Spelling suggestions: "subject:"electrolyte"" "subject:"électrolyte""
51 |
Apport de la spectrométrie de masse en temps réel à l’étude de la dégradation thermique d’électrolytes de batteries lithium-ion au contact de matériaux d’électrode positive / Contribution of real-time mass spectrometry to the study of the thermal degradation of lithium-ion battery electrolytes in contact with positive electrode materialsGaulupeau, Bertrand 11 July 2017 (has links)
L’utilisation des batteries lithium-ion est dorénavant une technologie de choix pour le secteur automobile notamment pour son utilisation dans les véhicules hybrides et électriques, du fait d’une importante densité d’énergie disponible ainsi que d’une forte densité de puissance nécessaire à la traction d’un véhicule. Cependant, à cause de l’importante énergie embarquée, la sécurité de tels dispositifs doit être renforcée. Il a été rapporté qu’en conditions abusives de température, l’effet cumulé de la dégradation d’un électrolyte utilisant le sel LiPF6 et l’effet catalytique de matériaux d’électrode positive mène à la formation d’espèces organo-fluorées telles que le 2-fluoroéthanol. Ce projet de thèse vise alors à approfondir la compréhension du rôle des matériaux d’électrode positive vis-à-vis de la dégradation d’électrolyte à base de LiPF6, notamment en étudiant la nature des gaz produits en conditions abusives de température. Pour mener à bien ce projet, un dispositif permettant une analyse in situ des gaz formés a été développé. Le rôle de l’eau sur la formation des espèces organo-fluorées fait également l’objet d’une attention toute particulière. L’influence de plusieurs matériaux d’électrode positive sur la nature des produits de dégradation de l’électrolyte a pu être mise en évidence. Ce travail a ainsi permis d’évaluer l’influence de différents paramètres sur la dégradation thermique de l’électrolyte en vue de prédire le choix des différents constituants d’une batterie lithium-ion / The use of lithium-ion batteries is now a technology of choice for the automotive sector especially for its use in hybrid and electric vehicles, due to a high density of energy available as well as a high power density necessary to the traction of a vehicle. However, due to the high on-board energy, the safety of such devices must be enhanced. It has been reported that under abusive thermal conditions the cumulative effect of degradation of a LiPF6-based electrolyte and the catalytic effect of positive electrode materials leads to the formation of fluoro-organic species such as 2-fluoroethanol. This thesis aims to deepen the understanding of the role of positive electrode materials towards the degradation of LiPF6-based electrolyte, in particular by studying the nature of the gases produced under abusive thermal conditions. To carry out this project, a device allowing an in situ analysis of the formed gases has been developed. The role of water on the formation of fluoro-organic species is also the subject of a particular attention. The influence of several positive electrode materials on the nature of the degradation products of the electrolyte has been demonstrated. This work allowed to evaluate the influence of different parameters on the thermal degradation of the electrolyte in order to predict the choice of the various constituents of a lithium-ion battery
|
52 |
Synthèse et caractérisation de nanocomposites platine/nanofibres pour électrodes de pile à combustible à électrolyte polymère / SYNTHESIS AND CHARACTERISATION OF NANOFIBRE SUPPORTS FOR PLATINUM AS ELECTRODES FOR POLYMER ELECTROLYTE FUEL CELLSSavych Maciejasz, Juliia 16 July 2014 (has links)
Cette thèse s'inscrit dans le contexte général des efforts de recherche pour développer des supports de catalyseur résistant à la corrosion qui peuvent potentiellement remplacer le carbone dans les piles à combustible à électrolyte polymère. Des nanofibres et des nanotubes à base de TiO2 et SnO2 dopés par Nb ont été préparés par filage électrostatique et caractérisés par diffraction des rayons X, spectroscopie des photoélectrons de rayons X, spectroscopie Raman, mesures de surface spécifique et de conductivité électronique. Les nanofibres de TiO2 et SnO2 dopées par Nb présentent une conductivité et une surface spécifique supérieure à celle des oxydes non dopés. Des nanoparticules de platine ont été préparées en utilisant une méthode polyol modifié par micro-ondes, et déposées sur les supports fibreux. La caractérisation électrochimique des électrocatalyseurs ainsi obtenus a été réalisée ex situ par voltamètre en utilisant une électrode à disque tournant. Le catalyseur supporté, Pt sur SnO2 dopé par Nb présenté une stabilité électrochimique supérieure à celle d'un catalyseur Pt sur carbone commercial (Vulcan XC-72R). Une cathode Pt/Nb-SnO2 préparée par pulvérisation a pu être intégrée dans un assemblage membrane-électrode (AME) et caractérisée in situ dans une cellule de pile à combustible à électrolyte polymère. L'AME a présenté une durée de vie plus élevée mais une densité de puissance plus faible qu'un AME contenant Pt/C. Les nanotubes de SnO2 dopés par Sb ont une conductivité plus élevée que celle des matériaux dopés par Nb et lorsqu'ils sont intégrés dans une cathode, fournissent une densité de puissance accrue par rapport à une cathode à base de Nb- SnO2. / The objective of this thesis is to develop corrosion resistant catalyst support materials that can potentially replace carbon in Polymer electrolyte fuel cells. Therefore, Nb doped TiO2 and SnO2 nanofibres and nanotubes were prepared by electrospinning and characterised by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, N2 adsorption/desorption analysis and electronic conductivity measurements. The obtained Nb doped TiO2 and SnO2 one dimensional structures demonstrated higher conductivity and surface area than non-doped oxides. Pt nanoparticles were prepared using a modified microwave-assisted polyol method and deposited on the electrospun supports. Electrochemical characterisation of the obtained electrocatalysts was performed ex situ using a rotating disc electrode, and compared with a commercial carbon support (Vulcan XC-72R). Pt supported on Nb doped SnO2 provided higher electrochemical stability in comparison to Pt on carbon. Thus, a cathode of Pt/Nb-SnO2 prepared by spray-coating was integrated into Membrane Electrode Assembly (MEA) and characterised in situ in single Polymer electrolyte fuel cell. The MEA exhibited higher durability though lower power density compared to MEA with Pt/C based cathode. Sb doped SnO2 nanotubes have higher conductivity than Nb doped material and when integrated into a cathode, provided enhanced power density in comparison to Nb-SnO2 based cathode.
|
53 |
Synthèse et caractérisation de membranes hybrides pour la conduction des ions lithium, et application dans les batteries lithium-air à électrolyte aqueux / Elaboration and characterization of hybrid lithium-ion conducting membranes for aqueous lithium-air batteriesLancel, Gilles 16 February 2016 (has links)
La technologie lithium-air à électrolyte aqueux pourrait révolutionner le stockage de l'énergie, mais la protection du lithium métallique par une vitrocéramique conductrice du lithium reste une limitation importante. Cela rend le système plus fragile, limite sa cyclabilité et augmente la chute ohmique. L'objectif de ce travail a été de remplacer cette vitrocéramique par une membrane hybride réalisée par extrusion électro assistée ou electrospinning, qui combine des propriétés d'étanchéité à l'eau, de flexibilité et de conductivité du lithium. La conductivité ionique est apportée par la partie céramique, pour laquelle les matériaux Li1,4Al0,4Ti1,6(PO4)3 (LATP) et Li0,33La0,57TiO3 (LLTO) ont été étudiés. L'étanchéité est assurée par un polymère fluoré. Différentes voies de synthèse des poudres ont été étudiées et comparées en termes de pureté, de microstructure, de surface spécifique et de propriétés électrochimiques. En particulier, des particules de LATP sub-microniques ont été obtenues pour la première fois par chauffage micro-onde, en des temps aussi courts que 2 min. Des membranes ont ensuite été réalisées à partir de suspensions. Dans une seconde approche, un réseau de nanofibres interconnectées et conductrices du lithium a été réalisé par couplage entre la chimie sol-gel et le procédé d'electrospinning. L'imprégnation de ce réseau donne une membrane hybride flexible, conductrice du lithium et étanche à l'eau. Un renforcement mécanique par les fibres inorganiques est observé. Cette approche a été appliquée aux deux matériaux LATP et LLTO. Ce travail ouvre de nombreuses perspectives pour les batteries lithium-air, lithium soufre et lithium-ion. / Aqueous lithium-air batteries could be a revolution in energy storage, but the main limitation is the use of a thick glass-ceramic lithium ionic conductor to isolate the metallic lithium from the aqueous electrolyte. This makes the system more fragile, limits its cyclability and increases ohmic resistance. The aim of this work is to replace the glass-ceramic by a hybrid membrane made by electrospinning, which combines water tightness, flexibility and lithium-ions conductivity. The ionic conductivity is provided by a nanostructured solid electrolyte ceramic: both Li1,4Al0,4Ti1,6(PO4)3 (LATP) and Li0,33La0,57TiO3 (LLTO) were studied. The water tightness is ensured by a fluorinated polymer. Different powders synthesis methods are reported and compared in terms of purity, microstructure, specific surface area and electrochemical properties. Especially, the LATP microwave-assisted synthesis is reported for the first time. Sub-micrometric LATP particles were obtained in times as short as 2 min. The fabrication of hybrid membranes from suspension is then reported. In a second approach, the coupling between sol-gel chemistry and electrospinning made possible the fabrication of a self-standing lithium-conducting network, made of interconnected crystalline nanofibers. After an impregnation step, a flexible, lithium-conducting and watertight hybrid membrane is obtained. A mechanical reinforcement is observed, which is attributed to the inorganic nanofibers. This approach is exposed for both LATP and LLTO solid electrolytes. This work opens new prospects in lithium-air, lithium-sulfur and lithium-ion batteries.
|
54 |
Développement de solutions innovantes d'électrolytes pour sécuriser les accumulateurs lithium-ion / Development of innovative electrolytes for safer lithium-ion batteriesChancelier, Léa 24 October 2014 (has links)
Les batteries lithium-ion dominent le marché des appareils nomades et celui des véhicules électriques. Néanmoins elles posent des problèmes de sécurité liés à leur électrolyte, contenant des carbonates inflammables et volatils. Pour sécuriser ces systèmes, les liquides ioniques (LI) sont étudiés comme électrolytes alternatifs. Ce sont des sels liquides à température ambiante, réputés stables thermiquement et non inflammables. Ce caractère sécuritaire des LI, souvent avancé, est pourtant peu étayé par des expériences probantes. Les travaux de cette thèse visent à comprendre le comportement de ces LI en situations abusives, telles qu'un échauffement de la batterie, un feu ou une surcharge. Les températures de décomposition de LI contenant les cations imidazolium ou pyrrolidinium différemment substitués et l'anion bis(trifluoromethanesulfonyl)imide ont été déterminées par analyse thermogravimétrique (ATG). Une analyse critique des données (de la littérature et de nos mesures) a permis de définir une procédure optimisée, pour obtenir des résultats reproductibles et comparables. Des électrolytes constitués de mélanges de carbonates ou de LI et de sels de lithium ont été analysés par ATG dynamique et isotherme, et leurs produits de décomposition ont été identifiés. Leur comportement au feu a été testé par la mesure des chaleurs de combustion, des délais d'inflammation et l'identification des gaz générés. Des tests de cyclage électrochimique ont été menés avec ces mêmes électrolytes dans des systèmes lithium-ion constitués des électrodes Li4Ti5O12 et LiNi1/3Mn1/3Co1/3O2. L'évolution des électrolytes et des surfaces des électrodes en situation de surcharge a été examinée / Lithium-ion batteries are dominating both the nomad device and electric vehicle markets. However they raise safety concerns related to their electrolyte, which consists of flammable and volatile carbonate mixtures and toxic salts. The replacement of the latter by ionic liquids (IL), liquid salts claimed to be thermally stable and non-flammable, could provide a safer alternative. Yet this often claimed feature has been poorly examined by experiments. The work of this thesis investigates IL behaviour under abuse conditions such as overheating, fire or overcharge. Decomposition temperatures of IL based on differently substituted imidazolium or pyrrolidinium cations and the bis(trifluoromethanesulfonyl)imide anion were determined by thermogravimetric analysis (TGA). A critical study of gathered data (from literature and our work) led to the determination of an optimised procedure to obtain reproducible and comparable results. Electrolytes based on carbonates mixtures or IL and containing lithium salt were studied by dynamic and isothermal TGA, and their decomposition products were identified. Their combustion behaviour was also tested by measuring heats of combustion and ignition delays. Emitted gases were analysed and quantified. Electrochemical cycling tests were carried out with these electrolytes in lithium-ion systems based on Li4Ti5O12 and LiNi1/3Mn1/3Co1/3O2 electrodes. The evolution of the electrolytes and electrodes surface was also examined under overcharge
|
55 |
Développement par procédés plasma de polymères conducteurs protoniques de type phosphonique pour piles à combustible / Development by plasma processes of phosphonic-type proton conducting polymers for fuel cellsBassil, Joëlle 12 March 2014 (has links)
Afin de rendre les piles à combustible de type PEMFC réellement compétitives, un certain nombre d'inconvénients liés à l'utilisation du Nafion® restent à contourner, en particulier sa mauvaise conductivité protonique à des températures supérieures à 80°C. Dans l'optique de pouvoir opérer à plus hautes températures (jusqu'à 120°C), le développement de membranes moins sensibles à l'eau s'avère donc déterminant. Les polymères à base de fonctions acide phosphonique sont considérés comme des candidats potentiels pour une intégration en tant que matériau électrolyte dans les PEMFC « hautes températures » (> 80°C) grâce à leur fort caractère amphotère qui leur confère une bonne conductivité protonique dans des conditions d'humidité réduites. Dans ce contexte, la majeure partie de ce travail de thèse concerne l'élaboration par polymérisation plasma (PECVD) de polymères à base de groupements acide phosphonique à partir du monoprécurseur diméthyl allyl phosphonate. Dans un premier temps, nous avons démontré la faisabilité d'élaborer par polymérisation plasma des polymères à base de fonctions acide phosphonique à partir d'un monoprécurseur. Nous avons confirmé par IRTF, EDX et XPS la présence des groupements acide phosphonique favorables au transport protonique et l'homogénéité de la composition chimique de la surface jusqu'au cœur du matériau plasma. Les matériaux plasma montrent une bonne stabilité thermique dans la gamme de température 80°C - 120°C. Ensuite, une optimisation des conditions de synthèse a été réalisée. Les plus importantes valeurs de vitesses de croissance (28 nm.min-1 sur plaquette de silicium, 22 nm.min-1 sur PTFE et 26 nm.min-1 sur Nafion®211), de CEI (4,65 meq.g-1) et de conductivité (0,08 mS.cm-1 à 90°C et 30% RH) sont celles de la membrane synthétisée à 60 W. Des mesures de perméabilité au méthanol, à l'éthanol et au glycérol ont été réalisées et montrent que les films plasma sont intrinsèquement 40 à 235 fois moins perméables au combustible que le Nafion®211 du fait de leur fort taux de réticulation. Les polymères ont été déposés en tant que liants sur des électrodes E-TEK® pour intégration en pile. Nous avons constaté que le liant phosphonique plasma possède une conductivité protonique suffisante pour permettre le transport des protons à l'interface membrane-électrodes. En parallèle, nous avons réalisé le traitement de surface par plasma d'une membrane phosphonique conventionnelle pour en améliorer la stabilité thermique et la rétention au combustible. Les analyses thermogravimétriques montrent une légère amélioration de la stabilité thermique suite au traitement de surface. Des tests de perméabilité au méthanol et à l'éthanol montrent que la membrane traitée par plasma est 2 à 4 fois moins perméable que la membrane vierge. Le traitement à 60 W conduit aux coefficients de diffusion les plus faibles (DMeOH = 9.10-12 m2.s-1 et DEtOH = 6.10-12 m2.s-1). Des tests en pile ont été effectués montrant de meilleures performances de la membrane traitée en comparaison de son homologue non traité. / The proton exchange membrane is a key component in the PEMFC-type fuel cell; it plays a decisive role as electrolyte medium for proton transport and barrier to avoid the direct contact between fuel and oxygen. The Nafion® is one of the most extensively studied proton exchange membrane for PEMFC applications. However, it has a number of drawbacks that need to be overcome, especially the poor performance at temperature above 80°C. That's why the development of effective and low cost membranes for fuel cell turned to be a challenge for the membrane community in the last years. Phosphonic acid derivatives are considered suitable candidates as ionomers for application in PEMFC at high temperature (> 80°C) thanks to their efficient proton transport properties under low humidity condition due to their amphoteric character.In this work, plasma polymers containing phosphonic acid groups have been successfully prepared using dimethyl allylphosphonate as a single precursor demonstrating the feasibility of plasma process for the manufacture of proton exchange membranes. Moreover, plasma polymers properties have been investigated as a function of the plasma conditions. The evolution of the films growth rate on three different supports as a function of the plasma discharge power is bimodal, with a maximum (close to 30 nm min-1 on Si) at 60 W. The chemical composition of plasma materials (investigated by FTIR, EDX and XPS) is quite homogeneous from the surface to the bulk; it is characterized by a wide variety of bond arrangements, in particular the presence of phosphonate and phosphonic acid groups which are above all concentrated in the plasma film synthesized at 60 W, characterized by the highest ion exchange capacity (4.65 meq g-1) and the highest proton conductivity (0.08 mS cm-1 at 90°C and 30% RH). TGA analysis has shown that phosphonic acid-based plasma polymers retain water and don't decompose up to 150 °C, which reveals a satisfying thermal stability for the fuel cell application. In terms of fuel retention, plasma films are intrinsically highly performing (methanol, ethanol and glycerol permeabilities being 40 to 235 lower than that of Nafion®211). The plasma films were deposited on fuel cell electrodes (E-TEK®) as binding agents. We have noticed that the phosphonic binder has a sufficient proton conductivity to allow proton transport at the electrode-membrane interface.A second part of this work concerns the surface treatment by plasma process of a conventional phosphonated membrane for improvement of thermal stability and fuel retention. TGA analysis has shown a slight improvement of the thermal stability for the treated membrane. Methanol and ethanol permeabilities tests show that the plasma-modified membrane is 2 to 4 times less permeable than the non-modified membrane. The treatment at 60 W shows the lowest fuel diffusion coefficients (DMeOH = 9.10-12 m2.s-1 and DEtOH = 6.10-12 m2.s-1). Fuel cell tests were realized showing better performance for the modified membrane compared to the non-modified one.
|
56 |
Development of Analytical Techniques for the Investigation of an Organic Redox Flow Battery using a Segmented Cell / Développement d’outils d’analyse et d’une cellule segmentée pour l’étude d’une batterie redox organique à électrolyte circulantCazot, Mathilde 30 August 2019 (has links)
Les batteries à électrolyte circulant ou redox flow batteries (RFB) représentent une technologie prometteuse pour répondre aux besoins grandissants de stockage d'énergie. Elles seraient particulièrement adaptées aux réseaux électriques qui comptent une part grandissante d'énergie d'origine renouvelable, produite en intermittence. L'objet de ce travail est l'étude d'un nouveau type de RFB, actuellement développé par l'entreprise Kemiwatt. Il repose sur l'utilisation de molécules organiques, qui sont abondantes et recyclables. Le but de cette étude est d'améliorer la compréhension fondamentale de la batterie grâce à l'utilisation d'outils d'analyse précis et innovants. Chaque composant du système a d'abord été analysé via des moyens expérimentaux ex-situ. Les deux électrolytes composant la batterie ont ensuite été étudiés séparément en conditions réelles de circulation dans une cellule symétrique. Couplées à un modèle d'électrode volumique, les données ont été analysées pour identifier les facteurs limitants de chaque solution. La batterie entière a ensuite été étudiée dans un dispositif segmenté, permettant l'accès à la distribution interne du courant. Une étude paramétrique, réalisée avec la cellule segmentée a permis d'observer les effets du courant, du débit et de la température sur le fonctionnement de la cellule, puis d'établir une cartographie des conditions de fonctionnement idéales, suivant la puissance et l'état de charge de la batterie. L'aspect hydrodynamique du système a finalement été abordé en développant un modèle fluidique ainsi qu'une maquette expérimentale de cellule transparente pour visualiser l'écoulement. / Redox Flow Batteries (RFBs) are a promising solution for large-scale and low-cost energy storage necessary to foster the use of intermittent renewable sources. This work investigates a novel RFB chemistry under development at the company Kemiwatt. Based on abundant organic/organo-metallic compounds, this new technology promises the deployment of sustainable and long-lived systems. The study undertakes the building of a thorough knowledge base of the system by developing innovative reliable analytical tools. The investigation started from the evaluation of the main factors influencing the battery performance, which could be conducted ex-situ on each material composing the cell. The two electrolytes were then examined independently under representative operating conditions, by building a symmetric flow cell. Cycling coupled with EIS measurements were performed in this set-up and then analyzed with a porous electrode model. This combined modeling-experimental approach revealed unlike limiting processes in each electrolyte along with precautions to take in the subsequent steps (such as membrane pretreatment and electrolyte protection from light). A segmented cell was built and validated to extend the study to the full cell system. It provided a mapping of the internal currents, which showed high irregularity during cycling. A thorough parameter study could be conducted with the segmented platform, by varying successively the current density, the flow rate, and the temperature. The outcome of this set of experiments would be the construction of an operational map that guides the flow rate adjustment, depending on the power load and the state of charge of the battery. This strategy of flow rate optimization showed promising outcomes at the lab-cell level. It can be easily adapted to real-size systems. Ultimately, an overview of the hydrodynamic behavior at the industrial-cell level was completed by developing a hydraulic modeling and a clear cell as an efficient diagnostic tool.
|
57 |
Étude de l’interface lithium métal/polymère pour l’optimisation des batteries lithium métal tout solideStorelli Martineau, Alexandre 11 1900 (has links)
Le gain en popularité de l’électricité dans le domaine énergétique, observable depuis plusieurs décennies, accentue l’urgence de développer des équipements de stockage efficaces et performants. Les batteries au lithium-ion (Li-ion), commercialisées depuis le début des années 1990, ont presque atteint les limites théoriques imposées par leurs composantes. La recherche s’oriente donc aujourd’hui vers les batteries tout-solide constituées d’une électrode négative de lithium métal. Ces batteries seraient en mesure d’atteindre des densités énergétiques supérieures à celles attribuables aux batteries lithium-ion utilisées et commercialisées à ce jour. Cependant, il subsiste toujours une impasse qui doit être solutionnée afin d’en assurer la viabilité : la formation de dendrites ou de mousse de lithium à la surface de l’électrode négative de lithium métal occasionne le court-circuit des batteries et en réduit l’espérance de vie.
Plusieurs pistes de solutions sont proposées afin de réduire ou d’éliminer les problèmes de croissance dendritique et de mousse de lithium. Toutefois, il y a un manque d’information dans la littérature en lien avec la corrélation entre l’état de surface des électrodes négatives (anodes) de lithium métal et les performances électrochimiques de ces dernières. Ce projet de recherche visera donc, entre autres, à étudier l’impact de l’état de surface de l’électrode négative de lithium sur ses performances électrochimiques, dont son temps de vie, sa polarisation et son impédance.
Une caractérisation a été effectuée sur les feuilles de lithium étudiées et sur l’interface lithium métal/électrolyte polymère. Suite à l’étude des feuilles sous leur forme native, des dépôts protecteurs d’or, d’aluminium et de fluorure de lithium ont été appliqués par déposition en phase vapeur (PVD) sur le lithium industriel de basse rugosité, afin d’évaluer si ces derniers amélioraient la performance électrochimique des cellules. La caractérisation physique a été effectuée par microscopie de force atomique à effet tunnel (Peakforce-TUNA) et microscopie électronique à balayage (MEB). Ensuite, la caractérisation chimique de chaque feuille de lithium utilisée a été caractérisée principalement par spectroscopie photoélectronique par rayons X (XPS) et par spectrométrie de masse à plasma induit (ICP-MS), permettant respectivement de connaître la composition chimique surfacique et complète des feuilles de lithium. Finalement, l’impact de l’interface lithium métal/électrolyte polymère sur la viabilité des cellules complètes a été déterminé par des cyclages galvanostatiques. Ces batteries ont enfin été observées post mortem par MEB afin d’observer l’impact du cyclage sur l’état interne des cellules.
Il a été déterminé que la morphologie des feuilles de lithium et de l’interface lithium métal/électrolyte polymère ont un impact sans équivoque sur la durée de vie et sur la polarisation des cellules étudiées. Une méthode de préparation de surface électrochimique a donc été conçue, en cyclant les électrodes de lithium à basse densité de courant (0,130 mA.cm-2), améliorant ainsi la durée de vie des cellules symétriques exploitant des électrodes de lithium métal. / The increased use of electricity witnessed during the past few decades
emphasizes the urgency of developing efficient and performing energy storing devices.
Present on the market since the beginning of the 1990s, Lithium-ion (Li-ion) batteries
have reached the theoretical limit inherent to their components. Research efforts
currently aim at developing all-solid batteries composed of a negative lithium electrode.
This type of electrode uses only lithium in its pure metallic state and it has the capacity to
attain higher energy densities than those attributable to the lithium-ion batteries. Despite
the potential of this promising technology, there is an obstacle that must be overcome in
order to ensure its viability: the formation of dendrites and mossy lithium on the surface
of the lithium metal negative electrode causes the batteries to short-circuit and reduces
their life expectancy.
Several solutions have been proposed in the literature in order to either eliminate or
mitigate the issues of dendritic growth and mossy lithium. However, published studies do
not specifically address the correlation between the state of the surface of the lithium
metal and its electrochemical performance when used as the negative electrode (anode).
This research project therefore focused on evaluating the impact of the state of the
surface the lithium metal negative electrode on its electrochemical performance, such as
its lifetime, polarization, and impedance.
The lithium sheets and the lithium metal/polymer electrolyte interface were
characterized in order to better understand the problematic processes related to the use
of the lithium metal in batteries. In addition to studying the sheets in their native form, a
protective gold deposit was applied by physical vapor deposition (PVD) on the lithium
sheets to determine whether the deposit improved the electrochemical performance of
the cells. The physical characterization was performed by using tunnelling atomic force
microscopy (Peakforce-TUNA) and scanning electron microscopy (SEM). Each lithium
x
sheet used was then characterized by X-ray photoelectron spectroscopy (XPS) and
coupled plasma mass spectrometry (ICP-MS). These chemical characterizations allowed
to determine the surface and bulk chemical compositions of the lithium sheets. Finally, in
order to understand the impact of the lithium metal/polymer electrolyte interface on the
viability of complete cells, galvanostatic cycling, similar to true operating conditions of a
battery, was performed. Cross-sections of these batteries were assessed post-mortem by
SEM in order to analyze the impact of the cycling density on the internal state of the cells.
It has been determined that the morphology of the lithium foils and the lithium
metal/polymer electrolyte interface impacted the lifespan and the polarization of the
studied cells. An electrochemical surface preparation method was therefore designed by
cycling the lithium electrodes at a low current density (0.130 mA.cm-2), thus improving
the life of the symmetrical cells composed of lithium metal electrodes.
|
58 |
Approche coupl´ee exp´erience/th´eorie des interfaces ´electrode/´electrolyte dans les microbatteries au lithium : application au syst`eme LixPOyNz/Si / On the study of electrode/electrolyte interfaces in lithium-ion microbatteries : a combined approach (experiment/theory) of the LixPOyNz/Si systemGuille, Emilie 16 October 2014 (has links)
Afin de pallier les problèmes de sécurité posés par l'emploi d'électrolytes liquides, des batteries incorporant des électrolytes solides ont été envisagées, conduisant à des dispositifs « tout solide » de type microbatterie au lithium. Dans le cas de ces systèmes, des études concernant les phénomènes aux interfaces restent à développer, afin de comprendre les processus limitants qui se déroulent à l'échelle atomique, similairement à la formation de la SEI (« Solid Electrolyte Interface »), bien connue dans le cas de l'utilisation d'électrolytes liquides. Dans ce type de problématiques, l'apport des méthodes de la chimie calculatoire, de part leur aspect prédictif et explicatif, est incontestable. Le présent travail de thèse, en prenant pour objet d'étude l'électrolyte solide LixPOyNz, se place dans ces problématiques, en proposant l'étude fondamentale de modèles d'interfaces électrode/électrolyte. L'électrolyte considéré étant un matériau amorphe, le premier verrou à lever consiste en la recherche d'un modèle de ce système, apte à simuler les propriétés électroniques de l'électrolyte réel, constituées par des données XPS cibles. Les calculs menés, visant à la modélisation des spectres XPS, ont permis tout à la fois de proposer un modèle de l'électrolyte et de mettre en lumière l'existence d'une coordinence des atomes d'azote non considérée jusqu'alors dans l'interprétation expérimentale des données XPS. La possible existence d'atomes d'azote monovalents au sein de l'électrolyte semble confirmée par des calculs vibrationnels, thermodynamiques et cinétiques complémentaires, tandis que ce résultat permet de réviser la vision communément admise de la structuration de l'électrolyte LixPOyNz et de la diffusion des ions Li+ au sein de celui-ci. Enfin, ce modèle structural de l'électrolyte a été employé à la simulation d'une interface électrode/électrolyte (LixPOyNz/Si). Une considération particulière a notamment été apportée à l'étude de l'adsorption du modèle à la surface et de la diffusion des ions lithium au sein de l'interface. / In order to overcome the safety issues induced by the use of liquid electrolytes, Li-ion batteries involving solid electrolytes have been considered, leading to an ‘all-solid’ kind of devices, commonly called microbatteries. For such devices, studies on the limiting processes that take place at electrode/electrolyte interfaces need to be done, to understand the electrochemical phenomenons likely to occur at the atomic scale, similarly to the well-known SEI formation. In this goal, methods of computational chemistry can provide both explanatory and predictive breakthroughs. The present work takes part in those issues by intending a study of electrode/electrolyte interfaces, considering LixPOyNz as the solid electrolyte material. Owing to the amorphous structuration of this system, the first barrier to break consists in the search for a suitable model, able to reproduce its real XPS electronic properties. Modelling of XPS spectra has both lead to propose a model of the electrolyte and highlight the possible existence of a new coordinence for nitrogen atoms, up to now unconsidered experimentally. Complementary calculations of Raman spectra, thermodynamic and kinetic data tend to evidence this coordinence, leading to a refinement of the commonly considered diffusion scheme. Finally, this structural model has been used to simulate an electrode/electrolyte interface (LixPOyNz/Si), with the particular aim of studying its adsorption on the electrode and the Li-ion diffusion through the interface.
|
59 |
Etude des interfaces de batteries lithium-ion : application aux anodes de conversion / Interfaces for conversion anodes - reliability and efficiency studiesZhang, Wanjie 02 December 2014 (has links)
Les matériaux dits de conversion à base de Sb et Sn, utilisés comme électrodes, apparaissent comme des composés particulièrement intéressants compte tenu de leur forte capacité théorique. Le matériau TiSnSb a été récemment développé en tant qu’électrode négative pour batteries lithium-ion. Ce matériau est capable d’accueilir, de façon réversible, 6,5 Li par unité formulaire, ce qui correspond à une capacité spécifique de 580 mAh/g. Dans le domaine des batteries lithium-ion, les propriétés de l’interface électrode/électrolyte (« solid electrolyte interphase », SEI), formant une couche de passivation protectrice à la surface des électrodes sont considérées comme essentielles pour les performances au sens large des batteries. Cet aspect représente le sujet majeur traité dans ce travail de thèse. Dans cet optique, nous avons tout d'abord étudié les propriétés électrochimiques de l'électrode TiSnSb sous divers aspects, dont les effets du régime de cyclage, l’influence de la nature des additifs au sein de l’électrolyte ainsi que l’utilisation de liquides ioniques à température ambiante (RTILs). En particulier, un système d'électrolyte à base de RTILs a été développé et optimisé vis-à-vis des performances électrochimiques. Afin de caractériser l’interface électrode-électrolyte, deux techniques de caractérisation majeures ont été utilisées : la Spectroscopie Photoélectronique à Rayonnement X (XPS) et la Spectroscopie d'Impédance électrochimique (EIS). Cette étude a permis de cibler certains paramètres essentiels liant les aspects performances électrochimiques à la nature de l’interface électrode-électrolyte. / In the past decades, the need for portable power has accelerated due to the miniaturization of electronic appliances. It continues to drive research and development of advanced energy systems, especially for lithium ion battery systems. As a consequence, conversion materials for lithium-ion batteries, including Sb and Sn-based compounds, have attracted much intense attention for their high storage capacities. Among conversion materials, TiSnSb has been recently developed as a negative electrode for lithium-ion batteries. This material is able to reversibly take up 6.5 Li per formula unit which corresponds to a specific capacity of 580 mAh/g. In the field of lithium-ion battery research, the solid electrolyte interphase (SEI) as a protective passivation film formed at electrode surface owing to the reduction of the electrolyte components, has been considered as a determinant factor on the performances of lithium-ion battery. Thus it has been a focused topic of many researches. However, little information can be found about the formation and composition of the SEI layer formed on TiSnSb conversion electrode at this time. With the aim to investigate the influences of the SEI layer on the performances of composite TiSnSb electrode, we first studied the electrochemical properties of the electrode from various aspects, including the effects of cycling rates, electrolyte additives, as well as room temperature ionic liquids (RTILs). Especially, a RTILs-based electrolyte system was developed and optimized by evaluating its physicochemical properties to be able to further improve the performances of TiSnSb electrode. In order to characterize the SEI layer formed at electrode surface, we performed X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). This study allowed to target some essential parameters concerning electrochemical performances linked with the nature of the solid electrolyte interphase.*
|
60 |
Etude d'électrolytes organiques pour la réalisation de supercondensateurs lithium-ion / Study of electrolytes for lithium-ion capacitorsDahbi, Mouad 25 January 2013 (has links)
Le travail réalisé dans cette thèse concerne l'optimisation d’électrolytes organiques pour supercondensateur lithium-ion. Plusieurs solvants ont été sélectionnés pour la formulation de mélanges binaires ou ternaires additionnés de sel de lithium. Les propriétés physicochimiques et électrochimiques de ces électrolytes contenant LiTFSI ou LiPF6 (EC/DMC ; dinitrile/DMC ; EC/Ester/3DMC, EC/MiPC/3DMC) ont été caractérisées en vue de leur utilisation dans des dispositifs hybrides, l’objectif étant de satisfaire à la fois aux exigences des matériaux graphite et carbone activé. Les interactions solvant-solvant et solvant-sel des électrolytes ont été étudiées à partir des théories de Jones-Dole, Stocks-Einstein et Bjerrum appliquées aux mesures de viscosités et conductivités. Cela a permis de développer des modèles prédictifs de la conductivité dans des cas de solvants purs ou de mélanges simples. La deuxième partie de cette thèse a été dédiée à la réalisation de demi-cellules avec différentes formulations d'électrolytes à la fois sur carbone activé et sur graphite. Les interfaces électrodes/électrolytes et séparateurs/électrolytes ont été étudiées. La corrosion des collecteurs en Al en présence de LiTFSI a fait l'objet d'une étude qui a permis de dégager une solution consistant en la formulation d'un électrolyte additionné de 1% d'additifs source de fluorure tel que LiPF6. Enfin, des dispositifs complets graphite/carbone activé ont été réalisés en utilisant les différents électrolytes optimisés ce qui a permis de mettre en évidence le gain en énergie (x5) pour un tel système par rapport aux supercondensateurs symétriques classiques. / The objective of this thesis is to broaden the knowledge of electrochemical, thermo physical and thermodynamic properties of different efficient and safe organic electrolytes for Lithium-ion Capacitors (LICs). Several solvent structures have been first selected to design new electrolytes based on binary or ternary solvent mixtures. These solvents were then characterized through conductivity, viscosity and electrochemical studies, in order to assess their structure and properties relationships. Based on this investigation, best compromise between mobility and ionic concentration has been evaluated to formulate the best electrolytes. Generally, it was proved that the addition of solvents with very low viscosity provides efficient electrolytes. Based on conductivity and viscosity measurements, a theoretical study on solvent-solvent and solvent-salt interactions has been then performed using different well-known equations based on Stock-Einstein, Jones-Dole and Bjerrum theories to understand, rationalize, correlate and then predict their transport properties. The second part of the study concentrated on the characterization of selected electrolytes in an asymmetric LIC prior to developing such electrolytes in any high performance asymmetric capacitor devices. In other words, the main objective of this part is to verify the compatibility of designed electrolytes with each element, e.g. electrodes (graphite, activated carbon) and current collectors (aluminum), of a LIC device. To drive such analysis, different experimental investigations between electrodes/electrolytes and between collectors/electolytes were in fact investigated. Using this strategy, asymmetric systems LICs containing a formulated organic electrolyte were fully characterized to deter mine the electrochemical performances of the designed solution in LIC conditions and then compared with those observed using classical electrolyte currently used.
|
Page generated in 0.0498 seconds