• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 870
  • 72
  • 53
  • 51
  • 50
  • 46
  • 38
  • 36
  • 11
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1013
  • 349
  • 264
  • 189
  • 184
  • 155
  • 144
  • 127
  • 127
  • 126
  • 117
  • 104
  • 100
  • 86
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Não precisamos de régua, sim de Álgebra e compasso

Lugli, Ronaldo [UNESP] 23 January 2014 (has links) (PDF)
Made available in DSpace on 2014-08-13T14:50:59Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-01-23Bitstream added on 2014-08-13T17:59:48Z : No. of bitstreams: 1 000773366.pdf: 935268 bytes, checksum: 0f64148aa0c2b8c367fd091c717f8511 (MD5) / A presente dissertação foi dividida em duas partes. A primeira apresenta a ideia de traduzir os problemas geométricos para a linguagem da álgebra caracterizando-os e, após solução, veri car se a resposta corresponde a construção com régua e compasso. Com a utilização de conceitos da álgebra é que é provada a impossibilidade, utilizando somente régua e compasso, de trisseção do ângulo e da duplicação do cubo. Na segunda parte abordamos alguns métodos para realizar construções geométricas, baseados nas re exões circulares e construções de Mascheroni / This work was divided into two parts. The rst one presents how the geometric constructions are understood within the Algebra. This allows to see the impossibility, by using only ruler and compass, of trisecting certain angles and also of the duplication of a cube. The second part deals with some methods to perform constructions based on circular re ections and on the constructions of Mascheroni
92

Superálgebras com superinvolução

Santos, Herlisvaldo Costa 29 June 2017 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2017. / Submitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-08-07T16:42:59Z No. of bitstreams: 1 2017_HerlisvaldoCostaSantos.pdf: 1311083 bytes, checksum: 1928fe40a8682aef8a32a611d009e3c7 (MD5) / Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2017-09-12T18:04:36Z (GMT) No. of bitstreams: 1 2017_HerlisvaldoCostaSantos.pdf: 1311083 bytes, checksum: 1928fe40a8682aef8a32a611d009e3c7 (MD5) / Made available in DSpace on 2017-09-12T18:04:36Z (GMT). No. of bitstreams: 1 2017_HerlisvaldoCostaSantos.pdf: 1311083 bytes, checksum: 1928fe40a8682aef8a32a611d009e3c7 (MD5) Previous issue date: 2017-09-12 / Nosso objetivo nesse trabalho é proporcionar às superálgebras associativas primitivas uma estrutura análoga àquelas para álgebras encontradas em [5,6,7] e classificar superálgebras primitivas com superinvolução tendo um superideal minimal. Finalizamos o trabalho com a classificação das superálgebras associativas de divisão com superinvolução de superálgebras simples com superinvolução. / Our objective in this paper is to provide primitive associative superalgebras a structure analogus to theose for algebras found in [5,6,7] and to classify primitive superalgebras with superinvolution having a minimal superideal. We conclude the paper with the classification of associative superalgebras of division with superinvolution and simple superálgebras with superinvolution.
93

Sobre os teoremas de dualidade de Cohen e Montgomery

Morgado, Andrea January 2011 (has links)
Nessa dissertação, apresentamos os Teoremas de Dualidade de Cohen e Montgomery, [4]. Discutimos também a construção de um contexto de Morita para uma álgebra graduada por um grupo finito. Como aplicação dos resultados desenvolvidos no texto, estudamos a relação entre o radical de Jacobson e o radical de Jacobson graduado de álgebras graduadas, apresentando a solução de Cohen e Montgomery para uma conjectura de Bergman. / In this work, we will present the Cohen and Montgomery's Duality Theorems, [4]. We also discuss the construction of a Morita context to an algebra graded by a nite group. As an application of the results developed in the text, we studied the relations between the Jacobson radical and the graded Jacobson radical of graded algebras, presenting to Cohen and Montgomery's solution for a Bergman's conjecture.
94

Formas lineares em logaritmos p-ádicos aplicadas na resolução de equações diofantinas

Kreutz, Alesssandra 03 March 2016 (has links)
Dissertação (mestrado)—Universidade de Brasília, Departamento de Matemática, Programa de Pós-Graduação em Matemática, 2016. / Submitted by Camila Duarte (camiladias@bce.unb.br) on 2016-07-22T13:22:50Z No. of bitstreams: 1 2016_AlessandraKreutz.pdf: 720531 bytes, checksum: 6a58092709c1d7a73c9a9a454ed0d88c (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2017-02-21T13:34:53Z (GMT) No. of bitstreams: 1 2016_AlessandraKreutz.pdf: 720531 bytes, checksum: 6a58092709c1d7a73c9a9a454ed0d88c (MD5) / Made available in DSpace on 2017-02-21T13:34:53Z (GMT). No. of bitstreams: 1 2016_AlessandraKreutz.pdf: 720531 bytes, checksum: 6a58092709c1d7a73c9a9a454ed0d88c (MD5) / Esta dissertação trata das formas lineares em logaritmos p-ádicos. Além de apresentar alguns dos resultados dados por Bugeaud, Laurent e Yu sobre as formas lineares em logaritmos p-ádicos, o trabalho visa aplicar esses resultados na resolução de algumas equações Diofantinas estudadas por Luca, Marques e Grossman. / This work treats of linear form in p-adic logarithms. We shall present some results due to Bugeaud, Laurent and Yu about linear form in p-adic logarithms, moreover we shall apply these results for solving some Diophantine equations studied by Luca, Marques and Grossman.
95

Uma propriedade das álgebras de Grassmann não-unitárias sobre um corpo de característica prima e suas aplicações

Reis, Bruno Trindade 30 June 2016 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2016. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2016-08-09T17:27:27Z No. of bitstreams: 1 2016_BrunoTrindadeReis.pdf: 1080010 bytes, checksum: 32ebe9d37c7e36818b3f476daa917c2c (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-09-05T17:57:47Z (GMT) No. of bitstreams: 1 2016_BrunoTrindadeReis.pdf: 1080010 bytes, checksum: 32ebe9d37c7e36818b3f476daa917c2c (MD5) / Made available in DSpace on 2016-09-05T17:57:47Z (GMT). No. of bitstreams: 1 2016_BrunoTrindadeReis.pdf: 1080010 bytes, checksum: 32ebe9d37c7e36818b3f476daa917c2c (MD5) / Seja K um corpo de característica p >2. Sejam H a álgebra de Grassmannnão-unitária de dimensão infinita e Hna álgebra de Grassmann não unitária de um espaço vetorial de dimensão finita n, ambas sobre K. Seja A =K<Y,Z>/T2(H) a álgebra relativamente livre Z2-graduada da variedade de K-álgebras associativas Z2-graduadas não-unitárias determinada por H. Seja D = K<X>/T(H) a álgebra relativamente livre da variedade de álgebras associativas não-unitárias (sem graduação) determinada por H. Nesse trabalho construímos um mergulho de A em H, que determina um mergulho de D em H. Isso nos permite dar demonstrações simples e unificadas de resultados sobre identidades polinomiais e polinômios centrais de H e Hnobtidos anteriormente por vários autores. Os resultados obtidos também são válidos se K é um domínio de integridade de característica p >2. Estudamos também a álgebra de Grassmann unitária E de dimensão infinita sobre um corpo finito. Seja K um corpo finito e K1<X>a álgebra associativa livre unitária, livremente gerada por X. Damos uma representação de K1<X>/T (E) como produto tensorial da álgebra comutativa A = K[T]/I, onde I é o ideal de K[T] gerado por tq-t, e a álgebra B = K1<Y>/V , onde V é o T-ideal de K<Y>(ou seja, da álgebra associativa livre não-unitária) gerado por y1p e pelo comutador triplo [y1, y2;,y3]. Essa representação nos permite dar uma demonstração mais simples do resultado de Bekh-Ochire Rankin sobre uma base de identidades polinomiais de E sobre um corpo finito. ________________________________________________________________________________________________ ABSTRACT / Let K be a field of characteristic p >2. Let H be the infinite dimensional non-unitary Grassmann algebra and Hnthe non-unitary Grassmann algebra of a vector space of dimension n, both over K. Let A = K<Y,Z>/T2(H) be the Z2-graded relatively free algebra of the variety of Z2-graded non-unitary associative algebras determined by H. Let D = K<X>/T (H) be the relatively free algebra of the variety of non-unitary associative algebras (without grading) determined by H. In this work we construct an embedding of Ain H, determining an embedding of D in H. This allows us to give simple and unified proofs of results about polynomial identities and central polynomials of H e Hnobtained previously by several authors. The results obtained are also valid if K is an integral domain of characteristic p >2. We study also the infinite dimensional unitary Grassmann algebra E over a finite field. Let K be a finite field and K1<X>the unitary associative free algebra, freely generated by X. We give a representation of K1<X>/T (E) as a tensor product of the commutative algebra A = K[T]/I, where I is the ideal of K[T] generated by tq- t, and the algebra B = K1<Y>/V , where V is the T-ideal of K<Y>(that is, of the free associative non-unitary algebra) generated by y1pand [y1, y2,y3]. This representation allows us to give a simple proof of the result of Bekh-Ochir and Rankin on a basis of the polynomial identities of E over a finite field.
96

Os polinômios centrais de algumas álgebras associativas Lie nilpotentes

Macedo, Silvio Sandro Alves de 26 September 2016 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2016. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2016-12-14T14:55:31Z No. of bitstreams: 1 2016_SilvioSandroAlvesdeMacedo.pdf: 979821 bytes, checksum: d85c62fe5d0cd1fc78b91d331a722999 (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2017-01-11T20:56:57Z (GMT) No. of bitstreams: 1 2016_SilvioSandroAlvesdeMacedo.pdf: 979821 bytes, checksum: d85c62fe5d0cd1fc78b91d331a722999 (MD5) / Made available in DSpace on 2017-01-11T20:56:57Z (GMT). No. of bitstreams: 1 2016_SilvioSandroAlvesdeMacedo.pdf: 979821 bytes, checksum: d85c62fe5d0cd1fc78b91d331a722999 (MD5) / Nesta tese estudamos os polinômios centrais de algumas álgebras associativas Lie nilpotentes universais. Elas são definidas por Qn = FhXi=T(n) (e também são conhecidas como álgebras associativas Lie nilpotentes relativamente livres) onde F _e um corpo, FhXi _e a álgebra associativa livre unitária, livremente gerada pelo conjunto enumerável X = fx0;x1;x2; : : :g e T(n) é o ideal bilateral de FhXi gerado pelos comutadores [a1; : : : ;an], ai 2 FhXi. O nosso primeiro resultado principal _e uma descrição dos polinômios centrais da álgebra Q4 quando char(F) = 3. Nosso segundo resultado principal _e uma descrição dos polinômios centrais da álgebra Q4 quando char(F)=2. Os polinômios centrais da F-álgebra Q4 quando char(F) 6= 2;3 foram descritos por Grishin (2012). Se char(F) 6= 3, então [x1;x2][x3;x4;x5] pertence a T(4) (Volichenko, 1978). Isso implica que a imagem de T(3) em Q4 _e central nessa álgebra, o que permite reduzir o problema da descrição dos polinômios centrais da álgebra Q4 para um problema sobre elementos da álgebra Q3. Porém, se char(F)=3, então [x1;x2][x3;x4;x5] não pertence a T(4) (Krasilnikov, 2013). Por essa razão, a descrição dos polinômios centrais da F-álgebra Q4 quando char(F) = 3 _e mais sofisticada do que quando char(F) 6= 3. Se char(F) = 2, então x2 0+T(4) não _e central em Q4. Isso implica que a descri_cão dos polinômios centrais de Q4 _e ligeiramente diferente do caso de char(F) 6= 2;3. O nosso terceiro resultado principal _e uma descrição dos geradores da álgebra Q4 como espaço vetorial quando char(F) > 3. Esse resultado _e uma generalização do resultado de Grishin. Também obtivemos uma descrição dos polinômios hipercentrais das álgebras Q4 e Q5. Um polinômio hipercentral _e uma generalização de polinômio central. Essa generalização foi introduzida por Laue (1984). _________________________________________________________________________________________________ ABSTRACT / In this PhD thesis we study the central polinomials of some universal Lie nilpotent associative algebras. They are de_ned by Qn = FhXi=T(n) (and also are called relatively free Lie nilpotent associative algebras) where F is a _eld, FhXi is the free unital associative algebra freely generated by the in_nite countable set X = fx0;x1;x2; : : :g and T(n) is the two-sided ideal of FhXi generated by the commutators [a1; : : : ;an], ai 2 FhXi. Our _rst main result is a description of the central polynomials of the algebra Q4 when char(F) = 3. Our second main result is a description of the central polynomials of the algebra Q4 when char(F)=2. The central polynomials of the F-algebra Q4 when char(F) 6= 2;3 have been described by Grishin (2012). If char(F) 6= 3, then [x1;x2][x3;x4;x5] belongs to T(4) (Volichenko, 1978). This implies that the image of T(3) in Q4 is central in this algebra that allows us to reduce the problem of description of the central polynomials of the algebra Q4 to a problem about elements of the algebra Q3. However, if char(F) = 3, then [x1;x2][x3;x4;x5] does not belong to T(4) (Krasilnikov, 2013). For this reason the description of the central polynomials of the F-algebra Q4 when char(F) = 3 is more sophisticated than in the case when char(F) 6= 3. If char(F) = 2, then x2 0 +T(4) is not central in Q4. This implies that the description of the central polynomials of Q4 is slightly di_erent from the case char(F) 6=2;3. Our third main result is a description of generators of the algebra Q4 as a vector space when char(F) > 3. This result is a generalization of result of Grishin's result. We also obtain a description of the hipercentral polynomials of the algebras Q4 and Q5. A hipercentral polynomial is a generalization of a central polynomial. This generalization was introduced by Laue (1984).
97

Sobre o número de Dilworth e p-grupos metabelianos delgados

Silva, Leonardo de Amorim e January 2006 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2006. / Submitted by Camila Duarte (camiladias@bce.unb.br) on 2017-01-26T16:18:25Z No. of bitstreams: 1 2006_LeonardoDeAmorimESilva.pdf: 1111928 bytes, checksum: 73d751b306ecc2b0e3454b92db4473a7 (MD5) / Approved for entry into archive by Patrícia Nunes da Silva(patricia@bce.unb.br) on 2017-01-29T11:32:46Z (GMT) No. of bitstreams: 1 2006_LeonardoDeAmorimESilva.pdf: 1111928 bytes, checksum: 73d751b306ecc2b0e3454b92db4473a7 (MD5) / Made available in DSpace on 2017-01-29T11:32:46Z (GMT). No. of bitstreams: 1 2006_LeonardoDeAmorimESilva.pdf: 1111928 bytes, checksum: 73d751b306ecc2b0e3454b92db4473a7 (MD5) / Neste trabalho abordamos questões relacionadas à largura do reticulado dos subgrupos de um grupo e estudamos p-grupos metabelianos delgados. Tais grupos, dentre os quais se inserem os p-grupos de classe maximal, são assim denominados pelo fato de apresentarem largura normal p + 1. / In this work we approached subjects related to the width of the lattices of the subgroups of a group and we studied metabelian thin p-groups. Such groups, among which insert the maximal class p-groups, are denominated like this by the fact of they present width normal p -1-1.
98

Um modelo algébrico para a lógica do muito /

Vaine, Camila Augusta. January 2013 (has links)
Orientador: Hércules de Araújo Feitosa / Coorientador: Luiz Henrique da Cruz Silvestrini / Banca: Mauri Cunha do Nascimento / Banca: Marcos Antônio Alves / Resumo: Esta dissertação trata, em um primeiro momento, de um estudo sobre quantificadores com seus aspectos históricos e algumas concepções sobre quantificadores generalizados, a saber, a concepção de Mostowski (1957), criada com o objetivo de formalizar alguns conceitos matemáticos, e a concepção de Barwise e Cooper (1981), que tem como objetivo aproximar a lógica da linguagem natural. A partir daí, Sette, Carnielli e Veloso (1999) introduziram um sistema lógico, a lógica dos ultrafiltros, para formalizar a noção de "geralmente" ou "quase todos", através da introdução de um novo quantificador generalizado na linguagem clássica de primeira ordem. Em continuidade, Grácio (1999) apresentou uma ampla família de sistemas lógicos, a família das lógicas moduladas, determinados por novos quantificadores. Dentre as lógicas moduladas estudadas por Grácio, destacamos a Lógica do Muito, que se caracteriza por estender a lógica clássica através da introdução de um novo quantificador generalizado na sua sintaxe. Por outro lado, Halmos (1962) estuda as álgebras monádicas e apresenta a interpretação dos quantificadores universal e existencial nestas álgebras. Neste trabalho, desenvolvemos uma álgebra monádica e uma lógica monádica do muito, com base nos trabalhos de Halmos, com o intuito de apresentar outro modelo algébrico para a lógica do muito. Por fim, mostramos que a lógica do muito é correta e completa, em relação a álgebra monádica do muito apresentada / Abstract: This dissertation presents a study of quantifiers with their historical development and some conceptions about generalized quantifiers, namely the designed by Mostowski (1957), which was created with the purpose of formalizing some mathematical concepts, and in a complementary way, the notion of Barwise and Cooper (1981), which aims to link logic and natural language. In 1999, Sette, Carnielli and Veloso introduced a logical system, the logic of ultrafilters, in order to formalize the notion of "generally" or "almost all" through the introduction of a new generalized quantifier into the language of classical first order logic. Furthermore, Grácio (1999) presented a wide family of logical systems, named modulated logics determined by new quantifiers. Among the modulated logics studied by Grácio, we take the Logic of Many, which is characterized by extending the classical logic by introducing a new generalized quantifier in its syntax for the notion of "many". On the other hand, Halmos (1962) studied the monadic algebras associated with classical logic and presented the interpretation of universal and existential quantifiers in these algebras. In this dissertation, we develope a monadic algebra of many and monadic logic of many, based on the work of Halmos for to presenting a different algebraic model for the Logic of Many. Finally, we show that the logic of many is sound and complete in relation to the presented in this dissertation monadic algebra of many / Mestre
99

Funções racionais ortogonais /

Lucas, Fábio Rodrigues. January 2006 (has links)
Orientador: Alagacone Sri Ranga / Banca: César Guilherme de Almeida / Banca: Dimitar Kolev Dimitrov / Mestre
100

Generalizações da Teoria de Fiedler para a Conectividade Algébrica

Rocha, Israel de Souza January 2015 (has links)
Esta tese generaliza resultados sobre a conectividade algébrica e seus autovetores associados. Generalizamos resultados que foram descobertos por Fiedler et. al. na investigação da conectividade algébrica de grafos com um ponto de articulação para grafos sem pontos de articulação. Exibimos uma fórmula explícita para a conectividade algébrica absoluta sobre uma classe de árvores específica. Além disso, exibimos expressões para os autovetores que geram o autoespaço associado a conectividade algébrica absoluta. Também apresentamos um novo algoritmo combinatório que computa a conectividade algébrica absoluta para qualquer árvore em tempo O(n3). Desenvolvemos uma teoria como a de Fiedler para a matriz Laplaciana perturbada, levando a resultados que são do mesmo tipo dos obtidos para a conectividade algébrica de um grafo. / This thesis generalizes results on the algebraic connectivity and its eigenvectors. We generalize results that were found by Fiedler et. al. investigating the algebraic connectivity of graphs with articulation points to graphs without articulation points. We exhibit an explicit formula for the absolute algebraic connecitivity over a speci c class of trees. Besides, we exhibit expressions for the eigenvectors that generates the eigenspace associated with the absolut algebraic connectivity. Also, we present a new combinatorial algorithm that computes the absolute algebraic connectivity in time O(n3). We develop a theory like Fiedler's to the perturbed Laplacian matrix, leadig to results that are of the same kind obtained for the algebraic connectivity of a graph.

Page generated in 0.1776 seconds