approche proposée. / Multi-spectral images have the advantage of providing complementary information to resolve some ambiguities. But, the challenge is how to make use of the multi-spectral images effectively. In this thesis, our study focuses on the fusion of multi-spectral images by extracting the most useful features to obtain the best segmentation with the least cost in time. The Support Vector Machine (SVM) classification integrated with a selection of the features in a kernel space is proposed. The selection criterion is defined by the kernel class separability. Based on this SVM classification, a framework to follow up brain tumor evolution is proposed, which consists of the following steps: to learn the brain tumors and select the features from the first magnetic resonance imaging (MRI) examination of the patients; to automatically segment the tumor in new data using a multi-kernel SVM based classification; to refine the tumor contour by a region growing technique; and to possibly carry out an adaptive training. The proposed system was tested on 13 patients with 24 examinations, including 72 MRI sequences and 1728 images. Compared with the manual traces of the doctors as the ground truth, the average classification accuracy reaches 98.9%. The system utilizes several novel feature selection methods to test the integration of feature selection and SVM classifiers. Also compared with the traditional SVM, Fuzzy C-means, the neural network and an improved level set method, the segmentation results and quantitative data analysis demonstrate the effectiveness of our proposed system.
512

Spatio-temporal refinement using a discontinuous Galerkin approach for elastodynamic in a high performance computing framework / Raffinement spatio-temporel par une approche de Galerkin discontinue en élastodynamique pour le calcul haute performance

Dudouit, Yohann 08 December 2014 (has links)
Cette thèse étudie le raffinement local de maillage à la fois en espace et en temps pour l’équation de l’elastodynamique du second ordre pour le calcul haute performance. L’objectif est de mettre en place des méthodes numériques pour traiter des hétérogénéités de petite taille ayant un impact important sur la propagation des ondes. Nous utilisons une approche par éléments finis de Galerkin discontinus avec pénalisation pour leur flexibilité et facilité de parallélisation. La formulation éléments finis que nous proposons a pour particularité d’être élasto-acoustique, pour pouvoir prendre en compte des hétérogénéités acoustiques de petite taille. Par ailleurs, nous proposons un terme de pénalisation optimisé qui est mieux adapté à l’équation de l’élastodynamique, conduisant en particulier à une meilleure condition CFL. Nous avons aussi amélioré une formulation PML du second ordre pour laquelle nous avons proposé une nouvelle discrétisation temporelle qui rend la formulation plus stable. En tirant parti de la p-adaptivité et des maillages non-conformes des méthodes de Galerkin discontinues combiné à une méthode de pas de temps local, nous avons grandement réduit le coût du raffinement local. Ces méthodes ont été implémentées en C++, en utilisant des techniques de template metaprogramming, au sein d’un code parallèle à mémoire distribuée (MPI) et partagée (OpenMP). Enfin, nous montrons le potentiel de notre approche sur des cas tests de validation et sur des cas plus réalistes avec des milieux présentant des hydrofractures. / This thesis studies local mesh refinement both in time and space for the second order elastodynamic equation in a high performance computing context. The objective is to develop numerical methods to treat small heterogeneities that have global impact on wave propagation. We use an internal penalty discontinuous Galerkin finite element approach for its flexibity and parallelization capabilities. The elasto-acoustic finite element formulation we discuss is elasto-acoustic in order to handle local acoustic heterogeneities. We also propose an optimized penalty term more suited to the elastodynamic equation that results in better CFL condition. We improve a second order PML formulation with an original time discretization that results in a more stable formulation. Using the p-adaptivity and nonconforming mesh capabilities of discontinuous Galerkin methods combined with a local time stepping method, we greatly reduce the high computational cost of local refinements. These methods have been implemented in C++, using template metaprogramming, in a distributed memory (MPI) and shared memory (OpenMP) parallel code. Finally, we show the potential of our methods on validation test cases and on more realistic test cases with medium including hydrofractures.
513

Nouvelle technique de grilles imbriquées pour les équations de Saint-Venant 2D / New nested grids technique for 2D shallow water equations

Altaie, Huda 17 December 2018 (has links)
Les écoulements en eau peu profonde se rencontrent dans de nombreuses situations d’intérêts : écoulements de rivières et dans les lacs, mais aussi dans les mers et océans (courants de marée, tsunami, etc.). Ils sont modélisés par un système d’équations aux dérivées partielles, où les inconnues sont la vitesse de l’écoulement et la hauteur d’eau. On peut supposer que la composante verticale de la vitesse est petite devant les composantes horizontales et que ces dernières sont indépendantes de la profondeur. Le modèle est alors donné par les équations de shallow water (SWEs). Cette thèse se concentre sur la conception d’une nouvelle technique d’interaction de plusieurs grilles imbriquées pour modèle en eau peu profonde en utilisant des méthodes numériques. La première partie de cette thèse comprend, La dérivation complète de ces équations à partir des équations de Navier- Stokes est expliquée. Etudier le développement et l’évaluation des méthodes numériques en utilisant des méthodes de différences finies et plusieurs exemples numériques sont appliqués utilisant la condition initiale du niveau gaussien pour 2DSWEs. Dans la deuxième partie de la thèse, nous sommes intéressés à proposer une nouvelle technique d’interaction de plusieurs grilles imbriquées pour résoudre les modèles océaniques en utilisant quatre choix des opérateurs de restriction avec des résultats de haute précision. Notre travail s’est concentré sur la résolution numérique de SWE par grilles imbriquées. A chaque niveau de résolution, nous avons utilisé une méthode classique de différences finies sur une grille C d’Arakawa, avec un schéma de leapfrog complété par un filtre d’Asselin. Afin de pouvoir affiner les calculs dans les régions perturbées et de les alléger dans les zones calmes, nous avons considéré plusieurs niveaux de résolution en utilisant des grilles imbriquées. Ceci permet d’augmenter considérablement le rapport performance de la méthode, à condition de régler efficacement les interactions (spatiales et temporelles) entre les grilles. Dans la troisième partie de cette thèse, plusieurs exemples numéériques sont testés pour 2DSWE avec imbriqués 3:1 et 5:1. Finalement, la quatrième partie de ce travail, certaines applications de grilles imbriquées pour le modèle tsunami sont présentées. / Most flows in the rivers, seas, and ocean are shallow water flow in which the horizontal length andvelocity scales are much larger than the vertical ones. The mathematical formulation of these flows, so called shallow water equations (SWEs). These equations are a system of hyperbolic partial differentialequations and they are effective for many physical phenomena in the oceans, coastal regions, riversand canals. This thesis focuses on the design of a new two-way interaction technique for multiple nested grids 2DSWEs using the numerical methods. The first part of this thesis includes, proposing several ways to develop the derivation of shallow water model. The complete derivation of this system from Navier-Stokes equations is explained. Studying the development and evaluation of numerical methods by suggesting new spatial and temporal discretization techniques in a standard C-grid using an explicit finite difference method in space and leapfrog with Robert-Asselin filter in time which are effective for modeling in oceanic and atmospheric flows. Several numerical examples for this model using Gaussian level initial condition are implemented in order to validate the efficiency of the proposed method. In the second part of our work, we are interested to propose a new two-way interaction technique for multiple nested grids to solve ocean models using four choices of higher restriction operators (update schemes) for the free surface elevation and velocities with high accuracy results. Our work focused on the numerical resolution of SWEs by nested grids. At each level of resolution, we used explicit finite differences methods on Arakawa C-grid. In order to be able to refine the calculations in troubled regions and move them into quiet areas, we have considered several levels of resolution using nested grids. This makes it possible to considerably increase the performance ratio of the method, provided that the interactions (spatial and temporal) between the grids are effectively controlled. In the third part of this thesis, several numerical examples are tested to show and verify twoway interaction technique for multiple nested grids of shallow water models can works efficiently over different periods of time with nesting 3:1 and 5:1 at multiple levels. Some examples for multiple nested grids of the tsunami model with nesting 5:1 using moving boundary conditions are tested in the fourth part of this work.
514

Automating Geospatial RDF Dataset Integration and Enrichment

Sherif, Mohamed Ahmed Mohamed 12 May 2016 (has links)
Over the last years, the Linked Open Data (LOD) has evolved from a mere 12 to more than 10,000 knowledge bases. These knowledge bases come from diverse domains including (but not limited to) publications, life sciences, social networking, government, media, linguistics. Moreover, the LOD cloud also contains a large number of crossdomain knowledge bases such as DBpedia and Yago2. These knowledge bases are commonly managed in a decentralized fashion and contain partly verlapping information. This architectural choice has led to knowledge pertaining to the same domain being published by independent entities in the LOD cloud. For example, information on drugs can be found in Diseasome as well as DBpedia and Drugbank. Furthermore, certain knowledge bases such as DBLP have been published by several bodies, which in turn has lead to duplicated content in the LOD . In addition, large amounts of geo-spatial information have been made available with the growth of heterogeneous Web of Data. The concurrent publication of knowledge bases containing related information promises to become a phenomenon of increasing importance with the growth of the number of independent data providers. Enabling the joint use of the knowledge bases published by these providers for tasks such as federated queries, cross-ontology question answering and data integration is most commonly tackled by creating links between the resources described within these knowledge bases. Within this thesis, we spur the transition from isolated knowledge bases to enriched Linked Data sets where information can be easily integrated and processed. To achieve this goal, we provide concepts, approaches and use cases that facilitate the integration and enrichment of information with other data types that are already present on the Linked Data Web with a focus on geo-spatial data. The first challenge that motivates our work is the lack of measures that use the geographic data for linking geo-spatial knowledge bases. This is partly due to the geo-spatial resources being described by the means of vector geometry. In particular, discrepancies in granularity and error measurements across knowledge bases render the selection of appropriate distance measures for geo-spatial resources difficult. We address this challenge by evaluating existing literature for point set measures that can be used to measure the similarity of vector geometries. Then, we present and evaluate the ten measures that we derived from the literature on samples of three real knowledge bases. The second challenge we address in this thesis is the lack of automatic Link Discovery (LD) approaches capable of dealing with geospatial knowledge bases with missing and erroneous data. To this end, we present Colibri, an unsupervised approach that allows discovering links between knowledge bases while improving the quality of the instance data in these knowledge bases. A Colibri iteration begins by generating links between knowledge bases. Then, the approach makes use of these links to detect resources with probably erroneous or missing information. This erroneous or missing information detected by the approach is finally corrected or added. The third challenge we address is the lack of scalable LD approaches for tackling big geo-spatial knowledge bases. Thus, we present Deterministic Particle-Swarm Optimization (DPSO), a novel load balancing technique for LD on parallel hardware based on particle-swarm optimization. We combine this approach with the Orchid algorithm for geo-spatial linking and evaluate it on real and artificial data sets. The lack of approaches for automatic updating of links of an evolving knowledge base is our fourth challenge. This challenge is addressed in this thesis by the Wombat algorithm. Wombat is a novel approach for the discovery of links between knowledge bases that relies exclusively on positive examples. Wombat is based on generalisation via an upward refinement operator to traverse the space of Link Specifications (LS). We study the theoretical characteristics of Wombat and evaluate it on different benchmark data sets. The last challenge addressed herein is the lack of automatic approaches for geo-spatial knowledge base enrichment. Thus, we propose Deer, a supervised learning approach based on a refinement operator for enriching Resource Description Framework (RDF) data sets. We show how we can use exemplary descriptions of enriched resources to generate accurate enrichment pipelines. We evaluate our approach against manually defined enrichment pipelines and show that our approach can learn accurate pipelines even when provided with a small number of training examples. Each of the proposed approaches is implemented and evaluated against state-of-the-art approaches on real and/or artificial data sets. Moreover, all approaches are peer-reviewed and published in a conference or a journal paper. Throughout this thesis, we detail the ideas, implementation and the evaluation of each of the approaches. Moreover, we discuss each approach and present lessons learned. Finally, we conclude this thesis by presenting a set of possible future extensions and use cases for each of the proposed approaches.
515

Adaptive Netzverfeinerung in der Formoptimierung mit der Methode der Diskreten Adjungierten

Günnel, Andreas 22 January 2010 (has links)
Formoptimierung bezeichnet die Bestimmung der Geometrischen Gestalt eines Gebietes auf dem eine partielle Differentialgleichung (PDE) wirkt, sodass bestimmte gegebene Zielgrößen, welche von der Lösung der PDE abhängen, Extrema annehmen. Bei der Diskret Adjungierten Methode wird der Gradient einer Zielgröße bezüglich einer beliebigen Anzahl von Formparametern mit Hilfe der Lösung einer adjungierten Gleichung der diskretisierten PDE effizient ermittelt. Dieser Gradient wird dann in Verfahren der numerischen Optimierung verwendet um eine optimale Lösung zu suchen. Da sowohl die Zielgröße als auch der Gradient für die diskretisierte PDE ermittelt werden, sind beide zunächst vom verwendeten Netz abhängig. Bei groben Netzen sind sogar Unstetigkeiten der diskreten Zielfunktion zu erwarten, wenn bei Änderungen der Formparameter sich das Netz unstetig ändert (z.B. Änderung Anzahl Knoten, Umschalten der Konnektivität). Mit zunehmender Feinheit der Netze verschwinden jedoch diese Unstetigkeiten aufgrund der Konvergenz der Diskretisierung. Da im Zuge der Formoptimierung Zielgröße und Gradient für eine Vielzahl von Iterierten der Lösung bestimmt werden müssen, ist man bestrebt die Kosten einer einzelnen Auswertung möglichst gering zu halten, z.B. indem man mit nur moderat feinen oder adaptiv verfeinerten Netzen arbeitet. Aufgabe dieser Diplomarbeit ist es zu untersuchen, ob mit gängigen Methoden adaptiv verfeinerte Netze hinreichende Genauigkeit der Auswertung von Zielgröße und Gradient erlauben und ob eventuell Anpassungen der Optimierungsstrategie an die adaptive Vernetzung notwendig sind. Für die Untersuchungen sind geeignete Modellprobleme aus der Festigkeitslehre zu wählen und zu untersuchen. / Shape optimization describes the determination of the geometric shape of a domain with a partial differential equation (PDE) with the purpose that a specific given performance function is minimized, its values depending on the solution of the PDE. The Discrete Adjoint Method can be used to evaluate the gradient of a performance function with respect to an arbitrary number of shape parameters by solving an adjoint equation of the discretized PDE. This gradient is used in the numerical optimization algorithm to search for the optimal solution. As both function value and gradient are computed for the discretized PDE, they both fundamentally depend on the discretization. In using the coarse meshes, discontinuities in the discretized objective function can be expected if the changes in the shape parameters cause discontinuous changes in the mesh (e.g. change in the number of nodes, switching of connectivity). Due to the convergence of the discretization these discontinuities vanish with increasing fineness of the mesh. In the course of shape optimization, function value and gradient require evaluation for a large number of iterations of the solution, therefore minimizing the costs of a single computation is desirable (e.g. using moderately or adaptively refined meshes). Overall, the task of the diploma thesis is to investigate if adaptively refined meshes with established methods offer sufficient accuracy of the objective value and gradient, and if the optimization strategy requires readjustment to the adaptive mesh design. For the investigation, applicable model problems from the science of the strength of materials will be chosen and studied.
516

Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods

Hellwig, Friederike 12 June 2019 (has links)
Die vorliegende Arbeit "Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods" beweist optimale Konvergenzraten für vier diskontinuierliche Petrov-Galerkin (dPG) Finite-Elemente-Methoden für das Poisson-Modell-Problem für genügend feine Anfangstriangulierung. Sie zeigt dazu die Äquivalenz dieser vier Methoden zu zwei anderen Klassen von Methoden, den reduzierten gemischten Methoden und den verallgemeinerten Least-Squares-Methoden. Die erste Klasse benutzt ein gemischtes System aus konformen Courant- und nichtkonformen Crouzeix-Raviart-Finite-Elemente-Funktionen. Die zweite Klasse verallgemeinert die Standard-Least-Squares-Methoden durch eine Mittelpunktsquadratur und Gewichtsfunktionen. Diese Arbeit verallgemeinert ein Resultat aus [Carstensen, Bringmann, Hellwig, Wriggers 2018], indem die vier dPG-Methoden simultan als Spezialfälle dieser zwei Klassen charakterisiert werden. Sie entwickelt alternative Fehlerschätzer für beide Methoden und beweist deren Zuverlässigkeit und Effizienz. Ein Hauptresultat der Arbeit ist der Beweis optimaler Konvergenzraten der adaptiven Methoden durch Beweis der Axiome aus [Carstensen, Feischl, Page, Praetorius 2014]. Daraus folgen dann insbesondere die optimalen Konvergenzraten der vier dPG-Methoden. Numerische Experimente bestätigen diese optimalen Konvergenzraten für beide Klassen von Methoden. Außerdem ergänzen sie die Theorie durch ausführliche Vergleiche beider Methoden untereinander und mit den äquivalenten dPG-Methoden. / The thesis "Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods" proves optimal convergence rates for four lowest-order discontinuous Petrov-Galerkin methods for the Poisson model problem for a sufficiently small initial mesh-size in two different ways by equivalences to two other non-standard classes of finite element methods, the reduced mixed and the weighted Least-Squares method. The first is a mixed system of equations with first-order conforming Courant and nonconforming Crouzeix-Raviart functions. The second is a generalized Least-Squares formulation with a midpoint quadrature rule and weight functions. The thesis generalizes a result on the primal discontinuous Petrov-Galerkin method from [Carstensen, Bringmann, Hellwig, Wriggers 2018] and characterizes all four discontinuous Petrov-Galerkin methods simultaneously as particular instances of these methods. It establishes alternative reliable and efficient error estimators for both methods. A main accomplishment of this thesis is the proof of optimal convergence rates of the adaptive schemes in the axiomatic framework [Carstensen, Feischl, Page, Praetorius 2014]. The optimal convergence rates of the four discontinuous Petrov-Galerkin methods then follow as special cases from this rate-optimality. Numerical experiments verify the optimal convergence rates of both types of methods for different choices of parameters. Moreover, they complement the theory by a thorough comparison of both methods among each other and with their equivalent discontinuous Petrov-Galerkin schemes.
517

Operators for Multi-Resolution Morse and Cell Complexes / Оператори за мулти-резолуционе комплексе Морза и ћелијске комплексе / Operatori za multi-rezolucione komplekse Morza i ćelijske komplekse

Čomić Lidija 03 March 2014 (has links)
<p>The topic of the thesis is analysis of the topological structure of scalar fields and<br />shapes represented through Morse and cell complexes, respectively. This is<br />achieved by defining simplification and refinement operators on these<br />complexes. It is shown that the defined operators form a basis for the set of<br />operators that modify Morse and cell complexes. Based on the defined<br />operators, a multi-resolution model for Morse and cell complexes is constructed,<br />which contains a large number of representations at uniform and variable<br />resolution.</p> / <p>Тема дисертације је анализа тополошке структуре скаларних поља и<br />облика представљених у облику комплекса Морза и ћелијских комплекса,<br />редом. То се постиже дефинисањем оператора за симплификацију и<br />рафинацију тих комплекса. Показано је да дефинисани оператори чине<br />базу за скуп оператора на комплексима Морза и ћелијским комплексима.<br />На основу дефинисаних оператора конструисан је мулти-резолуциони<br />модел за комплексе Морза и ћелијске комплексе, који садржи велики број<br />репрезентација униформне и варијабилне резолуције.</p> / <p>Tema disertacije je analiza topološke strukture skalarnih polja i<br />oblika predstavljenih u obliku kompleksa Morza i ćelijskih kompleksa,<br />redom. To se postiže definisanjem operatora za simplifikaciju i<br />rafinaciju tih kompleksa. Pokazano je da definisani operatori čine<br />bazu za skup operatora na kompleksima Morza i ćelijskim kompleksima.<br />Na osnovu definisanih operatora konstruisan je multi-rezolucioni<br />model za komplekse Morza i ćelijske komplekse, koji sadrži veliki broj<br />reprezentacija uniformne i varijabilne rezolucije.</p>
518

Krystalochemie granátů pyralspitové skupiny / Crystal chemistry of pyralspite garnets

Soumar, Jan January 2011 (has links)
Bohemian garnets have been known as a jewellery stone for many centuries. There is still a lot of interest in them, however, the reserves in traditional locations are getting smaller. That is why search for alternative source of similar garnets in gem quality started. Shavaryn Tsaram deposit in Mongolia is considered as one of the potential sources. Pyrope samples from eight Bohemian localities of two areas (České středohoří [The Central Bohemian Uplands] and Podkrkonoší [The Giant Mountains]) and from Shavaryn Tsaram deposit in Mongolia were analysed using electron microprobe, LA-ICP-MS, ICP-OES, Mössbauer spectroscopy and x-ray powder diffraction. The data were compared with the conclusion that the Mongolian garnets from Shavaryn Tsaram deposit are so different from the Bohemian ones that it will not be possible to use them as a gem material of similar qualities. Bohemian garnet can be characterised as a red garnet with refraction index 1.747 (+/- 0.001) with dominant pyrope component of the average composition Py78Alm17Gr5 and Cr2O3 content above 1 wt.%. The data were also evaluated from two classification schemes point of view. The schemes by Schulze (2003) and Grütter (2004) are used in determining source materials and in diamond prospection. According to them source rocks of Bohemian garnets...
519

"Resurs/hus/hållning" / "Asset/house/keeping"

Andersson, Joakim January 2013 (has links)
I syfte att bättre möta de verksamheter som bedrivs på gården Skärholmen 1:18 i Bohuslän har jag ritat ett förslag till en flexibel byggnad som i sitt utförande uteslutande använder sig av de materiella resurser som redan finns på platsen. / In order to better meet the activities carried out on the farm Skärholmen 1: 18 in Sweden, I have designed a proposal for a flexible building that in its execution exclusively use the material resources that already exist on the site.
520

Modélisation et Simulation des Ecoulements Compressibles par la Méthode des Eléments Finis Galerkin Discontinus / Modeling and Simulation of Compressible Flows with Galerkin Finite Elements Methods

Gokpi, Kossivi 28 February 2013 (has links)
L’objectif de ce travail de thèse est de proposer la Méthodes des éléments finis de Galerkin discontinus (DGFEM) à la discrétisation des équations compressibles de Navier-Stokes. Plusieurs challenges font l’objet de ce travail. Le premier aspect a consisté à montrer l’ordre de convergence optimal de la méthode DGFEM en utilisant les polynômes d’interpolation d’ordre élevé. Le deuxième aspect concerne l’implémentation de méthodes de ‘‘shock-catpuring’’ comme les limiteurs de pentes et les méthodes de viscosité artificielle pour supprimer les oscillations numériques engendrées par l’ordre élevé (lorsque des polynômes d’interpolation de degré p>0 sont utilisés) dans les écoulements transsoniques et supersoniques. Ensuite nous avons implémenté des estimateurs d’erreur a posteriori et des procédures d ’adaptation de maillages qui permettent d’augmenter la précision de la solution et la vitesse de convergence afin d’obtenir un gain de temps considérable. Finalement, nous avons montré la capacité de la méthode DG à donner des résultats corrects à faibles nombres de Mach. Lorsque le nombre de Mach est petit pour les écoulements compressibles à la limite de l’incompressible, la solution souffre généralement de convergence et de précision. Pour pallier ce problème généralement on procède au préconditionnement qui modifie les équations d’Euler. Dans notre cas, les équations ne sont pas modifiées. Dans ce travail, nous montrons la précision et la robustesse de méthode DG proposée avec un schéma en temps implicite de second ordre et des conditions de bords adéquats. / The aim of this thesis is to deal with compressible Navier-Stokes flows discretized by Discontinuous Galerkin Finite Elements Methods. Several aspects has been considered. One is to show the optimal convergence of the DGFEM method when using high order polynomial. Second is to design shock-capturing methods such as slope limiters and artificial viscosity to suppress numerical oscillation occurring when p>0 schemes are used. Third aspect is to design an a posteriori error estimator for adaptive mesh refinement in order to optimize the mesh in the computational domain. And finally, we want to show the accuracy and the robustness of the DG method implemented when we reach very low mach numbers. Usually when simulating compressible flows at very low mach numbers at the limit of incompressible flows, there occurs many kind of problems such as accuracy and convergence of the solution. To be able to run low Mach number problems, there exists solution like preconditioning. This method usually modifies the Euler. Here the Euler equations are not modified and with a robust time scheme and good boundary conditions imposed one can have efficient and accurate results.

Page generated in 0.0342 seconds